To see the other types of publications on this topic, follow the link: Analog VLSI.

Journal articles on the topic 'Analog VLSI'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Analog VLSI.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Loeliger, H. A., F. Tarkoy, F. Lustenberger, and M. Helfenstein. "Decoding in analog VLSI." IEEE Communications Magazine 37, no. 4 (April 1999): 99–101. http://dx.doi.org/10.1109/35.755457.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bartolozzi, Chiara, and Giacomo Indiveri. "Synaptic Dynamics in Analog VLSI." Neural Computation 19, no. 10 (October 2007): 2581–603. http://dx.doi.org/10.1162/neco.2007.19.10.2581.

Full text
Abstract:
Synapses are crucial elements for computation and information transfer in both real and artificial neural systems. Recent experimental findings and theoretical models of pulse-based neural networks suggest that synaptic dynamics can play a crucial role for learning neural codes and encoding spatiotemporal spike patterns. Within the context of hardware implementations of pulse-based neural networks, several analog VLSI circuits modeling synaptic functionality have been proposed. We present an overview of previously proposed circuits and describe a novel analog VLSI synaptic circuit suitable for integration in large VLSI spike-based neural systems. The circuit proposed is based on a computational model that fits the real postsynaptic currents with exponentials. We present experimental data showing how the circuit exhibits realistic dynamics and show how it can be connected to additional modules for implementing a wide range of synaptic properties.
APA, Harvard, Vancouver, ISO, and other styles
3

Picton, P. D. "Adaptive analog VLSI neural systems." Microelectronics Journal 28, no. 1 (January 1997): 103–4. http://dx.doi.org/10.1016/s0026-2692(97)87856-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Copeland, M. A. "VLSI for analog/digital communications." IEEE Communications Magazine 29, no. 5 (May 1991): 25–30. http://dx.doi.org/10.1109/35.79380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Weimin, Andreas G. Andreou, and Moise H. Goldstein. "Speech preprocessing using analog VLSI." Journal of the Acoustical Society of America 87, S1 (May 1990): S109. http://dx.doi.org/10.1121/1.2027825.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sasaki, Mamoru, and Hirokuni Fujiyama. "An analog VLSI for analog-to-binary image conversion." Electronics and Communications in Japan (Part III: Fundamental Electronic Science) 84, no. 4 (2000): 11–20. http://dx.doi.org/10.1002/1520-6440(200104)84:4<11::aid-ecjc2>3.0.co;2-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stan, Mircea R., Wayne P. Burleson, Christopher I. Connolly, and Roderic A. Grupen. "Analog VLSI for robot path planning." Analog Integrated Circuits and Signal Processing 6, no. 1 (July 1994): 61–73. http://dx.doi.org/10.1007/bf01250736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hodge, A. M., and R. W. Newcomb. "Semistate theory and analog VLSI design." IEEE Circuits and Systems Magazine 2, no. 2 (2002): 30–51. http://dx.doi.org/10.1109/mcas.2002.1045856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Stojcev, Mile. "Analog Design for CMOS VLSI Systems." Microelectronics Journal 34, no. 2 (February 2003): 161. http://dx.doi.org/10.1016/s0026-2692(02)00072-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mead, C. A., X. Arreguit, and J. Lazzaro. "Analog VLSI model of binaural hearing." IEEE Transactions on Neural Networks 2, no. 2 (March 1991): 230–36. http://dx.doi.org/10.1109/72.80333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Krammer, J., and C. Koch. "Pulse-based analog VLSI velocity sensors." IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 44, no. 2 (1997): 86–101. http://dx.doi.org/10.1109/82.554431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Chieh-Yuan Chao, Hung-Jen Lin, and L. Miler. "Optimal testing of VLSI analog circuits." IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 16, no. 1 (1997): 58–77. http://dx.doi.org/10.1109/43.559332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Carota, Luciana. "Dynamics of VLSI analog decoupled neurons." Neurocomputing 82 (April 2012): 234–37. http://dx.doi.org/10.1016/j.neucom.2011.11.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Wu, P. "Analog VLSI Design Automation [Book Review]." IEEE Circuits and Devices Magazine 21, no. 3 (May 2005): 53–54. http://dx.doi.org/10.1109/mcd.2005.1438816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Chong, C. P., C. A. T. Salama, and K. C. Smith. "Image-motion detection using analog VLSI." IEEE Journal of Solid-State Circuits 27, no. 1 (1992): 93–96. http://dx.doi.org/10.1109/4.109560.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Zarabadi, S. R., M. Ismail, and Chung-Chih Hung. "High performance analog VLSI computational circuits." IEEE Journal of Solid-State Circuits 33, no. 4 (April 1998): 644–49. http://dx.doi.org/10.1109/4.663572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Stan, Mircea R., Wayne P. Burleson, Christopher I. Connolly, and Roderic A. Grupen. "Analog VLSI for robot path planning." Journal of VLSI signal processing systems for signal, image and video technology 8, no. 1 (February 1994): 61–73. http://dx.doi.org/10.1007/bf02407111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kumar, K. R. Lakshmi, R. A. Hadaway, M. A. Copeland, and M. I. H. King. "A precision design technique for analog very large scale integration." Canadian Journal of Physics 63, no. 6 (June 1, 1985): 702–6. http://dx.doi.org/10.1139/p85-109.

Full text
Abstract:
A study of the matching characteristics of components available in a CMOS VLSI technology is reported. This examination has been extended to produce a design methodology for precision analog functions in VLSI by choosing a digital-to-analog converter as an example. The major emphasis of the paper will be on the device and technological aspects of the design approach.
APA, Harvard, Vancouver, ISO, and other styles
19

Grundy, D. L. "A computational approach to VLSI analog design." Analog Integrated Circuits and Signal Processing 6, no. 1 (July 1994): 53–60. http://dx.doi.org/10.1007/bf01250735.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

McCarley, Chris. "VLSI ‘HyperNeuron’ for recognition of analog patterns." Signal Processing 65, no. 1 (February 1998): 143–46. http://dx.doi.org/10.1016/s0165-1684(98)00028-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Loeliger, H. A., F. Lustenberger, M. Helfenstein, and F. Tarkoy. "Probability propagation and decoding in analog VLSI." IEEE Transactions on Information Theory 47, no. 2 (2001): 837–43. http://dx.doi.org/10.1109/18.910594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Sitte, Joaquin, Tim Körner, and Ulrich Rückert. "Local cluster neural net analog VLSI design." Neurocomputing 19, no. 1-3 (April 1998): 185–97. http://dx.doi.org/10.1016/s0925-2312(97)00064-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Raut, R. "Wideband CMOS transconductor for analog VLSI systems." IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 43, no. 11 (1996): 775–76. http://dx.doi.org/10.1109/82.544030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Boon Poh Tan and D. M. Wilson. "Semiparallel rank order filtering in analog VLSI." IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 48, no. 2 (2001): 198–205. http://dx.doi.org/10.1109/82.917791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Chakrabartty, Shantanu, and Gert Cauwenberghs. "Sub-Microwatt Analog VLSI Trainable Pattern Classifier." IEEE Journal of Solid-State Circuits 42, no. 5 (May 2007): 1169–79. http://dx.doi.org/10.1109/jssc.2007.894803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Cowan, G. E. R., R. C. Melville, and Y. P. Tsividis. "A VLSI Analog Computer/Digital Computer Accelerator." IEEE Journal of Solid-State Circuits 41, no. 1 (January 2006): 42–53. http://dx.doi.org/10.1109/jssc.2005.858618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Hudson, T. A., J. A. Bragg, P. Hasler, and S. P. DeWeerth. "An analog vlsi model of muscular contraction." IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 50, no. 7 (July 2003): 329–42. http://dx.doi.org/10.1109/tcsii.2003.813593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Maher, M. A. C., S. P. Deweerth, M. A. Mahowald, and C. A. Mead. "Implementing neural architectures using analog VLSI circuits." IEEE Transactions on Circuits and Systems 36, no. 5 (May 1989): 643–52. http://dx.doi.org/10.1109/31.31311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Indiveri, G., J. Kramer, and C. Koch. "System implementations of analog VLSI velocity sensors." IEEE Micro 16, no. 5 (1996): 40–49. http://dx.doi.org/10.1109/40.540079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Gupta, B., R. Goodman, Fukang Jiang, Yu-Chong Tai, S. Tung, and Chih-Ming Ho. "Analog VLSI system for active drag reduction." IEEE Micro 16, no. 5 (1996): 53–59. http://dx.doi.org/10.1109/40.540081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Hatfield, J. "Book Review: Analog VLSI and Neural Systems." International Journal of Electrical Engineering Education 28, no. 1 (January 1991): 93–94. http://dx.doi.org/10.1177/002072099102800120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Grundy, D. L. "A computational approach to VLSI analog design." Journal of VLSI signal processing systems for signal, image and video technology 8, no. 1 (February 1994): 53–60. http://dx.doi.org/10.1007/bf02407110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Jabri, Marwan, and Barry Flower. "Weight Perturbation: An Optimal Architecture and Learning Technique for Analog VLSI Feedforward and Recurrent Multilayer Networks." Neural Computation 3, no. 4 (December 1991): 546–65. http://dx.doi.org/10.1162/neco.1991.3.4.546.

Full text
Abstract:
Previous work on analog VLSI implementation of multilayer perceptrons with on-chip learning has mainly targeted the implementation of algorithms like backpropagation. Although backpropagation is efficient, its implementation in analog VLSI requires excessive computational hardware. In this paper we show that, for analog parallel implementations, the use of gradient descent with direct approximation of the gradient using “weight perturbation” instead of backpropagation significantly reduces hardware complexity. Gradient descent by weight perturbation eliminates the need for derivative and bidirectional circuits for on-chip learning, and access to the output states of neurons in hidden layers for off-chip learning. We also show that weight perturbation can be used to implement recurrent networks. A discrete level analog implementation showing the training of an XOR network as an example is described.
APA, Harvard, Vancouver, ISO, and other styles
34

Dhare, Vaishali, and Usha Mehta. "SAF Analyses of Analog and Mixed Signal VLSI Circuit : Digital to Analog Converter." International Journal of VLSI Design & Communication Systems 6, no. 3 (June 30, 2015): 49–58. http://dx.doi.org/10.5121/vlsic.2015.6305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Vittoz, Eric A. "Analog VLSI signal processing: Why, where, and how?" Analog Integrated Circuits and Signal Processing 6, no. 1 (July 1994): 27–44. http://dx.doi.org/10.1007/bf01250733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Koch, Christof. "Seeing Chips: Analog VLSI Circuits for Computer Vision." Neural Computation 1, no. 2 (June 1989): 184–200. http://dx.doi.org/10.1162/neco.1989.1.2.184.

Full text
Abstract:
Vision is simple. We open our eyes and, instantly, the world surrounding us is perceived in all its splendor. Yet Artificial Intelligence has been trying with very limited success for over 20 years to endow machines with similar abilities. A large van, filled with computers and driving unguided at a mile per hour across gently sloping hills in Colorado and using a laser-range system to “see” is the most we have accomplished so far. On the other hand, computers can play a decent game of chess or prove simple mathematical theorems. It is ironic that we are unable to reproduce perceptual abilities which we share with most animals while some of the features distinguishing us from even our closest cousins, chimpanzees, can be carried out by machines. Vision is difficult.
APA, Harvard, Vancouver, ISO, and other styles
37

Kwok Fai Hui and B. E. Shi. "Distortion in analog VLSI networks for image filtering." IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 46, no. 10 (1999): 1161–71. http://dx.doi.org/10.1109/81.795829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Cauwenberghs, G., and A. Yariv. "Fault-tolerant dynamic multilevel storage in analog VLSI." IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 41, no. 12 (1994): 827–29. http://dx.doi.org/10.1109/82.338627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Abdalla, H., and T. K. Horiuchi. "An analog VLSI low-power envelope periodicity detector." IEEE Transactions on Circuits and Systems I: Regular Papers 52, no. 9 (September 2005): 1709–20. http://dx.doi.org/10.1109/tcsi.2005.852203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Koosh, V. F., and R. M. Goodman. "Analog VLSI neural network with digital perturbative learning." IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 49, no. 5 (May 2002): 359–68. http://dx.doi.org/10.1109/tcsii.2002.802282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Dominguez-Castro, R., A. Rodriguez-Vazquez, J. L. Huertas, and E. Sanchez-Sinencio. "Analog neural programmable optimizers in CMOS VLSI technologies." IEEE Journal of Solid-State Circuits 27, no. 7 (July 1992): 1110–15. http://dx.doi.org/10.1109/4.142611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Mortara, A., E. A. Vittoz, and P. Venier. "A communication scheme for analog VLSI perceptive systems." IEEE Journal of Solid-State Circuits 30, no. 6 (June 1995): 660–69. http://dx.doi.org/10.1109/4.387069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Al-Azab, Mohamed. "WIDEBAND ANALOG VLSI IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORKS." JES. Journal of Engineering Sciences 36, no. 2 (March 1, 2008): 435–42. http://dx.doi.org/10.21608/jesaun.2008.116002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Foo, S. Y., L. R. Anderson, and Y. Takefuji. "Analog components for the VLSI of neural networks." IEEE Circuits and Devices Magazine 6, no. 4 (July 1990): 18–26. http://dx.doi.org/10.1109/101.59426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Brauch, J., S. M. Tam, M. A. Holler, and A. L. Shmurun. "Analog VLSI neural networks for impact signal processing." IEEE Micro 12, no. 6 (December 1992): 34–45. http://dx.doi.org/10.1109/40.180245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Luo, J., C. Koch, and B. Mathur. "Figure-ground segregation using an analog VLSI chip." IEEE Micro 12, no. 6 (December 1992): 46–57. http://dx.doi.org/10.1109/40.180246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Verleysen, M., and P. G. A. Jespers. "An analog VLSI implementation of Hopfield's neural network." IEEE Micro 9, no. 6 (December 1989): 46–55. http://dx.doi.org/10.1109/40.42986.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Hatfield, John. "Book Review: Analog VLSI Design — nMOS and CMOS." International Journal of Electrical Engineering & Education 26, no. 1-2 (January 1989): 186. http://dx.doi.org/10.1177/002072098902600132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

NAKADA, KAZUKI, TETSUYA ASAI, and HATSUO HAYASHI. "ANALOG VLSI IMPLEMENTATION OF RESONATE-AND-FIRE NEURON." International Journal of Neural Systems 16, no. 06 (December 2006): 445–56. http://dx.doi.org/10.1142/s0129065706000846.

Full text
Abstract:
We propose an analog integrated circuit that implements a resonate-and-fire neuron (RFN) model based on the Lotka-Volterra (LV) system. The RFN model is a spiking neuron model that has second-order membrane dynamics, and thus exhibits fast damped subthreshold oscillation, resulting in the coincidence detection, frequency preference, and post-inhibitory rebound. The RFN circuit has been derived from the LV system to mimic such dynamical behavior of the RFN model. Through circuit simulations, we demonstrate that the RFN circuit can act as a coincidence detector and a band-pass filter at circuit level even in the presence of additive white noise and background random activity. These results show that our circuit is expected to be useful for very large-scale integration (VLSI) implementation of functional spiking neural networks.
APA, Harvard, Vancouver, ISO, and other styles
50

Hyogo, Akira. "Special Issue on 2009 International Analog VLSI Workshop." IEEJ Transactions on Electrical and Electronic Engineering 5, no. 1 (January 2010): 124. http://dx.doi.org/10.1002/tee.20505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography