Academic literature on the topic 'Analisi infinitesimale'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Analisi infinitesimale.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Analisi infinitesimale"
Ikeda, Hiroshi. "Infinitesimal Stability of Anosov Endomorphisms." Journal of Differential Equations 130, no. 1 (September 1996): 1–8. http://dx.doi.org/10.1006/jdeq.1996.0129.
Full textWu, Yan, Yi Qi, and Zunwei Fu. "On Geodesic Segments in the Infinitesimal Asymptotic Teichmüller Spaces." Journal of Function Spaces 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/276719.
Full textKiselev, A., and B. Simon. "Rank One Perturbations with Infinitesimal Coupling." Journal of Functional Analysis 130, no. 2 (June 1995): 345–56. http://dx.doi.org/10.1006/jfan.1995.1074.
Full textvan Ackooij, W., B. de Pagter, and F. A. Sukochev. "Domains of infinitesimal generators of automorphism flows." Journal of Functional Analysis 218, no. 2 (January 2005): 409–24. http://dx.doi.org/10.1016/j.jfa.2004.05.004.
Full textSandu, Adrian. "A Class of Multirate Infinitesimal GARK Methods." SIAM Journal on Numerical Analysis 57, no. 5 (January 2019): 2300–2327. http://dx.doi.org/10.1137/18m1205492.
Full textAbadias, Luciano, and Pedro J. Miana. "Quasigeostrophic Equations for Fractional Powers of Infinitesimal Generators." Journal of Function Spaces 2019 (February 7, 2019): 1–7. http://dx.doi.org/10.1155/2019/4763450.
Full textBismut, Jean-Michel. "The infinitesimal Lefschetz formulas: A heat equation proof." Journal of Functional Analysis 62, no. 3 (July 1985): 435–57. http://dx.doi.org/10.1016/0022-1236(85)90013-8.
Full textAirault, Hélène. "Projection of the infinitesimal generator of a diffusion." Journal of Functional Analysis 85, no. 2 (August 1989): 353–91. http://dx.doi.org/10.1016/0022-1236(89)90041-4.
Full textGalé, José E., and Tadeusz Pytlik. "Functional Calculus for Infinitesimal Generators of Holomorphic Semigroups." Journal of Functional Analysis 150, no. 2 (November 1997): 307–55. http://dx.doi.org/10.1006/jfan.1997.3136.
Full textPrimozic, Eric. "Motivic cohomology and infinitesimal group schemes." Annals of K-Theory 7, no. 3 (December 19, 2022): 441–66. http://dx.doi.org/10.2140/akt.2022.7.441.
Full textDissertations / Theses on the topic "Analisi infinitesimale"
Adams, Richelle Vive-Anne. "Infinitesimal Perturbation Analysis for Active Queue Management." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19844.
Full textHouchens, Jesse P. "Alternatives to the Calculus: Nonstandard Analysis and Smooth Infinitesimal Analysis." Ohio University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1365705311.
Full textWilson, Brigham Bond. "Infinitesimal Perturbation Analysis for the Capacitated Finite-Horizon Multi-Period Multiproduct Newsvendor Problem." BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/2988.
Full textReeder, Patrick F. "Internal Set Theory and Euler's Introductio in Analysin Infinitorum." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366149288.
Full textLengyel, Eric. "Hyperreal structures arising from an infinite base logarithm." Thesis, Virginia Tech, 1996. http://hdl.handle.net/10919/44960.
Full textThis paper presents new concepts in the use of infinite and infinitesimal numbers in real analysis. theory is based upon the hyperreal number system developed by Abraham Robinson in the 1960's in his invention of "nonstandard analysis". paper begins with a short exposition of the construction of the hyperreal nU1l1ber system and the fundamental results of nonstandard analysis which are used throughout the paper. The new theory which is built upon this foundation organizes the set hyperrea.l numbers through structures which on an infinite base logarithm. Several new relations are introduced whose properties enable the simplification of calculations involving infinite and infinitesimal The paper explores two areas of application of these results to standard problems in elementary calculus. The first is to the evaluation of limits which assume indeterminate forms. The second is to the determination of convergence of infinite series. Both applications provide methods which greatly reduce the amount of con1putation necessary in many situations.
Master of Science
Niranjan, Suman. "A STUDY OF MULTI-ECHELON INVENTORY SYSTEMS WITH STOCHASTIC CAPACITY AND INTERMEDIATE PRODUCT DEMAND." Wright State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=wright1217523912.
Full textMontcouquiol, Grégoire. "Déformations de métriques Einstein sur des variétés à singularités coniques." Toulouse 3, 2005. http://www.theses.fr/2005TOU30205.
Full textStarting with a compact hyperbolic cone-manifold of dimension n>2, we study the deformations of the metric in order to get Einstein cone-manifolds. If the singular locus is a closed codimension 2 submanifold and all cone angles are smaller than 2pi, we show that there is no non-trivial infinitesimal Einstein deformations preserving the cone angles. This result can be interpreted as a higher-dimensional case of the celebrated Hodgson and Kerckhoff's theorem on deformations of hyperbolic 3-cone-manifolds. If all cone angles are smaller than pi, we also give a construction which associates to any variation of the angles a corresponding infinitesimal Einstein deformation
Makovský, Jan. "Markýz de l'Hospital a Analýza nekonečně malých." Thesis, Paris 4, 2015. http://www.theses.fr/2015PA040061/document.
Full textThe basis of my dissertation consists in three rather distinct parts, that is Czech translation, a commentaryand introduction to the famous Analyse des infiniment petitis by marquis the l'Hospital. Nevertheless I unify thewhole in virtue of the leibnizien metaphysical idea of the law of continuity governing the symbolic systemfundamental to the differential calculus of Leibniz. Concerning the first part of the introduction I represent the socalled academical or official picture of marquis de l'Hospital based on the Éloge by Bernard de Fontenelle. I usethis picture as a background to the so called hidden picture of the marquis, which consists in the analysis of thephysico-geometrical problems solved by the marquis de l'Hospital in comparison to those of Johann Bernoulli,based naturally on the correspondence of the two of them. I demonstrate, regarding the nature of the calculusboth physical and geometrical, that it was precisely the geometrical purity of his mind had forbidden him to makeinventions in geometry, unlike Johann Bernoulli. In the third part I describe the controversies that made part ofthe development of the calculus; firstly the controversy between Nieuwentijt and Leibniz concerning thefundamental questions of calculus. I precise on this occasion my views on the nature of leibnizian calculus asstated above, that is ambiguous symbolism of differentials. The second controversy, between Rolle and Varignonputs forward institutional obstacles of the development of the calculus as well as the foundational attempts madeby Varignon that indicated the future transformation of the calculus according to the spirit of Newton. Finally thecommentary, by the symbolic idea above, indicates the algebraical shift of the 17th century geometry; illustratesarticles of the Analyse des infiniment petits and shows the dependence on Bernoulli's inventions
Práce je věnována přelomové, epochální práci prvního období infinitesimálního počtu, Analyse desinfiniment petits Guillauma, markýze de l'Hospitala. Dělí se na tři podstatné části: překlad, komentář a úvodnístudii. Účelem je představit toto dílo v jeho jedinečných okolnostech jeho vzniku a zároveň určit jeho obecnémísto v dějinách matematických idejí. Úvodní studie je věnována především osobnosti markýze de l'Hospitala.Na pozadí rozvoje infinitesimálního počtu se vykresluje jeho po dlouhou dobu oficiální obraz v dějináchmatematiky. V druhé části se rozebírá blízký lidský i matematický vztah markýze de l'Hospitala s JohannemBernoullim; a na základě rozboru markýzových geometrických úspěchů se ve srovnání s řešeními JohannaBernoulliho, bratra Jakoba a Leibnize se podává obecná charakteristika prvního infinitesimálního počtu cobygeometrické i fyzikální teorie a možností jeho objevitelských cest prostřednictvím analogií založených nanejzazším požadavku harmonie přírody. Třetí část úvodní studie v historických souvislostech sporů a výměnstran základů diferenciálního počtu objasňuje z hlavní ideje Leibnizovy symbolické přírody, totiž zákonakontinuity, povahu diferenciálního znaku dx, jeho radikální novost a argumenty ospravedlnění přesnostiinfinitesimálního počtu. Druhá kontroverze, která je v práci představena, probíhá mezi Rollem a Varignonem;podstatnými rysy jsou institucionální podmínky rozvoje počtu a Varignonovy pokusy o důkazy nekonečněmalých v Newtonově duchu. Komentář Analýzy nekonečně malých slouží k historickému, filologickému afilosofickému objasnění nových metod a dokládá utváření Analýzy nekonečně malých z jejích zdrojů, tj.přednášek Johanna Bernoulliho markýzi de l'Hospitalovi a jejich dopisové výměny
Fredericks, E. "Conservation laws and their associated symmetries for stochastic differential equations." Thesis, 2009. http://hdl.handle.net/10539/6980.
Full textBooks on the topic "Analisi infinitesimale"
R, Manfredi. Moduli di lineamenti di matematica - Modulo F: Analisi infinitesimale (seconda parte). Novara, Italy: Ghisetti & Corvi Editori, 2009.
Find full textU, Bottazzini, Freguglia Paolo, and Toti Rigatelli Laura 1941-, eds. Fonti per la storia della matematica: Aritmetica, geometria, algebra, analisi infinitesimale, calcolo delle probabilità, logica. Firenze: Sansoni, 1992.
Find full textManuel, Bayod José, ed. Foundations of infinitesimal stochastic analysis. Amsterdam: North-Holland, 1986.
Find full textBell, J. L. A primer of infinitesimal analysis. 2nd ed. Cambridge: Cambridge University Press, 2008.
Find full textL, Bell J. A primer of infinitesimal analysis. Cambridge, [Eng.]: Cambridge University Press, 1998.
Find full textMoerdijk, Ieke. Models for smooth infinitesimal analysis. New York: Springer-Verlag, 1991.
Find full textReal analysis through modern infinitesimals. Cambridge: Cambridge University Press, 2011.
Find full textInfinitesimal methods of mathematical analysis. Chichester, West Sussex: Horwood, 2004.
Find full textHerzberg, Frederik. Stochastic Calculus with Infinitesimals. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textSpectrums: Our mind-boggling universe, from infinitesimal to infinity. London: Bloomsbury, 2013.
Find full textBook chapters on the topic "Analisi infinitesimale"
Gordon, E. I., A. G. Kusraev, and S. S. Kutateladze. "Excursus into the History of Calculus." In Infinitesimal Analysis, 1–9. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-0063-4_1.
Full textGordon, E. I., A. G. Kusraev, and S. S. Kutateladze. "Naive Foundations of Infinitesimal Analysis." In Infinitesimal Analysis, 10–34. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-0063-4_2.
Full textGordon, E. I., A. G. Kusraev, and S. S. Kutateladze. "Set-Theoretic Formalisms of Infinitesimal Analysis." In Infinitesimal Analysis, 35–115. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-0063-4_3.
Full textGordon, E. I., A. G. Kusraev, and S. S. Kutateladze. "Monads in General Topology." In Infinitesimal Analysis, 116–65. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-0063-4_4.
Full textGordon, E. I., A. G. Kusraev, and S. S. Kutateladze. "Infinitesimals and Subdifferentials." In Infinitesimal Analysis, 166–222. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-0063-4_5.
Full textGordon, E. I., A. G. Kusraev, and S. S. Kutateladze. "Technique of Hyperapproximation." In Infinitesimal Analysis, 223–80. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-0063-4_6.
Full textGordon, E. I., A. G. Kusraev, and S. S. Kutateladze. "Infinitesimals in Harmonic Analysis." In Infinitesimal Analysis, 281–366. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-0063-4_7.
Full textGordon, E. I., A. G. Kusraev, and S. S. Kutateladze. "Exercises and Unsolved Problems." In Infinitesimal Analysis, 367–79. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-0063-4_8.
Full textSonar, Thomas. "Frühe infinitesimale Techniken." In Einführung in die Analysis, 103–28. Wiesbaden: Vieweg+Teubner Verlag, 1999. http://dx.doi.org/10.1007/978-3-322-80216-3_6.
Full textGass, Saul I., and Carl M. Harris. "Infinitesimal perturbation analysis." In Encyclopedia of Operations Research and Management Science, 393. New York, NY: Springer US, 2001. http://dx.doi.org/10.1007/1-4020-0611-x_456.
Full textConference papers on the topic "Analisi infinitesimale"
Benedetto, Augusto Di, and Ettore Pennestrì. "Position Analysis and Higher-Order Synthesis of the Swinging-Block Mechanism." In ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-detc/mech-1021.
Full textMijajlović, Žarko. "Infinitesimals in Nonstandard Analysis versus Infinitesimals in p-Adic Fields." In p-ADIC MATHEMATICAL PHYSICS: 2nd International Conference. AIP, 2006. http://dx.doi.org/10.1063/1.2193129.
Full textGeng, Yanfeng, and Christos G. Cassandras. "Traffic light control using Infinitesimal Perturbation Analysis." In 2012 IEEE 51st Annual Conference on Decision and Control (CDC). IEEE, 2012. http://dx.doi.org/10.1109/cdc.2012.6426611.
Full textBurden, Samuel A., and Samuel D. Coogan. "On infinitesimal contraction analysis for hybrid systems." In 2022 IEEE 61st Conference on Decision and Control (CDC). IEEE, 2022. http://dx.doi.org/10.1109/cdc51059.2022.9992825.
Full textSergeyev, Yaroslav D. "Numerical infinities and infinitesimals in a new supercomputing framework." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM 2015). Author(s), 2016. http://dx.doi.org/10.1063/1.4951756.
Full textLee, Brian C., Daniel J. Tward, Zhiyi Hu, Alain Trouve, and Michael I. Miller. "Infinitesimal Drift Diffeomorphometry Models for Population Shape Analysis." In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2020. http://dx.doi.org/10.1109/cvprw50498.2020.00439.
Full textJin-Yong Zhang and R. F. Jao. "Analysis on energy distribution of infinitesimal mapping method." In 2016 Progress in Electromagnetic Research Symposium (PIERS). IEEE, 2016. http://dx.doi.org/10.1109/piers.2016.7734279.
Full textSergeyev, Yaroslav D. "Numerical infinitesimals for solving ODEs given as a black-box." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4912448.
Full textSadok, Turki, Bistorin Olivier, and Rezg Nidhal. "Infinitesimal perturbation analysis based optimization for a manufacturing-remanufacturing system." In 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA). IEEE, 2013. http://dx.doi.org/10.1109/etfa.2013.6648000.
Full textLian, Shaofan, Wei Wang, Yatian Zhou, Shunxi Lou, Hong Bao, Liwei Song, and Guojun Leng. "Analysis of Deformed Antenna Array Based on Infinitesimal Dipole Model." In 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/USNC-URSI). IEEE, 2022. http://dx.doi.org/10.1109/ap-s/usnc-ursi47032.2022.9886382.
Full textReports on the topic "Analisi infinitesimale"
L'Ecuyer, Pierre. A Unified View of Infinitesimal Perturbation Analysis and Likelihood Ratios. Fort Belvoir, VA: Defense Technical Information Center, February 1989. http://dx.doi.org/10.21236/ada210682.
Full text