Dissertations / Theses on the topic 'Analisi nonsmooth'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 26 dissertations / theses for your research on the topic 'Analisi nonsmooth.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
CASTELPIETRA, MARCO. "Metric, geometric and measure theoretic properties of nonsmooth value functions." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2007. http://hdl.handle.net/2108/202601.
Full textThe value function is a focal point in optimal control theory. It is a known fact that the value function can be nonsmooth even with very smooth data. So, nonsmooth analysis is a useful tool to study its regularity. Semiconcavity is a regularity property, with some fine connection with nonsmooth analysis. Under appropriate assumptions, the value function is locally semiconcave. This property is connected with the interior sphere property of its level sets and their perimeters. In this thesis we introduce basic concepts of nonsmooth analysis and their connections with semiconcave functions, and sets of finite perimeter. We describe control systems, and we introduce the basic properties of the minimum time function T(x) and of the value function V (x). Then, using maximum principle, we extend some known results of interior sphere property for the attainable setsA(t), to the nonautonomous case and to systems with nonconstant running cost L. This property allow us to obtain some fine perimeter estimates for some class of control systems. Finally these regularity properties of the attainable sets can be extended to the level sets of the value function, and, with some controllability assumption, we also obtain a local semiconcavity for V (x). Moreoverwestudycontrolsystemswithstateconstraints. Inconstrained systems we loose many of regularity properties related to the value function. In fact, when a trajectory of control system touches the boundary of the constraint set Ω, some singularity effect occurs. This effect is clear even in the statement of the maximum principle. Indeed, due to the times in which a trajectory stays on ∂Ω, a measure boundary term (possibly, discontinuous) appears. So, we have no more semiconcavity for the value function, even for very simple control systems. But we recover Lipschitz continuity for the minimum time and we rewrite the constrained maximum principle with an explicit boundary term. We also obtain a kind of interior sphere property, and perimeter estimates for the attainable sets for some class of control systems.
Nguyen, Khai/T. "The regularity of the minimum time function via nonsmooth analysis and geometric measure theory." Doctoral thesis, Università degli studi di Padova, 2010. http://hdl.handle.net/11577/3427404.
Full textSi dimostrano risultati di regolarita' per la funzione tempo minimo, mediante particolari proprieta' di una classe di funzioni continue il cui ipografico soddisfa una condizione di sfera esterna.
Soukhoroukova, Nadejda. "Data classification through nonsmooth optimization." Thesis, University of Ballarat [Mt. Helen, Vic.] :, 2003. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/42220.
Full textMankau, Jan Peter. "A Nonsmooth Nonconvex Descent Algorithm." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-217556.
Full textIn vielen Anwendungen tauchen nichtglatte, nichtkonvexe, Lipschitz-stetige Energie Funktionen in natuerlicher Weise auf. Ein klassische Beispiel bildet die Kontaktmechanik mit Reibung. Ein weiteres Beispiel ist der $1$-Laplace Operator und seine Eigenfunktionen. In dieser Dissertation werden wir ein Abstiegsverfahren angeben, so dass fuer jede lokal Lipschitz-stetige Funktion f jeder Haeufungspunkt einer durch dieses Verfahren erzeugten Folge ein kritischer Punkt von f im Sinne von Clarke ist. Hier ist f auf einem einem reflexiver, strikt konvexem Banachraum definierert, fuer den der Dualraum ebenfalls strikt konvex ist und die Clarkeson Ungleichungen gelten. (Z.B. Sobolevraeume und jeder abgeschlossene Unterraum mit der Sobolevnorm versehen, erfuellt diese Bedingung fuer p>1.) Dieser Algorithmus ist primaer entwickelt worden um Variationsprobleme, bzw. deren hochdimensionalen Diskretisierungen zu loesen. Er kann aber auch fuer eine Vielzahl anderer lokal Lipschitz stetige Funktionen eingesetzt werden. In der elastischen Kontaktmechanik ist die Spannungsenergie oft glatt und nichtkonvex auf einem geeignetem Definitionsbereich, waehrend der Kontakt und die Reibung durch nicht glatte Funktionen modelliert werden, deren Traeger ein Unterraum mit wesentlich kleineren Dimension ist, da alle Punkte im Inneren des Koerpers nur die Spannungsenergie beeinflussen. Fuer solche elastischen Kontaktprobleme schlagen wir eine Spezialisierung unseres Algorithmuses vor, der den glatten Teil mit Newton aehnlichen Methoden behandelt. Falls der Gradient der gesamten Energiefunktion semiglatt in der Naehe der Minimalstelle ist, koennen wir sogar beweisen, dass der Algorithmus superlinear konvergiert. Wir testen den Algorithmus und seine Spezialisierung an mehreren Benchmark Problemen. Ausserdem wenden wir den Algorithmus auf 1-Laplace Minimierungsproblem eingeschraenkt auf eine endlich dimensionalen Unterraum der stueckweise affinen, stetigen Funktionen an. Der hier entwickelte Algorithmus verwendet Ideen des Bundle-Trust-Region-Verfahrens von Schramm, und einen neu entwickelten Verallgemeinerung von Gradienten auf Mengen. Die zentrale Idee hinter den Gradienten auf Mengen ist die, dass wir stabile Abstiegsrichtungen auf einer ganzen Umgebung der Iterationspunkte finden wollen. Auf diese Weise vermeiden wir das Oszillieren der Gradienten und sehr kleine Abstiegsschritte (im glatten, wie im nichtglatten Fall.) Es stellt sich heraus, dass das normkleinste Element dieses Gradienten auf der Umgebung eine stabil Abstiegsrichtung bestimmt. So weit es uns bekannt ist, koennen die hier entwickelten Algorithmen zum ersten Mal lokal Lipschitz-stetige Funktionen in dieser Allgemeinheit behandeln. Insbesondere wurden nichtglatte, nichtkonvexe Funktionen auf derart hochdimensionale Banachraeume bis jetzt nicht behandelt. Wir werden zeigen, dass unser Algorithmus sehr robust und oft schneller als uebliche Algorithmen ist. Des Weiteren, werden wir sehen, dass es mit diesem Algorithmus das erste mal moeglich ist, zuverlaessig die erste Eigenfunktion des 1-Laplace Operators bis auf Diskretisierungsfehler zu bestimmen
Mirzayeva, Hijran. "Nonsmooth optimization algorithms for clusterwise linear regression." Thesis, University of Ballarat, 2013. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/41975.
Full textDoctor of Philosophy
Mohebi, Ehsan. "Nonsmooth optimization models and algorithms for data clustering and visualization." Thesis, Federation University Australia, 2015. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/77001.
Full textDoctor of Philosophy
Chen, Jein-Shan. "Merit functions and nonsmooth functions for the second-order cone complementarity problem /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/5782.
Full textAkteke-ozturk, Basak. "New Approaches To Desirability Functions By Nonsmooth And Nonlinear Optimization." Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612649/index.pdf.
Full texts desirability functions being used throughout this thesis are still the most preferred ones in practice and many other versions are derived from these. On the other hand, they have a drawback of containing nondifferentiable points and, hence, being nonsmooth. Current approaches to their optimization, which are based on derivative-free search techniques and modification of the functions by higher-degree polynomials, need to be diversified considering opportunities offered by modern nonlinear (global) optimization techniques and related softwares. A first motivation of this work is to develop a new efficient solution strategy for the maximization of overall desirability functions which comes out to be a nonsmooth composite constrained optimization problem by nonsmooth optimization methods. We observe that individual desirability functions used in practical computations are of mintype, a subclass of continuous selection functions. To reveal the mechanism that gives rise to a variation in the piecewise structure of desirability functions used in practice, we concentrate on a component-wise and generically piecewise min-type functions and, later on, max-type functions. It is our second motivation to analyze the structural and topological properties of desirability functions via piecewise max-type functions. In this thesis, we introduce adjusted desirability functions based on a reformulation of the individual desirability functions by a binary integer variable in order to deal with their piecewise definition. We define a constraint on the binary variable to obtain a continuous optimization problem of a nonlinear objective function including nondifferentiable points with the constraints of bounds for factors and responses. After describing the adjusted desirability functions on two well-known problems from the literature, we implement modified subgradient algorithm (MSG) in GAMS incorporating to CONOPT solver of GAMS software for solving the corresponding optimization problems. Moreover, BARON solver of GAMS is used to solve these optimization problems including adjusted desirability functions. Numerical applications with BARON show that this is a more efficient alternative solution strategy than the current desirability maximization approaches. We apply negative logarithm to the desirability functions and consider the properties of the resulting functions when they include more than one nondifferentiable point. With this approach we reveal the structure of the functions and employ the piecewise max-type functions as generalized desirability functions (GDFs). We introduce a suitable finite partitioning procedure of the individual functions over their compact and connected interval that yield our so-called GDFs. Hence, we construct GDFs with piecewise max-type functions which have efficient structural and topological properties. We present the structural stability, optimality and constraint qualification properties of GDFs using that of max-type functions. As a by-product of our GDF study, we develop a new method called two-stage (bilevel) approach for multi-objective optimization problems, based on a separation of the parameters: in y-space (optimization) and in x-space (representation). This approach is about calculating the factor variables corresponding to the ideal solutions of each individual functions in y, and then finding a set of compromised solutions in x by considering the convex hull of the ideal factors. This is an early attempt of a new multi-objective optimization method. Our first results show that global optimum of the overall problem may not be an element of the set of compromised solution. The overall problem in both x and y is extended to a new refined (disjunctive) generalized semi-infinite problem, herewith analyzing the stability and robustness properties of the objective function. In this course, we introduce the so-called robust optimization of desirability functions for the cases when response models contain uncertainty. Throughout this thesis, we give several modifications and extensions of the optimization problem of overall desirability functions.
Piiroinen, Petri. "Recurrent dynamics of nonsmooth systems with application to human gait." Doctoral thesis, KTH, Mechanics, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3430.
Full textGanjehlou, Asef Nazari. "Derivative free algorithms for nonsmooth and global optimization with application in cluster analysis." Thesis, University of Ballarat, 2009. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/59243.
Full textMichau, Gabriel E. "Link dependent origin-destination matrix estimation : nonsmooth convex optimisation with Bluetooth-inferred trajectories." Thesis, Queensland University of Technology, 2017. https://eprints.qut.edu.au/103850/1/Gabriel%20Etienne_Michau_Thesis.pdf.
Full textRösel, Simon. "Approximation of nonsmooth optimization problems and elliptic variational inequalities with applications to elasto-plasticity." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2017. http://dx.doi.org/10.18452/17778.
Full textOptimization problems and variational inequalities over Banach spaces are subjects of paramount interest since these mathematical problem classes serve as abstract frameworks for numerous applications. Solutions to these problems usually cannot be determined directly. Following an introduction, part II presents several approximation methods for convex-constrained nonsmooth variational inequality and optimization problems, including discretization and regularization approaches. We prove the consistency of a general class of perturbations under certain density requirements with respect to the convex constraint set. We proceed with the study of pointwise constraint sets in Sobolev spaces, and several density results are proven. The quasi-static contact problem of associative elasto-plasticity with hardening at small strains is considered in part III. The corresponding time-incremental problem can be equivalently formulated as a nonsmooth, constrained minimization problem, or, as a mixed variational inequality problem over the convex constraint. We propose an infinite-dimensional path-following semismooth Newton method for the solution of the time-discrete plastic contact problem, where each path-problem can be solved locally at a superlinear rate of convergence with contraction rates independent of the discretization. Several numerical examples support the theoretical results. The last part is devoted to the quasi-static problem of perfect (Prandtl-Reuss) plasticity. Building upon recent developments in the study of the (incremental) primal problem, we establish a reduced formulation which is shown to be a Fenchel predual problem of the corresponding stress problem. This allows to derive new primal-dual optimality conditions. In order to solve the time-discrete problem, a modified visco-plastic regularization is proposed, and we prove the convergence of this new approximation scheme.
Michau, Gabriel. "Link Dependent Origin-Destination Matrix Estimation : Nonsmooth Convex Optimisation with Bluetooth-Inferred Trajectories." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEN017/document.
Full textOrigin Destination matrix estimation is a critical problem of the Transportation field since the fifties. OD matrix is a two-entry table taking census of the zone-to-zone traffic of a geographic area. This traffic description tools is therefore paramount for traffic engineering applications. Traditionally, the OD matrix estimation has solely been based on traffic counts collected by networks of magnetic loops. This thesis takes place in a context with over 600 Bluetooth detectors installed in the City of Brisbane. These detectors permit in-car Bluetooth device detection and thus vehicle identification.This manuscript explores first, the potentialities of Bluetooth detectors for Transport Engineering applications by characterising the data, their noises and biases. This leads to propose a new methodology for Bluetooth equipped vehicle trajectory reconstruction. In a second step, based on the idea that probe trajectories will become more and more available by means of new technologies, this thesis proposes to extend the concept of OD matrix to the one of link dependent origin destination matrix that describes simultaneously both the traffic demand and the usage of the network. The problem of LOD matrix estimation is formulated as a minimisation problem based on probe trajectories and traffic counts and is then solved thanks to the latest advances in nonsmooth convex optimisation.This thesis demonstrates that, with few hypothesis, it is possible to retrieve the LOD matrix for the whole set of users in a road network. It is thus different from traditional OD matrix estimation approaches that relied on successive steps of modelling and of statistical inferences
Izelli, Reginaldo César. "Análise não-diferenciável e condições necessárias de otimalidade para problema de controle ótimo com restrições mistas /." São José do Rio Preto : [s.n.], 2006. http://hdl.handle.net/11449/94300.
Full textBanca: Vilma Alves de Oliveira
Banca: Masayoshi Tsuchida
Resumo: Estamos interessados em estudar uma generalização do Princípio do Máximo de Pontryagin para problema de controle ótimo com restrições mistas envolvendo funções nãodiferenciáveis, pois este princípio não se aplica para todos os tipos de problemas. O principal objetivo deste trabalho é apresentar as condições necessárias de otimalidade na forma do princípio do máximo que serão aplicadas para o problema de controle ótimo com restrições mistas envolvendo funções não-diferenciáveis. Para alcançar este objetivo apresentamos estudos sobre cones normais e cones tangentes os quais são utilizados no desenvolvimento da teoria de subdiferenciais. Após esse embasamento formulamos o problema de controle ótimo envolvendo funções não-diferenciáveis, e apresentamos as condições necessárias de otimalidade.
Abstract: We are interested in study a generalization of the Pontryagin Maximum Principle for optimal control problems with mixed constraints involving nondi erentiable functions, because this principle can not be applied for all the types of problems. The main objective of this work is to present the necessary conditions of optimality in the form of the maximum principle that will be applied for the optimal control problem with mixed constraints involving nondi erentiable functions. To achieve this objective we present studies above normal cones and tangent cones which are used in the development of the theory of subdi erentials. After this foundation we formulate the optimal control problem involving nondi erentiable functions, and we present the necessary conditions of optimality.
Mestre
Sadikhov, Teymur. "Stability, dissipativity, and optimal control of discontinuous dynamical systems." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53635.
Full textLe, Thi Huong. "Sur des solutions périodiques de systèmes discrets à vibro-impact avec un contact unilatéral." Thesis, Université Côte d'Azur (ComUE), 2017. http://www.theses.fr/2017AZUR4033/document.
Full textThe mechanical motivation is presented for a PDE with a constraint. The purpose of this thesis is to study N degree-of-freedom vibro-impact systems with an unilateral contact. The resulting system is linear in the absence of contact; it is governed by an impact law otherwise. The author identifies some nonlinear modes that display a sticking phase. The First Return Map is a fundamental tool to explore periodic solutions. Since the Poincaré section is a subset of the contact interface in the phase-space, it can be tangent to orbits which yields the well-known square-root singularity. This singularity is here revisited in a rigorous mathematical framework. Moreover, the study of this singularity implies a more important singularity: the discontinuity of the first return time. Finally, the square-root dynamics near the linear grazing modes which may lead to the instability of these linear grazing modes is studied
Izelli, Reginaldo César [UNESP]. "Análise não-diferenciável e condições necessárias de otimalidade para problema de controle ótimo com restrições mistas." Universidade Estadual Paulista (UNESP), 2006. http://hdl.handle.net/11449/94300.
Full textEstamos interessados em estudar uma generalização do Princípio do Máximo de Pontryagin para problema de controle ótimo com restrições mistas envolvendo funções nãodiferenciáveis, pois este princípio não se aplica para todos os tipos de problemas. O principal objetivo deste trabalho é apresentar as condições necessárias de otimalidade na forma do princípio do máximo que serão aplicadas para o problema de controle ótimo com restrições mistas envolvendo funções não-diferenciáveis. Para alcançar este objetivo apresentamos estudos sobre cones normais e cones tangentes os quais são utilizados no desenvolvimento da teoria de subdiferenciais. Após esse embasamento formulamos o problema de controle ótimo envolvendo funções não-diferenciáveis, e apresentamos as condições necessárias de otimalidade.
We are interested in study a generalization of the Pontryagin Maximum Principle for optimal control problems with mixed constraints involving nondi erentiable functions, because this principle can not be applied for all the types of problems. The main objective of this work is to present the necessary conditions of optimality in the form of the maximum principle that will be applied for the optimal control problem with mixed constraints involving nondi erentiable functions. To achieve this objective we present studies above normal cones and tangent cones which are used in the development of the theory of subdi erentials. After this foundation we formulate the optimal control problem involving nondi erentiable functions, and we present the necessary conditions of optimality.
Khalil, Nathalie. "Conditions d'optimalité pour des problèmes en contrôle optimal et applications." Thesis, Brest, 2017. http://www.theses.fr/2017BRES0095/document.
Full textThe project of this thesis is twofold. The first concerns the extension of previous results on necessary optimality conditions for state constrained problems in optimal control and in calculus of variations. The second aim consists in working along two new research lines: derive viability results for a class of control systems with state constraints in which ‘standard inward pointing conditions’ are violated; and establish necessary optimality conditions for average cost minimization problems possibly perturbed by unknown parameters.In the first part, we examine necessary optimality conditions which play an important role in finding candidates to be optimal solutions among all admissible solutions. However, in dynamic optimization problems with state constraints, some pathological situations might arise. For instance, it might occur that the multiplier associated with the objective function (to minimize) vanishes. In this case, the objective function to minimize does not intervene in first order necessary conditions: this is referred to as the abnormal case. A worse phenomenon, called the degenerate case shows that in some circumstances the set of admissible trajectories coincides with the set of candidates to be minimizers. Therefore the necessary conditions give no information on the possible minimizers.To overcome these difficulties, new additional hypotheses have to be imposed, known as constraint qualifications. We investigate these two issues (normality and non-degeneracy) for optimal control problems involving state constraints and dynamics expressed as a differential inclusion, when the minimizer has its left end-point in a region where the state constraint set in nonsmooth. We prove that under an additional information involving mainly the Clarke tangent cone, necessary conditions in the form of the Extended Euler-Lagrange condition are derived in the normal and non-degenerate form for two different classes of state constrained optimal control problems. Application of the normality result is shown also for the calculus of variations problem subject to a state constraint.In the second part of the thesis, we consider first a class of state constrained control systems for which standard ‘first order’ constraint qualifications are not satisfied, but a higher (second) order constraint qualification is satisfied. We propose a new construction for feasible trajectories (a viability result) and we investigate examples (such as the Brockett nonholonomic integrator) providing in addition a non-linear stimate result. The other topic of the second part of the thesis concerns the study of a class of optimal control problems in which uncertainties appear in the data in terms of unknown parameters. Taking into consideration an average cost criterion, a crucial issue is clearly to be able to characterize optimal controls independently of the unknown parameter action: this allows to find a sort of ‘best compromise’ among all the possible realizations of the control system as the parameter varies. For this type of problems, we derive necessary optimality conditions in the form of Maximum Principle (possibly nonsmooth)
Ponomarenko, Andrej. "Lösungsmethoden für Variationsungleichungen." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2003. http://dx.doi.org/10.18452/14841.
Full textThis work attempts to generalize various classical and new methods of smooth or nonsmooth optimization and to show them in their interrelation. The main tool for doing this is the so-called generalized Kojima-function. In addition to numerous examples we specialy emphasize the consideration of variational inequalities, complementarity problems and the standard problem of mathematical programming. Under natural assumptions on these problems we can model e.g. barrier-, penalty-, and SQP-Type-methods basing on Newton methods, and also methods using the so-called NCP-function exactly by means of special perturbations of the Kojima-function. Furthermore, by the explicit and natural choice of the perturbation parameters new methods of these kinds are introduced. The benefit of such a modelling is obvious, first of all due to the direct solution estimation (basing on stability properties of the Kojima-equation) and because the corresponding zeros can easily be interpreted as solutions of known subproblems. A further aspect considered in this paper is the detailed investigation of "nonsmooth cases". The theory of various generalized derivatives and resulting generalized Newton methods, which is introduced and investigated in the book "Nonsmooth Equations in Optimization" of B. Kummer and D. Klatte, is intensely used here. The crucial point is the applicability of the used generalized derivatives in practice, since they can be calculated exactly.
Ben, Gharbia Ibtihel. "Résolution de problèmes de complémentarité. : Application à un écoulement diphasique dans un milieu poreux." Phd thesis, Université Paris Dauphine - Paris IX, 2012. http://tel.archives-ouvertes.fr/tel-00776617.
Full textDhar, Gaurav. "Contributions en théorie du contrôle échantillonné optimal avec contraintes d’état et données non lisses." Thesis, Limoges, 2020. http://www.theses.fr/2020LIMO0050.
Full textThis dissertation is concerned with first-order necessary optimality conditions in the form of a Pontryagin maximum principle (in short, PMP) for optimal sampled-data control problems with free sampling times, running inequality state constraints and nonsmooth Mayer cost functions.Chapter 1 is devoted to notations and basic framework needed to describe the optimal sampled-data control problems to be encountered in the manuscript. In Chapter 2, considering that the sampling times can be freely chosen, we obtain an additional necessary optimality condition in the PMP called the Hamiltonian continuity condition. Recall that the Hamiltonian function, which describes the evolution of the Hamiltonian taking values of the optimal trajectory and of theoptimal sampled-data control, is in general discontinuous when the sampling times are fixed. Our result proves that the continuity of the Hamiltonian function is recovered in the case of optimal sampled-data controls with optimal sampling times. Finally we implement a shooting method based on the Hamiltonian continuity condition in order to numerically determine the optimal sampling times in two linear-quadratic examples.In Chapter 3, we obtain a PMP for optimal sampled-data control problems with running inequality state constraints. In particular we obtain that the adjoint vectors are solutions to Cauchy-Stieltjes problems defined by Borel measures associated to functions of bounded variation. Moreover, we find that, under certain general hypotheses, any admissible trajectory (associated to a sampled-data control) necessarily bounces on the runningine quality state constraints. Taking advantage of this bouncing trajectory phenomen on, we are able to use thePMP to implement an indirect numerical method which we use to numerically solve some simple examples of optimal sampled-data control problems with running inequality state constraints. In Chapter 4, we obtain a PMP for optimal sampled-data control problems with nonsmooth Mayer cost functions. Our proof directly follows from the tools of nonsmooth analysis and does not involve any regularization technique. We determine the existence of a selection in the subdifferential of the nonsmooth Mayer cost function by establishing a more general result asserting the existence a universal separating vector for a given compact convex set. From the application of this result, which is called universal separating vector theorem, we obtain a PMP for optimal sampled-data control problems with nonsmooth Mayer cost functions where the transversality conditon on the adjoint vector is given by an inclusion in the subdifferential of the nonsmooth Mayer cost function.To obtain the optimality conditions in the form of a PMP, we use different techniques of perturbations of theoptimal control. In order to handle the state constraints, we penalize the distance to them in a corresponding cost functional and then apply the Ekeland variational principle. In particular, we invoke some results on renorming Banach spaces in order to ensure the regularity of distance functions in the infinite-dimensional context. Finally we use standard notions in nonsmooth analysis such as the Clarke generalized directional derivative and theClarke subdifferential to study optimal sampled-data control problems with nonsmooth Mayer cost functions
Visseq, Vincent. "Calcul haute performance en dynamique des contacts via deux familles de décomposition de domaine." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2013. http://tel.archives-ouvertes.fr/tel-00848363.
Full text"Nonsmooth analysis and optimization." Chinese University of Hong Kong, 1993. http://library.cuhk.edu.hk/record=b5887721.
Full textThesis (Ph.D.)--Chinese University of Hong Kong, 1993.
Includes bibliographical references (leaves 96).
Abstract --- p.1
Introduction --- p.2
References --- p.5
Chapter Chapter 1. --- Some elementary results in nonsmooth analysis and optimization --- p.6
Chapter 1. --- "Some properties for ""lim sup"" and ""lim inf""" --- p.6
Chapter 2. --- The directional derivative of the sup-type function --- p.8
Chapter 3. --- Some results in nonsmooth analysis and optimization --- p.12
References --- p.19
Chapter Chapter 2. --- On generalized second-order derivatives and Taylor expansions in nonsmooth optimization --- p.20
Chapter 1. --- Introduction --- p.20
Chapter 2. --- "Dini-directional derivatives, Clark's directional derivatives and generalized second-order directional derivatives" --- p.20
Chapter 3. --- On Cominetti and Correa's conjecture --- p.28
Chapter 4. --- Generalized second-order Taylor expansion --- p.36
Chapter 5. --- Detailed proof of Theorem 2.4.2 --- p.40
Chapter 6. --- Corollaries of Theorem 2.4.2 and Theorem 2.4.3 --- p.43
Chapter 7. --- Some applications in optimization --- p.46
Ref erences --- p.51
Chapter Chapter 3. --- Second-order necessary and sufficient conditions in nonsmooth optimization --- p.53
Chapter 1. --- Introduction --- p.53
Chapter 2. --- Second-order necessary and sufficient conditions without constraint --- p.56
Chapter 3. --- Second-order necessary conditions with constrains --- p.66
Chapter 4. --- Sufficient conditions theorem with constraints --- p.77
References --- p.87
Appendix --- p.89
References --- p.96
Mankau, Jan Peter. "A Nonsmooth Nonconvex Descent Algorithm." Doctoral thesis, 2016. https://tud.qucosa.de/id/qucosa%3A30118.
Full textIn vielen Anwendungen tauchen nichtglatte, nichtkonvexe, Lipschitz-stetige Energie Funktionen in natuerlicher Weise auf. Ein klassische Beispiel bildet die Kontaktmechanik mit Reibung. Ein weiteres Beispiel ist der $1$-Laplace Operator und seine Eigenfunktionen. In dieser Dissertation werden wir ein Abstiegsverfahren angeben, so dass fuer jede lokal Lipschitz-stetige Funktion f jeder Haeufungspunkt einer durch dieses Verfahren erzeugten Folge ein kritischer Punkt von f im Sinne von Clarke ist. Hier ist f auf einem einem reflexiver, strikt konvexem Banachraum definierert, fuer den der Dualraum ebenfalls strikt konvex ist und die Clarkeson Ungleichungen gelten. (Z.B. Sobolevraeume und jeder abgeschlossene Unterraum mit der Sobolevnorm versehen, erfuellt diese Bedingung fuer p>1.) Dieser Algorithmus ist primaer entwickelt worden um Variationsprobleme, bzw. deren hochdimensionalen Diskretisierungen zu loesen. Er kann aber auch fuer eine Vielzahl anderer lokal Lipschitz stetige Funktionen eingesetzt werden. In der elastischen Kontaktmechanik ist die Spannungsenergie oft glatt und nichtkonvex auf einem geeignetem Definitionsbereich, waehrend der Kontakt und die Reibung durch nicht glatte Funktionen modelliert werden, deren Traeger ein Unterraum mit wesentlich kleineren Dimension ist, da alle Punkte im Inneren des Koerpers nur die Spannungsenergie beeinflussen. Fuer solche elastischen Kontaktprobleme schlagen wir eine Spezialisierung unseres Algorithmuses vor, der den glatten Teil mit Newton aehnlichen Methoden behandelt. Falls der Gradient der gesamten Energiefunktion semiglatt in der Naehe der Minimalstelle ist, koennen wir sogar beweisen, dass der Algorithmus superlinear konvergiert. Wir testen den Algorithmus und seine Spezialisierung an mehreren Benchmark Problemen. Ausserdem wenden wir den Algorithmus auf 1-Laplace Minimierungsproblem eingeschraenkt auf eine endlich dimensionalen Unterraum der stueckweise affinen, stetigen Funktionen an. Der hier entwickelte Algorithmus verwendet Ideen des Bundle-Trust-Region-Verfahrens von Schramm, und einen neu entwickelten Verallgemeinerung von Gradienten auf Mengen. Die zentrale Idee hinter den Gradienten auf Mengen ist die, dass wir stabile Abstiegsrichtungen auf einer ganzen Umgebung der Iterationspunkte finden wollen. Auf diese Weise vermeiden wir das Oszillieren der Gradienten und sehr kleine Abstiegsschritte (im glatten, wie im nichtglatten Fall.) Es stellt sich heraus, dass das normkleinste Element dieses Gradienten auf der Umgebung eine stabil Abstiegsrichtung bestimmt. So weit es uns bekannt ist, koennen die hier entwickelten Algorithmen zum ersten Mal lokal Lipschitz-stetige Funktionen in dieser Allgemeinheit behandeln. Insbesondere wurden nichtglatte, nichtkonvexe Funktionen auf derart hochdimensionale Banachraeume bis jetzt nicht behandelt. Wir werden zeigen, dass unser Algorithmus sehr robust und oft schneller als uebliche Algorithmen ist. Des Weiteren, werden wir sehen, dass es mit diesem Algorithmus das erste mal moeglich ist, zuverlaessig die erste Eigenfunktion des 1-Laplace Operators bis auf Diskretisierungsfehler zu bestimmen.
Zhang, Jin. "Enhanced Optimality Conditions and New Constraint Qualifications for Nonsmooth Optimization Problems." Thesis, 2014. http://hdl.handle.net/1828/5762.
Full textGraduate
0405
"On merit functions, error bounds, minimizing and stationary sequences for nonsmooth variational inequality problems." Thesis, 2005. http://library.cuhk.edu.hk/record=b6074106.
Full textIn this thesis, we investigate a nonsmooth variational inequality problem (VIP) defined by a locally Lipschitz function F which is not necessarily differentiable or monotone on its domain which is a closed convex set in an Euclidean space.
Tan Lulin.
"December 2005."
Adviser: Kung Fu Ng.
Source: Dissertation Abstracts International, Volume: 67-11, Section: B, page: 6444.
Thesis (Ph.D.)--Chinese University of Hong Kong, 2005.
Includes bibliographical references (p. 79-84) and index.
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Abstracts in English and Chinese.
School code: 1307.