Dissertations / Theses on the topic 'Analisi dati omici'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 21 dissertations / theses for your research on the topic 'Analisi dati omici.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Berti, Elisa. "Applicazione del metodo QDanet_PRO alla classificazione di dati omici." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9411/.
Full textMASPERO, DAVIDE. "Computational strategies to dissect the heterogeneity of multicellular systems via multiscale modelling and omics data analysis." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/368331.
Full textHeterogeneity pervades biological systems and manifests itself in the structural and functional differences observed both among different individuals of the same group (e.g., organisms or disease systems) and among the constituent elements of a single individual (e.g., cells). The study of the heterogeneity of biological systems and, in particular, of multicellular systems is fundamental for the mechanistic understanding of complex physiological and pathological phenomena (e.g., cancer), as well as for the definition of effective prognostic, diagnostic, and therapeutic strategies. This work focuses on developing and applying computational methods and mathematical models for characterising the heterogeneity of multicellular systems and, especially, cancer cell subpopulations underlying the evolution of neoplastic pathology. Similar methodologies have been developed to characterise viral evolution and heterogeneity effectively. The research is divided into two complementary portions, the first aimed at defining methods for the analysis and integration of omics data generated by sequencing experiments, the second at modelling and multiscale simulation of multicellular systems. Regarding the first strand, next-generation sequencing technologies allow us to generate vast amounts of omics data, for example, related to the genome or transcriptome of a given individual, through bulk or single-cell sequencing experiments. One of the main challenges in computer science is to define computational methods to extract useful information from such data, taking into account the high levels of data-specific errors, mainly due to technological limitations. In particular, in the context of this work, we focused on developing methods for the analysis of gene expression and genomic mutation data. In detail, an exhaustive comparison of machine-learning methods for denoising and imputation of single-cell RNA-sequencing data has been performed. Moreover, methods for mapping expression profiles onto metabolic networks have been developed through an innovative framework that has allowed one to stratify cancer patients according to their metabolism. A subsequent extension of the method allowed us to analyse the distribution of metabolic fluxes within a population of cells via a flux balance analysis approach. Regarding the analysis of mutational profiles, the first method for reconstructing phylogenomic models from longitudinal data at single-cell resolution has been designed and implemented, exploiting a framework that combines a Markov Chain Monte Carlo with a novel weighted likelihood function. Similarly, a framework that exploits low-frequency mutation profiles to reconstruct robust phylogenies and likely chains of infection has been developed by analysing sequencing data from viral samples. The same mutational profiles also allow us to deconvolve the signal in the signatures associated with specific molecular mechanisms that generate such mutations through an approach based on non-negative matrix factorisation. The research conducted with regard to the computational simulation has led to the development of a multiscale model, in which the simulation of cell population dynamics, represented through a Cellular Potts Model, is coupled to the optimisation of a metabolic model associated with each synthetic cell. Using this model, it is possible to represent assumptions in mathematical terms and observe properties emerging from these assumptions. Finally, we present a first attempt to combine the two methodological approaches which led to the integration of single-cell RNA-seq data within the multiscale model, allowing data-driven hypotheses to be formulated on the emerging properties of the system.
Tellaroli, Paola. "Three topics in omics research." Doctoral thesis, Università degli studi di Padova, 2015. http://hdl.handle.net/11577/3423912.
Full textIl titolo piuttosto generico di questa tesi è dovuto al fatto che sono stati indagati diversi aspetti di fenomeni biologici. La maggior parte di questo lavoro è stato rivolto alla ricerca dei limiti di uno degli strumenti essenziali per l'analisi di dati di espressione genica: l'analisi dei gruppi. Esistendo diverse centinaia di metodi di raggruppamento, chiaramente non c'è carenza di algoritmi di analisi dei gruppi, ma, allo stesso tempo, alcuni quesiti fondamentali non hanno ancora ricevuto risposte soddisfacenti. In particolare, presentiamo un nuovo algoritmo di analisi dei gruppi per dati statici ed una nuova strategia per il raggruppamento di dati temporali di breve lunghezza. Infine, abbiamo analizzato dati provenienti da una tecnologia relativamente nuova, chiamata Cap Analysis Gene Expression, utile per l'analisi dei promotori su tutto il genoma e ancora in gran parte inesplorata.
Ayati, Marzieh. "Algorithms to Integrate Omics Data for Personalized Medicine." Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1527679638507616.
Full textZuo, Yiming. "Differential Network Analysis based on Omic Data for Cancer Biomarker Discovery." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/78217.
Full textPh. D.
Lu, Yingzhou. "Multi-omics Data Integration for Identifying Disease Specific Biological Pathways." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/83467.
Full textMaster of Science
Elhezzani, Najla Saad R. "New statistical methodologies for improved analysis of genomic and omic data." Thesis, King's College London (University of London), 2018. https://kclpure.kcl.ac.uk/portal/en/theses/new-statistical-methodologies-for-improved-analysis-of-genomic-and-omic-data(eb8d95f4-e926-4c54-984f-94d86306525a).html.
Full textHafez, Khafaga Ahmed Ibrahem 1987. "Bioinformatics approaches for integration and analysis of fungal omics data oriented to knowledge discovery and diagnosis." Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2021. http://hdl.handle.net/10803/671160.
Full textThe aim of this thesis has been to develop a series of bioinformatic resources for analysis of NGS data, proteomics, or other omics technologies in the field of study and diagnosis of yeast infections. In particular, we have explored and designed distinct computational techniques to identify novel biomarker candidates of resistance traits, to predict DNA/RNA sequences’ features, and to optimize sequencing strategies for host-pathogen transcriptome sequencing studies (Dual RNA-seq). We have designed and developed an efficient bioinformatic solution composed of a server-side component constituted by distinct pipelines for VariantSeq, Denovoseq and RNAseq analyses as well as another component constituted by distinct GUI-based software to let the user to access, manage and run the pipelines with friendly-to-use interfaces. We have also designed and developed SeqEditor a software for sequence analysis and primers design for species identification and detection in PCR diagnosis. We also have developed CandidaMine an integrated data warehouse of fungal omics and for data analysis and knowledge discovery.
Li, Yichao. "Algorithmic Methods for Multi-Omics Biomarker Discovery." Ohio University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1541609328071533.
Full textRonen, Jonathan. "Integrative analysis of data from multiple experiments." Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21612.
Full textThe development of high throughput sequencing (HTS) was followed by a swarm of protocols utilizing HTS to measure different molecular aspects such as gene expression (transcriptome), DNA methylation (methylome) and more. This opened opportunities for developments of data analysis algorithms and procedures that consider data produced by different experiments. Considering data from seemingly unrelated experiments is particularly beneficial for Single cell RNA sequencing (scRNA-seq). scRNA-seq produces particularly noisy data, due to loss of nucleic acids when handling the small amounts in single cells, and various technical biases. To address these challenges, I developed a method called netSmooth, which de-noises and imputes scRNA-seq data by applying network diffusion over a gene network which encodes expectations of co-expression patterns. The gene network is constructed from other experimental data. Using a gene network constructed from protein-protein interactions, I show that netSmooth outperforms other state-of-the-art scRNA-seq imputation methods at the identification of blood cell types in hematopoiesis, as well as elucidation of time series data in an embryonic development dataset, and identification of tumor of origin for scRNA-seq of glioblastomas. netSmooth has a free parameter, the diffusion distance, which I show can be selected using data-driven metrics. Thus, netSmooth may be used even in cases when the diffusion distance cannot be optimized explicitly using ground-truth labels. Another task which requires in-tandem analysis of data from different experiments arises when different omics protocols are applied to the same biological samples. Analyzing such multiomics data in an integrated fashion, rather than each data type (RNA-seq, DNA-seq, etc.) on its own, is benefitial, as each omics experiment only elucidates part of an integrated cellular system. The simultaneous analysis may reveal a comprehensive view.
Denecker, Thomas. "Bioinformatique et analyse de données multiomiques : principes et applications chez les levures pathogènes Candida glabrata et Candida albicans Functional networks of co-expressed genes to explore iron homeostasis processes in the pathogenic yeast Candida glabrata Efficient, quick and easy-to-use DNA replication timing analysis with START-R suite FAIR_Bioinfo: a turnkey training course and protocol for reproducible computational biology Label-free quantitative proteomics in Candida yeast species: technical and biological replicates to assess data reproducibility Rendre ses projets R plus accessibles grâce à Shiny Pixel: a content management platform for quantitative omics data Empowering the detection of ChIP-seq "basic peaks" (bPeaks) in small eukaryotic genomes with a web user-interactive interface A hypothesis-driven approach identifies CDK4 and CDK6 inhibitors as candidate drugs for treatments of adrenocortical carcinomas Characterization of the replication timing program of 6 human model cell lines." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASL010.
Full textBiological research is changing. First, studies are often based on quantitative experimental approaches. The analysis and the interpretation of the obtained results thus need computer science and statistics. Also, together with studies focused on isolated biological objects, high throughput experimental technologies allow to capture the functioning of biological systems (identification of components as well as the interactions between them). Very large amounts of data are also available in public databases, freely reusable to solve new open questions. Finally, the data in biological research are heterogeneous (digital data, texts, images, biological sequences, etc.) and stored on multiple supports (paper or digital). Thus, "data analysis" has gradually emerged as a key research issue, and in only ten years, the field of "Bioinformatics" has been significantly changed. Having a large amount of data to answer a biological question is often not the main challenge. The real challenge is the ability of researchers to convert the data into information and then into knowledge. In this context, several biological research projects were addressed in this thesis. The first concerns the study of iron homeostasis in the pathogenic yeast Candida glabrata. The second concerns the systematic investigation of post-translational modifications of proteins in the pathogenic yeast Candida albicans. In these two projects, omics data were used: transcriptomics and proteomics. Appropriate bioinformatics and analysis tools were developed, leading to the emergence of new research hypotheses. Particular and constant attention has also been paid to the question of data reproducibility and sharing of results with the scientific community
Czerwińska, Urszula. "Unsupervised deconvolution of bulk omics profiles : methodology and application to characterize the immune landscape in tumors Determining the optimal number of independent components for reproducible transcriptomic data analysis Application of independent component analysis to tumor transcriptomes reveals specific and reproducible immune-related signals A multiscale signalling network map of innate immune response in cancer reveals signatures of cell heterogeneity and functional polarization." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCB075.
Full textTumors are engulfed in a complex microenvironment (TME) including tumor cells, fibroblasts, and a diversity of immune cells. Currently, a new generation of cancer therapies based on modulation of the immune system response is in active clinical development with first promising results. Therefore, understanding the composition of TME in each tumor case is critically important to make a prognosis on the tumor progression and its response to treatment. However, we lack reliable and validated quantitative approaches to characterize the TME in order to facilitate the choice of the best existing therapy. One part of this challenge is to be able to quantify the cellular composition of a tumor sample (called deconvolution problem in this context), using its bulk omics profile (global quantitative profiling of certain types of molecules, such as mRNA or epigenetic markers). In recent years, there was a remarkable explosion in the number of methods approaching this problem in several different ways. Most of them use pre-defined molecular signatures of specific cell types and extrapolate this information to previously unseen contexts. This can bias the TME quantification in those situations where the context under study is significantly different from the reference. In theory, under certain assumptions, it is possible to separate complex signal mixtures, using classical and advanced methods of source separation and dimension reduction, without pre-existing source definitions. If such an approach (unsupervised deconvolution) is feasible to apply for bulk omic profiles of tumor samples, then this would make it possible to avoid the above mentioned contextual biases and provide insights into the context-specific signatures of cell types. In this work, I developed a new method called DeconICA (Deconvolution of bulk omics datasets through Immune Component Analysis), based on the blind source separation methodology. DeconICA has an aim to decipher and quantify the biological signals shaping omics profiles of tumor samples or normal tissues. A particular focus of my study was on the immune system-related signals and discovering new signatures of immune cell types. In order to make my work more accessible, I implemented the DeconICA method as an R package named "DeconICA". By applying this software to the standard benchmark datasets, I demonstrated that DeconICA is able to quantify immune cells with accuracy comparable to published state-of-the-art methods but without a priori defining a cell type-specific signature genes. The implementation can work with existing deconvolution methods based on matrix factorization techniques such as Independent Component Analysis (ICA) or Non-Negative Matrix Factorization (NMF). Finally, I applied DeconICA to a big corpus of data containing more than 100 transcriptomic datasets composed of, in total, over 28000 samples of 40 tumor types generated by different technologies and processed independently. This analysis demonstrated that ICA-based immune signals are reproducible between datasets and three major immune cell types: T-cells, B-cells and Myeloid cells can be reliably identified and quantified. Additionally, I used the ICA-derived metagenes as context-specific signatures in order to study the characteristics of immune cells in different tumor types. The analysis revealed a large diversity and plasticity of immune cells dependent and independent on tumor type. Some conclusions of the study can be helpful in identification of new drug targets or biomarkers for immunotherapy of cancer
Voillet, Valentin. "Approche intégrative du développement musculaire afin de décrire le processus de maturation en lien avec la survie néonatale." Thesis, Toulouse, INPT, 2016. http://www.theses.fr/2016INPT0067/document.
Full textOver the last decades, some omics data integration studies have been developed to participate in the detailed description of complex traits with socio-economic interests. In this context, the aim of the thesis is to combine different heterogeneous omics data to better describe and understand the last third of gestation in pigs, period influencing the piglet mortality at birth. In the thesis, we better defined the molecular and cellular basis underlying the end of gestation, with a focus on the skeletal muscle. This tissue is specially involved in the efficiency of several physiological functions, such as thermoregulation and motor functions. According to the experimental design, tissues were collected at two days of gestation (90 or 110 days of gestation) from four fetal genotypes. These genotypes consisted in two extreme breeds for mortality at birth (Meishan and Large White) and two reciprocal crosses. Through statistical and computational analyses (descriptive analyses, network inference, clustering and biological data integration), we highlighted some biological mechanisms regulating the maturation process in pigs, but also in other livestock species (cattle and sheep). Some genes and proteins were identified as being highly involved in the muscle energy metabolism. Piglets with a muscular metabolism immaturity would be associated with a higher risk of mortality at birth. A second aspect of the thesis was the imputation of missing individual row values in the multidimensional statistical method framework, such as the multiple factor analysis (MFA). In our context, MFA was particularly interesting in integrating data coming from the same individuals on different tissues (two or more). To avoid missing individual row values, we developed a method, called MI-MFA (multiple imputation - MFA), allowing the estimation of the MFA components for these missing individuals
Hulot, Audrey. "Analyses de données omiques : clustering et inférence de réseaux Female ponderal index at birth and idiopathic infertility." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASL034.
Full textThe development of biological high-throughput technologies (next-generation sequencing and mass spectrometry) have provided researchers with a large amount of data, also known as -omics, that help better understand the biological processes.However, each source of data separately explains only a very small part of a given process. Linking the differents -omics sources between them should help us understand more of these processes.In this manuscript, we will focus on two approaches, clustering and network inference, applied to omics data.The first part of the manuscript presents three methodological developments on this topic. The first two methods are applicable in a situation where the data are heterogeneous.The first method is an algorithm for aggregating trees, in order to create a consensus out of a set of trees. The complexity of the process is sub-quadratic, allowing to use it on data leading to a great number of leaves in the trees. This algorithm is available in an R-package named mergeTrees on the CRAN.The second method deals with the integration data from trees and networks, by transforming these objects into distance matrices using cophenetic and shortest path distances, respectively. This method relies on Multidimensional Scaling and Multiple Factor Analysis and can be also used to build consensus trees or networks.Finally, we use the Gaussian Graphical Models setting and seek to estimate a graph, as well as communities in the graph, from several tables. This method is based on a combination of Stochastic Block Model, Latent Block Model and Graphical Lasso.The second part of the manuscript presents analyses conducted on transcriptomics and metagenomics data to identify targets to gain insight into the predisposition of Ankylosing Spondylitis
Elmansy, Dalia F. "Computational Methods to Characterize the Etiology of Complex Diseases at Multiple Levels." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1583416431321447.
Full textTeng, Sin Yong. "Intelligent Energy-Savings and Process Improvement Strategies in Energy-Intensive Industries." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-433427.
Full text"Sparse Models For Multimodal Imaging And Omics Data Integration." 2015.
Find full textNersisyan, Lilit. "Telomere analysis based on high-throughput multi-omics data." Doctoral thesis, 2017. https://ul.qucosa.de/id/qucosa%3A16297.
Full textPapież, Anna. "Integrative data analysis methods in multi-omics molecular biology studies for disease of affluence biomarker research." Rozprawa doktorska, 2019. https://repolis.bg.polsl.pl/dlibra/docmetadata?showContent=true&id=59005.
Full textPapież, Anna. "Integrative data analysis methods in multi-omics molecular biology studies for disease of affluence biomarker research." Rozprawa doktorska, 2019. https://delibra.bg.polsl.pl/dlibra/docmetadata?showContent=true&id=59005.
Full textDONATO, LUIGI. "New omics approaches improving classification and personalized retinitis pigmentosa diagnosis." Doctoral thesis, 2018. http://hdl.handle.net/11570/3130272.
Full text