Academic literature on the topic 'Analisi nonsmooth'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Analisi nonsmooth.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Analisi nonsmooth"
Filippakis, Michael E., and Nikolaos S. Papageorgiou. "Solutions for nonlinear variational inequalities with a nonsmooth potential." Abstract and Applied Analysis 2004, no. 8 (2004): 635–49. http://dx.doi.org/10.1155/s1085337504312017.
Full textChen, Yuan-yuan, and Shou-qiang Du. "A New Smoothing Nonlinear Conjugate Gradient Method for Nonsmooth Equations with Finitely Many Maximum Functions." Abstract and Applied Analysis 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/780107.
Full textHuang, Ming, Li-Ping Pang, Xi-Jun Liang, and Zun-Quan Xia. "The Space Decomposition Theory for a Class of Semi-Infinite Maximum Eigenvalue Optimizations." Abstract and Applied Analysis 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/845017.
Full textQing-Mei, Zhou, and Ge Bin. "Three Solutions for Inequalities Dirichlet Problem Driven byp(x)-Laplacian-Like." Abstract and Applied Analysis 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/575328.
Full textCarl, Siegfried, Robert P. Gilbert, and Dumitru Motreanu. "‘Nonsmooth Variational Problems’." Applicable Analysis 89, no. 2 (February 2010): 159. http://dx.doi.org/10.1080/00036811003637814.
Full textWang, Yanyong, Yubin Yan, and Yan Yang. "Two high-order time discretization schemes for subdiffusion problems with nonsmooth data." Fractional Calculus and Applied Analysis 23, no. 5 (October 1, 2020): 1349–80. http://dx.doi.org/10.1515/fca-2020-0067.
Full textPapalini, Francesca. "Nonlinear Periodic Systems with thep-Laplacian: Existence and Multiplicity Results." Abstract and Applied Analysis 2007 (2007): 1–23. http://dx.doi.org/10.1155/2007/80394.
Full textLewis, A. S. "Lidskii's Theorem via Nonsmooth Analysis." SIAM Journal on Matrix Analysis and Applications 21, no. 2 (January 2000): 379–81. http://dx.doi.org/10.1137/s0895479898338676.
Full textKandilakis, Dimitrios, and Nikolaos S. Papageorgiou. "Nonsmooth analysis and approximation." Journal of Approximation Theory 52, no. 1 (January 1988): 58–81. http://dx.doi.org/10.1016/0021-9045(88)90037-8.
Full textShen, Jie, Miao Tian, Fang-Fang Guo, and Jun-Nan Zhang. "A New Nonsmooth Bundle-Type Approach for a Class of Functional Equations in Hilbert Spaces." Journal of Function Spaces 2017 (2017): 1–7. http://dx.doi.org/10.1155/2017/3941084.
Full textDissertations / Theses on the topic "Analisi nonsmooth"
CASTELPIETRA, MARCO. "Metric, geometric and measure theoretic properties of nonsmooth value functions." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2007. http://hdl.handle.net/2108/202601.
Full textThe value function is a focal point in optimal control theory. It is a known fact that the value function can be nonsmooth even with very smooth data. So, nonsmooth analysis is a useful tool to study its regularity. Semiconcavity is a regularity property, with some fine connection with nonsmooth analysis. Under appropriate assumptions, the value function is locally semiconcave. This property is connected with the interior sphere property of its level sets and their perimeters. In this thesis we introduce basic concepts of nonsmooth analysis and their connections with semiconcave functions, and sets of finite perimeter. We describe control systems, and we introduce the basic properties of the minimum time function T(x) and of the value function V (x). Then, using maximum principle, we extend some known results of interior sphere property for the attainable setsA(t), to the nonautonomous case and to systems with nonconstant running cost L. This property allow us to obtain some fine perimeter estimates for some class of control systems. Finally these regularity properties of the attainable sets can be extended to the level sets of the value function, and, with some controllability assumption, we also obtain a local semiconcavity for V (x). Moreoverwestudycontrolsystemswithstateconstraints. Inconstrained systems we loose many of regularity properties related to the value function. In fact, when a trajectory of control system touches the boundary of the constraint set Ω, some singularity effect occurs. This effect is clear even in the statement of the maximum principle. Indeed, due to the times in which a trajectory stays on ∂Ω, a measure boundary term (possibly, discontinuous) appears. So, we have no more semiconcavity for the value function, even for very simple control systems. But we recover Lipschitz continuity for the minimum time and we rewrite the constrained maximum principle with an explicit boundary term. We also obtain a kind of interior sphere property, and perimeter estimates for the attainable sets for some class of control systems.
Nguyen, Khai/T. "The regularity of the minimum time function via nonsmooth analysis and geometric measure theory." Doctoral thesis, Università degli studi di Padova, 2010. http://hdl.handle.net/11577/3427404.
Full textSi dimostrano risultati di regolarita' per la funzione tempo minimo, mediante particolari proprieta' di una classe di funzioni continue il cui ipografico soddisfa una condizione di sfera esterna.
Soukhoroukova, Nadejda. "Data classification through nonsmooth optimization." Thesis, University of Ballarat [Mt. Helen, Vic.] :, 2003. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/42220.
Full textMankau, Jan Peter. "A Nonsmooth Nonconvex Descent Algorithm." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-217556.
Full textIn vielen Anwendungen tauchen nichtglatte, nichtkonvexe, Lipschitz-stetige Energie Funktionen in natuerlicher Weise auf. Ein klassische Beispiel bildet die Kontaktmechanik mit Reibung. Ein weiteres Beispiel ist der $1$-Laplace Operator und seine Eigenfunktionen. In dieser Dissertation werden wir ein Abstiegsverfahren angeben, so dass fuer jede lokal Lipschitz-stetige Funktion f jeder Haeufungspunkt einer durch dieses Verfahren erzeugten Folge ein kritischer Punkt von f im Sinne von Clarke ist. Hier ist f auf einem einem reflexiver, strikt konvexem Banachraum definierert, fuer den der Dualraum ebenfalls strikt konvex ist und die Clarkeson Ungleichungen gelten. (Z.B. Sobolevraeume und jeder abgeschlossene Unterraum mit der Sobolevnorm versehen, erfuellt diese Bedingung fuer p>1.) Dieser Algorithmus ist primaer entwickelt worden um Variationsprobleme, bzw. deren hochdimensionalen Diskretisierungen zu loesen. Er kann aber auch fuer eine Vielzahl anderer lokal Lipschitz stetige Funktionen eingesetzt werden. In der elastischen Kontaktmechanik ist die Spannungsenergie oft glatt und nichtkonvex auf einem geeignetem Definitionsbereich, waehrend der Kontakt und die Reibung durch nicht glatte Funktionen modelliert werden, deren Traeger ein Unterraum mit wesentlich kleineren Dimension ist, da alle Punkte im Inneren des Koerpers nur die Spannungsenergie beeinflussen. Fuer solche elastischen Kontaktprobleme schlagen wir eine Spezialisierung unseres Algorithmuses vor, der den glatten Teil mit Newton aehnlichen Methoden behandelt. Falls der Gradient der gesamten Energiefunktion semiglatt in der Naehe der Minimalstelle ist, koennen wir sogar beweisen, dass der Algorithmus superlinear konvergiert. Wir testen den Algorithmus und seine Spezialisierung an mehreren Benchmark Problemen. Ausserdem wenden wir den Algorithmus auf 1-Laplace Minimierungsproblem eingeschraenkt auf eine endlich dimensionalen Unterraum der stueckweise affinen, stetigen Funktionen an. Der hier entwickelte Algorithmus verwendet Ideen des Bundle-Trust-Region-Verfahrens von Schramm, und einen neu entwickelten Verallgemeinerung von Gradienten auf Mengen. Die zentrale Idee hinter den Gradienten auf Mengen ist die, dass wir stabile Abstiegsrichtungen auf einer ganzen Umgebung der Iterationspunkte finden wollen. Auf diese Weise vermeiden wir das Oszillieren der Gradienten und sehr kleine Abstiegsschritte (im glatten, wie im nichtglatten Fall.) Es stellt sich heraus, dass das normkleinste Element dieses Gradienten auf der Umgebung eine stabil Abstiegsrichtung bestimmt. So weit es uns bekannt ist, koennen die hier entwickelten Algorithmen zum ersten Mal lokal Lipschitz-stetige Funktionen in dieser Allgemeinheit behandeln. Insbesondere wurden nichtglatte, nichtkonvexe Funktionen auf derart hochdimensionale Banachraeume bis jetzt nicht behandelt. Wir werden zeigen, dass unser Algorithmus sehr robust und oft schneller als uebliche Algorithmen ist. Des Weiteren, werden wir sehen, dass es mit diesem Algorithmus das erste mal moeglich ist, zuverlaessig die erste Eigenfunktion des 1-Laplace Operators bis auf Diskretisierungsfehler zu bestimmen
Mirzayeva, Hijran. "Nonsmooth optimization algorithms for clusterwise linear regression." Thesis, University of Ballarat, 2013. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/41975.
Full textDoctor of Philosophy
Mohebi, Ehsan. "Nonsmooth optimization models and algorithms for data clustering and visualization." Thesis, Federation University Australia, 2015. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/77001.
Full textDoctor of Philosophy
Chen, Jein-Shan. "Merit functions and nonsmooth functions for the second-order cone complementarity problem /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/5782.
Full textAkteke-ozturk, Basak. "New Approaches To Desirability Functions By Nonsmooth And Nonlinear Optimization." Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612649/index.pdf.
Full texts desirability functions being used throughout this thesis are still the most preferred ones in practice and many other versions are derived from these. On the other hand, they have a drawback of containing nondifferentiable points and, hence, being nonsmooth. Current approaches to their optimization, which are based on derivative-free search techniques and modification of the functions by higher-degree polynomials, need to be diversified considering opportunities offered by modern nonlinear (global) optimization techniques and related softwares. A first motivation of this work is to develop a new efficient solution strategy for the maximization of overall desirability functions which comes out to be a nonsmooth composite constrained optimization problem by nonsmooth optimization methods. We observe that individual desirability functions used in practical computations are of mintype, a subclass of continuous selection functions. To reveal the mechanism that gives rise to a variation in the piecewise structure of desirability functions used in practice, we concentrate on a component-wise and generically piecewise min-type functions and, later on, max-type functions. It is our second motivation to analyze the structural and topological properties of desirability functions via piecewise max-type functions. In this thesis, we introduce adjusted desirability functions based on a reformulation of the individual desirability functions by a binary integer variable in order to deal with their piecewise definition. We define a constraint on the binary variable to obtain a continuous optimization problem of a nonlinear objective function including nondifferentiable points with the constraints of bounds for factors and responses. After describing the adjusted desirability functions on two well-known problems from the literature, we implement modified subgradient algorithm (MSG) in GAMS incorporating to CONOPT solver of GAMS software for solving the corresponding optimization problems. Moreover, BARON solver of GAMS is used to solve these optimization problems including adjusted desirability functions. Numerical applications with BARON show that this is a more efficient alternative solution strategy than the current desirability maximization approaches. We apply negative logarithm to the desirability functions and consider the properties of the resulting functions when they include more than one nondifferentiable point. With this approach we reveal the structure of the functions and employ the piecewise max-type functions as generalized desirability functions (GDFs). We introduce a suitable finite partitioning procedure of the individual functions over their compact and connected interval that yield our so-called GDFs. Hence, we construct GDFs with piecewise max-type functions which have efficient structural and topological properties. We present the structural stability, optimality and constraint qualification properties of GDFs using that of max-type functions. As a by-product of our GDF study, we develop a new method called two-stage (bilevel) approach for multi-objective optimization problems, based on a separation of the parameters: in y-space (optimization) and in x-space (representation). This approach is about calculating the factor variables corresponding to the ideal solutions of each individual functions in y, and then finding a set of compromised solutions in x by considering the convex hull of the ideal factors. This is an early attempt of a new multi-objective optimization method. Our first results show that global optimum of the overall problem may not be an element of the set of compromised solution. The overall problem in both x and y is extended to a new refined (disjunctive) generalized semi-infinite problem, herewith analyzing the stability and robustness properties of the objective function. In this course, we introduce the so-called robust optimization of desirability functions for the cases when response models contain uncertainty. Throughout this thesis, we give several modifications and extensions of the optimization problem of overall desirability functions.
Piiroinen, Petri. "Recurrent dynamics of nonsmooth systems with application to human gait." Doctoral thesis, KTH, Mechanics, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3430.
Full textGanjehlou, Asef Nazari. "Derivative free algorithms for nonsmooth and global optimization with application in cluster analysis." Thesis, University of Ballarat, 2009. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/59243.
Full textBooks on the topic "Analisi nonsmooth"
Optimization and nonsmooth analysis. Philadelphia: SIAM, 1990.
Find full text1923-, Moreau Jean-Jacques, Panagiotopoulos P. D. 1950-, and Strang Gilbert, eds. Topics in nonsmooth mechanics. Basel [Switzerland]: Birkhäuser Verlag, 1988.
Find full textservice), SpringerLink (Online, ed. Topological Aspects of Nonsmooth Optimization. New York, NY: Springer Science+Business Media, LLC, 2012.
Find full textInternational School of Mathematics (4th 1988 Erice, Italy). Nonsmooth optimization and related topics. New York: Plenum Press, 1989.
Find full textCourse of the International School of Mathematics on Nonsmooth Optimization and Related Topics (4th 1988 Erice, Sicily, Italy). Nonsmooth optimization and related topics. New York: Plenum, 1989.
Find full textMethods of dynamic and nonsmooth optimization. Philadelphia, Pa: Society for Industrial and Applied Mathematics, 1989.
Find full textTopological aspects of nonsmooth optimization: Ludwig Kuntz. Hamburg: Lit, 1996.
Find full textNonsmooth mechanics and convex optimization. Boca Raton, FL: CRC Press/Taylor & Francis, 2011.
Find full textYang, Gao David, Ogden R. W. 1943-, and Stavroulakis G. E, eds. Nonsmooth/nonconvex mechanics: Modeling, analysis, and numerical methods. Dordrecht: Kluwer Academic Publishers, 2001.
Find full textSocrates, Papageorgiou Nikolaos, ed. Nonsmooth critical point theory and nonlinear boundary value problems. Boca Raton, Fla: CRC Press, 2005.
Find full textBook chapters on the topic "Analisi nonsmooth"
Motreanu, Dumitru, Viorica Venera Motreanu, and Nikolaos Papageorgiou. "Nonsmooth Analysis." In Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, 45–59. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9323-5_3.
Full textVinter, Richard. "Nonsmooth Analysis." In Optimal Control, 127–77. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-8086-2_4.
Full textDem’yanov, Vladimir F., Georgios E. Stavroulakis, Ludmila N. Polyakova, and Panagiotis D. Panagiotopoulos. "Nonsmooth Analysis." In Nonconvex Optimization and Its Applications, 1–48. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4615-4113-4_1.
Full textSmirnov, Georgi. "Nonsmooth analysis." In Graduate Studies in Mathematics, 65–84. Providence, Rhode Island: American Mathematical Society, 2001. http://dx.doi.org/10.1090/gsm/041/03.
Full textDenkowski, Zdzisław, Stanisław Migórski, and Nikolas S. Papageorgiou. "Nonsmooth Analysis." In An Introduction to Nonlinear Analysis: Theory, 517–664. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9158-4_5.
Full textBorwein, Jonathan M., and Adrian S. Lewis. "Nonsmooth Optimization." In Convex Analysis and Nonlinear Optimization, 123–52. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4757-9859-3_6.
Full textBounkhel, Messaoud. "Nonsmooth Concepts." In Regularity Concepts in Nonsmooth Analysis, 3–30. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1019-5_1.
Full textGasiński, Leszek, and Nikolaos S. Papageorgiou. "Smooth and Nonsmooth Calculus." In Exercises in Analysis, 409–616. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27817-9_3.
Full textDontchev, Asen L. "Nonsmooth Inverse Function Theorems." In Lectures on Variational Analysis, 97–101. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79911-3_10.
Full textShikhman, Vladimir. "Impacts on Nonsmooth Analysis." In Topological Aspects of Nonsmooth Optimization, 167–74. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1897-9_6.
Full textConference papers on the topic "Analisi nonsmooth"
Matrosov, Alexander V., and Dmitriy P. Goloskokov. "Analysis of elastic systems with nonsmooth boundaries." In 2017 Constructive Nonsmooth Analysis and Related Topics (CNSA). IEEE, 2017. http://dx.doi.org/10.1109/cnsa.2017.7973987.
Full textSahiner, Ahmet, Havva Gokkaya, and Tuba Yigit. "A new filled function for nonsmooth global optimization." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756304.
Full textFancello, Matteo, Pierangelo Masarati, and Marco Morandini. "Adding Non-Smooth Analysis Capabilities to General-Purpose Multibody Dynamics by Co-Simulation." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12208.
Full textHinrichs, N., M. Oestreich, and K. Popp. "Friction Induced Vibrations: Experiments, Modelling and Analysis." In ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/vib-3908.
Full textIvanov, Gennady, Gennady Alferov, and Polina Efimova. "Integrability of nonsmooth one-variable functions." In 2017 Constructive Nonsmooth Analysis and Related Topics (dedicated to the memory of V.F. Demyanov) (CNSA). IEEE, 2017. http://dx.doi.org/10.1109/cnsa.2017.7973965.
Full textKorolev, Vladimir, and Viktor Novoselov. "Stochastic model of the universe matter." In 2017 Constructive Nonsmooth Analysis and Related Topics (CNSA). IEEE, 2017. http://dx.doi.org/10.1109/cnsa.2017.7973974.
Full textMezentsev, Yurii, and Igor Estraykh. "Problems and optimization algorithms of schedules of parallel-serial systems with undefined service routes." In 2017 Constructive Nonsmooth Analysis and Related Topics (CNSA). IEEE, 2017. http://dx.doi.org/10.1109/cnsa.2017.7973988.
Full textBaran, Inna, and Igor Orlov. "Adjoint extremal problem for non-smooth functionals." In 2017 Constructive Nonsmooth Analysis and Related Topics (CNSA). IEEE, 2017. http://dx.doi.org/10.1109/cnsa.2017.7973933.
Full textChernousko, Felix. "Dynamics of a body with internal moving masses in the presence of dry friction." In 2017 Constructive Nonsmooth Analysis and Related Topics (CNSA). IEEE, 2017. http://dx.doi.org/10.1109/cnsa.2017.7973948.
Full textErokhin, Vladimir. "A stable solution of linear programming problems with the approximate matrix of coefficients." In 2017 Constructive Nonsmooth Analysis and Related Topics (CNSA). IEEE, 2017. http://dx.doi.org/10.1109/cnsa.2017.7973953.
Full text