Academic literature on the topic 'Anaerobic Digestor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Anaerobic Digestor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Anaerobic Digestor"
Moletta, Marina, Nathalie Wery, Jean-Philippe Delgenes, and Jean-Jacques Godon. "Microbial characteristics of biogas." Water Science and Technology 57, no. 4 (March 1, 2008): 595–99. http://dx.doi.org/10.2166/wst.2008.107.
Full textMorel, E., K. Santamaria, M. Perrier, S. R. Guiot, and B. Tartakovsky. "Multi-wavelength fluorometry for anaerobic digestion process monitoring." Water Science and Technology 52, no. 1-2 (July 1, 2005): 465–71. http://dx.doi.org/10.2166/wst.2005.0554.
Full textde Vries, Jacob, Faizan Saleem, Enze Li, Alexander Wing Yip Chan, James Naphtali, Paul Naphtali, Athanasios Paschos, and Herb E. Schellhorn. "Comparative Analysis of Metagenomic (Amplicon and Shotgun) DNA Sequencing to Characterize Microbial Communities in Household On-Site Wastewater Treatment Systems." Water 15, no. 2 (January 9, 2023): 271. http://dx.doi.org/10.3390/w15020271.
Full textRusín, Jiří, Kateřina Chamrádová, and Kateřina Kašáková. "Development of the Laboratory Anaerobic Bioreactor for Wet and Dry Digestion Processes." GeoScience Engineering 62, no. 4 (December 1, 2016): 5–9. http://dx.doi.org/10.1515/gse-2016-0024.
Full textVaz, F., A. Torres, and C. Neiva Correia. "Case study: the characteristics of the biodegradable waste for the anaerobic digestion plant in Lisbon area." Water Science and Technology 58, no. 8 (October 1, 2008): 1563–68. http://dx.doi.org/10.2166/wst.2008.499.
Full textZhang, Kun, Yan-Ling Zhang, Xin Ouyang, Jun-Peng Li, Jun-Jie Liao, Ao You, Xiu Yue, Guang-Jian Xie, Jie-Liang Liang, and Jin-Tian Li. "Genome-Centered Metagenomics Analysis Reveals the Microbial Interactions of a Syntrophic Consortium during Methane Generation in a Decentralized Wastewater Treatment System." Applied Sciences 10, no. 1 (December 23, 2019): 135. http://dx.doi.org/10.3390/app10010135.
Full textFreemantle, Ryan, Nick Butson, Janet Goodfellow, Julie Konzuk, and James G. Longstaffe. "Nuclear Magnetic Resonance Spectroscopy Analysis of Anaerobic Microbial Metabolic Response to Benzalkonium Chloride Disinfectant." Applied Sciences 12, no. 9 (May 4, 2022): 4620. http://dx.doi.org/10.3390/app12094620.
Full textChen, T. H., P. Chynoweth, and R. BIljetina. "Anaerobic digestion of municipal solid waste in a nonmixed solids concentrating digestor." Applied Biochemistry and Biotechnology 24-25, no. 1 (March 1990): 533–44. http://dx.doi.org/10.1007/bf02920276.
Full textMartínez-García, Ricardo Adolfo, Teodoro Espinosa-Solares, Jorge Flores-Velázquez, Abraham Rojano-Aguilar, Omar Reséndiz-Cantera, and Abraham Jesús Arzeta-Ríos. "Mejoramiento del desempeño hidrodinámico de un digestor anaeróbico de laguna cubierta mediante CFD//Improving the hydrodynamic performance of a covered lagoon anaerobic digester by CFD." Biotecnia 22, no. 1 (October 18, 2019): 56–66. http://dx.doi.org/10.18633/biotecnia.v22i1.1125.
Full textDeepanraj, A., S. Vijayalakshmi, and J. Ranjitha. "Production of Bio Gas from Vegetable and Flowers Wastes Using Anaerobic Digestion." Applied Mechanics and Materials 787 (August 2015): 803–8. http://dx.doi.org/10.4028/www.scientific.net/amm.787.803.
Full textDissertations / Theses on the topic "Anaerobic Digestor"
Santiago, Aníbal da Fonseca. "Sistema condominial de coleta de esgoto e tratamento em decanto-digestor seguido de alagados construídos. Estudo de caso: município de Nova Redenção - BA." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/18/18138/tde-27022009-154750/.
Full textThis work was developed in the city of Nova Redenção, located in the region of the Chapada Diamantina in the state of Bahia, northeastern Brazil. In this city there are serious problems of environmental sanitation as well as in other within the country. Lack of financial and human resources is a factor that complicates the resolution of this problem. It is believed that studies and improvements in technologies for simplified collection and treatment of domestic sewage are in line with the peculiarities of these locations and are, today, important topics for research. This proposal was aimed at the design, installation and evaluation of a \'condominial\' sewerage (CS) in the village portion of the township, where live approximately 250 people. The objective of the study was also the design, installation and start of the sewage treatment system - septic tank followed by sub-superficial flow constructed wetlands. The acceptance of the CS by the community and its operation were evaluated. The treatment system was characterized in terms of removal of organic matter (OM), solids (TSS), nutrients (N and P) and Escherichia coli. The hydrodynamics of the system units was studied, using tracer. The water balance of constructed wetlands has been done. The \'condominial\' sewerage demonstrated, as well as in other experiences, good and proper application in communities with similar characteristics to this study. The community did not accept only the small diameter used, due mainly to their fear of clogging. Complaints from neighbors about the tubes passing through backyards were not registered. The treatment system study showed, after eleven weeks of monitoring, 85% of removal of COD and 86% of BOD5, 90% of removal of TSS, the removal of ammonia nitrogen, total and soluble fósfoto were: 25%, 36% and 40% respectively. The removal of E. coli was 2.1 logarithmic units. The sand used, of a very fine particle size, has particularly affected the hydrodynamics of the constructed wetlands, creating a sheet of water on the support material. It reduced the hydraulic detention time of the flooded water, which may be the cause of low efficiency.
Castano, Juan Mauricio. "Anaerobic Digestion of Low Rate Digesters in Temperate Climates." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1345220853.
Full textMoraes, Luciana de Mattos. "Avaliação da biodegradabilidade anaerobia de lodos de esgoto provenientes de reatores anaerobios sequenciais." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/257154.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agricola
Made available in DSpace on 2018-08-06T21:28:44Z (GMT). No. of bitstreams: 1 Moraes_LucianadeMattos_D.pdf: 2361276 bytes, checksum: 9b4e15d7689fe74d36409ea5ffd64856 (MD5) Previous issue date: 2005
Resumo: O potencial de aplicabilidade do processo anaeróbio pode ser avaliado a partir do conhecimento de poucas características dos resíduos a serem tratados. Uma avaliação preliminar dessas características pode auxiliar na escolha do sistema de tratamento mais adequado, permitindo, dessa forma, estimativas de produção de sólidos biológicos, de requisitos de nutrientes, de produção de metano, etc. A caracterização dos resíduos, por meio de testes de biodegradabilidade, é de fundamental importância, uma vez que os resíduos apresentam grande variabilidade quanto à qualidade, quantidade, Demanda Química de Oxigênio (DQO) e presença de compostos orgânicos refratários. Acrescentam-se ainda outras características importantes ao tratamento anaeróbio, notadamente pH, alcalinidade, nutrientes inorgânicos, temperatura e a eventual presença de compostos potencialmente tóxicos. Durante esse trabalho foi desenvolvida uma metodologia para avaliação da biodegradabilidade anaeróbia de lodos de esgoto estabilizados por reatores anaeróbios, utilizando testes simplificados de bancada, visando promover um maior conhecimento sobre a cinética de biodegradação dos lodos. De forma a agregar informações complementares sobre os lodos estudados realizou-se também a identificação morfológica dos diferentes grupos de microrganismos responsáveis pelo processo de digestão anaeróbia. A metodologia desenvolvida propõe a determinação da ¿biodegradabilidade anaeróbia intrínseca¿ dos lodos de esgoto por meio do monitoramento da produção e da composição do biogás (quanto às concentrações de CH4 e CO2). Os testes foram realizados em frascos de 280mL de volume preenchidos com 50% do seu volume com proporções de lodo e água de forma a garantir uma concentração de Sólidos Voláteis em torno de 10mg.L-1; os outros 50% constituíram o ¿headspace¿ que, após os frascos terem sido vedados, foi preenchido com N2. Os ensaios foram realizados em mesa agitadora (150rpm), sob temperatura controlada (35°C) e tiveram a duração de 15 dias, monitorando-se a cada 2 dias, a pressão interna do frasco e a composição do biogás. A avaliação da ¿biodegradabilidade anaeróbia intrínseca¿ das amostras de lodo foi quantificada por meio da determinação da taxa específica máxima de produção de CH4 (KCH4) e da taxa específica máxima de produção de CO2 (KCO2), as quais representam os ¿coeficientes de biodegradabilidade intrínseca¿ e foram obtidos por meio da aplicação de modelos matemáticos ajustados aos perfis de concentração molar de CH4 e CO2 em função do tempo. Os resultados obtidos nos testes de biodegradabilidade refletiram, de maneira geral, o comportamento dos reatores anaeróbios seqüenciais (Sistema B) operados em escala real com TDHs de 30, 20 e 10 dias, indicando que a metodologia desenvolvida permitiu a estimativa de ¿coeficientes de biodegradabilidade anaeróbia intrínseca¿ de lodos de esgoto por meio de testes simplificados de bancada com boa reprodutibilidade
Abstract: The potential of applicability of an anaerobic process can be evaluated from the knowledge of some characteristics of the residues to be treated. A preliminary evaluation of these characteristics can assist in the choice of a more suitable treatment system, what allows to estimate the production of biological solids, requirements for nutrients, methane production, etc. The characterization of the residues, through biodegradability tests, is of fundamental importance, once that the residues present a great variability for the quality, amount, Chemical Oxygen Demand (COD) and the presence of refractory organics. There are other important characteristics for the anaerobic treatment of sewage sludge, like pH, alkalinity, inorganic nutrients, temperature and the presence or not of very toxic compounds. During this work, a methodology for the evaluation of the anaerobic biodegradability of sewage sludge, stabilized by anaerobic reactors was developed using simplified bench tests, aiming to know more about the kinetics of biodegradation of sludge. With the intention to add complementary information about the studied sludge, it was also achieved the morphologic identification of the different groups of microorganisms that are responsible for the anaerobic digestion process. The developed methodology considers the determination of the ¿intrinsic anaerobic biodegradability¿ of sewage sludge through the monitoring of the production and of the composition of biogas (concentrations of CH4 and CO2). The tests had been carried out in bottles of 280mL filled with 50% of its volume with sludge and water ratios to guarantee a volatile solids concentration about 10mg.L-1; the other 50% constituted the ¿headspace¿ that, after the bottles had been hinted, were filled with N2. The assays had been carried through in a shaker (150rpm), under controlled temperature (35°C) and had the duration of 15 days, monitoring the pressure inside the flask and the composition of the biogas in every 2 days. The evaluation of the ¿intrinsic anaerobic biodegradability¿ of the sludge was quantified through the determination of the maximum specific tax of production of CH4 (KCH4) and of the maximum specific rate of CO2 production (KCO2), which represent the intrinsic biodegradability coefficients¿ and had been achieved through the application of mathematical models adjusted to the profiles of molar concentration of CH4 and CO2 in function of the time. The results obtained in the biodegradability tests had reflected, in a general way, the behavior of the sequential anaerobic reactors (System B) operated in real scale with HDTs (Hydraulic Detention Time) of 30, 20 and 10 days, indicating that the developed methodology allowed to estimate the ¿intrinsic biodegradability coefficients¿ of sewage sludge through simplified bench tests with good reproducibility
Doutorado
Agua e Solo
Doutor em Engenharia Agrícola
Kidby, David W. "Biogas hydrogen as an indicator of digester instability in anaerobic sewage sludge digesters." Thesis, University of Essex, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.280473.
Full textVelho, Douglas Ferreira. "Digestão anaeróbia de resíduos de restaurantes: partida do reator e avaliação do biofertilizante." Universidade do Vale do Rio dos Sinos, 2016. http://www.repositorio.jesuita.org.br/handle/UNISINOS/5823.
Full textMade available in DSpace on 2016-10-18T12:56:21Z (GMT). No. of bitstreams: 1 Douglas Ferreira Velho_.pdf: 2524832 bytes, checksum: dd171e639a007511b6cceb2258575af8 (MD5) Previous issue date: 2016-07-29
Comitesinos - Comitê de Gerenciamento da Bacia Hidrográfica do Rio dos Sinos
FUNDEPE - Fundação Universitária para Desenvolvimento do Ensino e da Pesquisa
Petrobras - Petróleo Brasileiro S. A.
UNISINOS - Universidade do Vale do Rio dos Sinos
O crescente aumento na geração de resíduos sólidos urbanos, somado às formas inadequadas de tratamento e disposição contribuem de forma direta e significativa com a problemática ambiental. Diante deste cenário, se faz necessário o desenvolvimento de alternativas que permitam outros benefícios além da disposição final apropriada. A digestão anaeróbia é uma alternativa viável e economicamente interessante para tratamento da fração orgânica dos resíduos sólidos urbanos. Considerando que em nosso país a fração orgânica é predominante nos resíduos sólidos urbanos, correspondendo em média a mais de 40% na composição, ao mesmo tempo que reduz o volume de resíduos enviados para os aterros sanitários, o processo gera produtos como o biogás e biofertilizante para uso agrícola. Esta pesquisa teve como objetivo avaliar a tratabilidade da fração orgânica dos resíduos sólidos domésticos provenientes do preparo e pós consumo das refeições de um restaurante universitário em um reator operado por batelada e qualificar as características do biofertilizante gerado. Para atingir este objetivo, a pesquisa foi realizada em três etapas, sendo que na etapa inicial foram realizadas quatro bateladas nas quais foram analisadas a proporção adequada de resíduos e inóculo para partida do reator sem que ocorresse acidificação. A segunda etapa consistiu na realização de seis bateladas, nas quais foram monitorados os principais parâmetros de operação e a terceira etapa onde foram avaliados os parâmetros químicos, físicos e microbiológicos do biofertilizante gerado ao final dos ensaios da segunda etapa. Os resultados da primeira etapa apontaram que a proporção de 6:1 em termos de sólidos totais voláteis, sendo lodo proveniente de um reator UASB e resíduos sólidos putrescíveis respectivamente, apresentaram uma partida adequada do sistema, sem que ocorresse acidificação, com o pH variando entre 6,9 e 7,7. Na segunda fase o monitoramento dos principais parâmetros de operação permitiu que no decorrer dos ensaios a proporção em termos de STV fosse reduzida, chegando a 1:1 de inóculo e substrato respectivamente, na batelada 10, portanto permitindo o tratamento de uma quantidade maior de resíduos em relação aos ensaios iniciais. Os resultados obtidos no monitoramento apontaram que o pH manteve-se dentro da faixa considerada ideal entre 6,0 e 8,0, porém o período de vinte e dois dias adotado como tempo de retenção mostrou-se insuficiente para degradação e consequente remoção da matéria orgânica, sendo que apenas a batelada 10 mostrou-se eficiente na remoção de STV 8,1% e carbono orgânico total 33,5%. A análise física do biofertilizante gerado no final de cada ensaio apontou umidade acima do permitido pela legislação, sendo indicado apenas para uso via aspersão. Quimicamente o biofertilizante apresentou insuficiência de nitrogênio, evidenciada nas elevadas relações C:N iniciais e finais obtidas e carência de macronutrientes como fósforo cujos resultados ficaram abaixo de 1%, mínimo imposto pela legislação e potássio, elemento que não foi detectado na pelo equipamento utilizado. A qualidade sanitária do composto atendeu a legislação quanto a presença de ovos viáveis de helmintos, sendo que todos os ensaios apresentaram resultados inferiores a uma unidade/4g, porém apresentou resultados acima do limite estabelecido para coliformes termotolerantes. O teste de germinação confirmou a ausência da fitotoxidade dos produtos.
The increase in the generation of municipal solid waste, together with the inadequate forms of treatment and disposal contribute directly and significantly to the environmental problems. In this scenario, it is necessary to develop alternatives to other benefits in addition to the appropriate disposal. Anaerobic digestion is a viable alternative and economically interesting for the treatment of the organic fraction of municipal solid waste. Whereas in our country the organic fraction is predominant in urban solid waste, corresponding to an average of over 40% in the composition, at the same time reducing the volume of waste sent to landfills, the process generates products such as biogas and biofertilizers for agricultural use. This research aimed to evaluate the treatability of the organic fraction of household waste from the preparation and after consumption of meals from a university restaurant in a reactor operated by batch and qualify the characteristics of the generated biofertilizers. To achieve this goal, the research was conducted in three phases, with the initial phase were held four batches were analyzed in which the proportions of the waste and inoculum for starting the reactor without acidification occurred. The second stage consisted of six batches, which were monitored in the main operating parameters and the third stage where we evaluated the chemical, physical and microbiological biofertilizer generated at the end of the second stage trials. The first step results indicated that the ratio of 6: 1 in terms of total volatile solids, and sludge from a UASB reactor and solid waste putrescible respectively, showed a suitable starting system without occur acidification to pH between 6.9 and 7.7. In the second stage, the monitoring of key operating parameters allowed during the experiment the proportion in terms STV be reduced, reaching 1: 1 inoculum and substrate respectively in the batch 10, thus allowing treatment of a larger quantity of waste compared to the initial test. The results showed that monitoring the pH was maintained within the range considered optimal between 6.0 and 8.0, but the period twenty-two days adopted as the retention time was insufficient to degradation and subsequent removal of matter organic, and only the batch 10 was effective in removing STV 8.1% and 33.5% total organic carbon. Physical analysis of biofertilizers generated at the end of each test pointed humidity above those permitted by law and is intended only for use via spraying. Chemically biofertilizer showed nitrogen deficiency, evidenced in the high ratios C: Initial N and obtained final and lack of nutrients such as phosphorus whose results were below 1% minimum required by the legislation and potassium, an element that was not detected in the equipment used. The sanitary quality of the compound met the legislation for the presence of viable helminth eggs, and all tests showed lower results to a unit / 4G, but showed results above the limit for fecal coliforms. The germination test confirmed the absence of phytotoxicity of products.
Ledesma, Lina Marcela Sánchez. "Produção de estruvita a partir de esgoto doméstico." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/3/3147/tde-14082015-144656/.
Full textThe shortage of the phosphorus sources and high-energy consumption associated to the nitrogen fertilizers production will be problems in the future. The nutrient recovery from wastewater as struvite has been considered as an alternative to alleviate these problems. In Latin America, production of struvite from wastewater is not yet a wellknown technology and therefore the purpose of this work is to contribute to a better understanding of the phenomena involved. This research work was performed in three phases: 1) production of struvite from upflow anaerobic sludge blanket reactor effluent; 2) production of struvite from anaerobic digester supernatant of enhanced biological phosphorus removal process (ADS-EBPR) and 3) influence of calcium in the struvite produced in the phase 2. In three phases, the magnesium concentrations were adjusted to obtain the preset phosphorus:magnesium (P:Mg) ratios and the pH was adjusted between 8,00 and 10,50. The results of the first phase showed that it is not possible to produce struvite in the upflow anaerobic sludge blanket reactor effluent in the tested conditions. However, removal of nitrogen and phosphorus was observed because amorphous calcium and magnesium phosphates were produced. The results of the second phase showed that it is possible to produce struvite in the ADS-EBPR and the molar consumptions of phosphate (PO43-), ammonia (NH4+) and magnesium (Mg2+) or removals (%) should not be the only parameters to evaluate the struvite formation, because other compounds crystallize or precipitate and reduce the quality of the mineral. In the similar conditions tested in this phase, a P:Mg ratio 1:2 and pH 9,50 assure maximum nutrients recovery as struvite with minimum impurities concentration, facilitating its subsequent use as fertilizer. The results of the third phase showed that amorphous calcium or magnesium phosphates were produced on the struvite surface.
Racz, Tiffany A. "Anaerobic Digestion of Wastewater-Grown Algae Biomass With Optimized Biogas Yields and Nutrient Solubilzation." DigitalCommons@CalPoly, 2018. https://digitalcommons.calpoly.edu/theses/2245.
Full textTang, Jing. "Comparison of Dairy Manure Anaerobic Digestion Performance in Gas-lift and Bubble Column Digesters." Thesis, Virginia Tech, 2009. http://hdl.handle.net/10919/46319.
Full textMaster of Science
Ganidi, Nafsika. "Anaerobic digestion foaming causes." Thesis, Cranfield University, 2008. http://dspace.lib.cranfield.ac.uk/handle/1826/3450.
Full textChristodoulides, Jacqueline S. "Mixing in anaerobic digesters." Thesis, University of Southampton, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.533276.
Full textBooks on the topic "Anaerobic Digestor"
Horan, Nigel, Abu Zahrim Yaser, and Newati Wid, eds. Anaerobic Digestion Processes. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8129-3.
Full textWater Pollution Control Federation. Task Force on Anaerobic Sludge Digestion., ed. Anaerobic sludge digestion. 2nd ed. Alexandria, VA: Water Pollution Control Federation, 1987.
Find full textLeighton, Ian. Thermophilic anaerobic digestion. Birmingham: University of Birmingham, 1997.
Find full textP, Chynoweth David, and Isaacson Ron, eds. Anaerobic digestion of biomass. London: Elsevier Applied Science, 1987.
Find full textUK, Interdepartmental Anaerobic Digestion Seminar (1991 Birmingham England). UK interdepartmental anaerobic digestion seminar. Oxfordshire: Harwell Laboratories, 1991.
Find full textSudalyandi, Kaliappan, and Rajeshbanu Jeyakumar. Biofuel Production Using Anaerobic Digestion. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3743-9.
Full textArthur-Mensah, Kojo. Anaerobic digestion of detergent wastewaters. Birmingham: University of Birmingham, 2002.
Find full textThe microbiology of anaerobic digesters. Hoboken, NJ: John Wiley, 2002.
Find full textGerardi, Michael H. The microbiology of anaerobic digesters. Hoboken, N.J: John Wiley, 2003.
Find full textAnaerobic digestion of farm waste. Reading, Eng: National Institute for Research in Dairying, 1985.
Find full textBook chapters on the topic "Anaerobic Digestor"
Dolci, Giovanni. "Influence of the Collection Equipment on Organic Waste Treatment: Technical and Environmental Analyses." In Civil and Environmental Engineering for the Sustainable Development Goals, 15–28. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99593-5_2.
Full textAshraf, R. J., Jonathan D. Nixon, and J. Brusey. "Multi-objective Optimisation of a Wastewater Anaerobic Digestion System." In Springer Proceedings in Energy, 265–74. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30960-1_25.
Full textTaricska, Jerry R., David A. Long, J. Paul Chen, Yung-Tse Hung, and Shuai-Wen Zou. "Anaerobic Digestion." In Biological Treatment Processes, 589–634. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-156-1_14.
Full textAydin, Sevcan. "Anaerobic Digestion." In Waste Biomass Management – A Holistic Approach, 1–14. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49595-8_1.
Full textBombardiere, John, and David A. Stafford. "Anaerobic Digestion." In Biofuels and Bioenergy, 45–58. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118350553.ch3.
Full textMassi, Erica. "Anaerobic Digestion." In Fuel Cells in the Waste-to-Energy Chain, 47–63. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2369-9_3.
Full textMelville, Lynsey, Andreas Weger, Sonja Wiesgickl, and Matthias Franke. "Anaerobic Digestion." In Transformation of Biomass, 31–59. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118693643.ch2.
Full textLiebetrau, Jan, Heike Sträuber, Jörg Kretzschmar, Velina Denysenko, and Michael Nelles. "Anaerobic Digestion." In Advances in Biochemical Engineering/Biotechnology, 281–99. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/10_2016_67.
Full textKalal, Sangeeta, Satish Kumar Ameta, and Abhilasha Jain. "Anaerobic Digestion." In Sonochemistry, 295–322. Toronto : Apple Academic Press, 2018.: Apple Academic Press, 2018. http://dx.doi.org/10.1201/b22323-10.
Full textHoran, N. J. "Introduction." In Anaerobic Digestion Processes, 1–7. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8129-3_1.
Full textConference papers on the topic "Anaerobic Digestor"
Moreira, Cesar, Marco Pazmino-Hernandez, Marco Pazmino-Barreno, Kyle Griffin, and Pratap Pullammanappallil. "Design and construction of a solar mobile anaerobic digestor for rural communities." In The 15th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Global Partnership for Development and Engineering Education”. Latin American and Caribbean Consortium of Engineering Institutions, 2017. http://dx.doi.org/10.18687/laccei2017.1.1.470.
Full textPalacios, Ronald N., Steven S. Fan, Hansong Lee, and Michael A. Soto. "From Grease to Gas: Anaerobic Digestion of Fats, Oils, and Grease (FOG) at the Hyperion Treatment Plant." In ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54108.
Full textZemke, Peter E., Byard D. Wood, and Christopher R. Rohleder. "Effect of Solids Removal From Dairy Manure Feedstock on Biogas Production in Anaerobic Digesters." In ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90235.
Full textRankin, M. J., T. A. Trabold, A. A. Williamson, and M. Augustine. "Analysis of Dairy Manure and Food Manufacturing Waste as Feedstocks for Sustainable Energy Production via Anaerobic Digestion." In ASME 2012 6th International Conference on Energy Sustainability collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/es2012-91091.
Full textLeonhardt, Eric C., Jamin F. Swazo, and Ryan F. Cruse. "Using Dairy Cow Derived Biomethane to Fuel the Viking 32 Hybrid Electric Vehicle." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41659.
Full textDubrovskis, Vilis, and Dagnis Dubrovskis. "Biogas production from fresh and old sawdust litter with chicken manure." In 22nd International Scientific Conference Engineering for Rural Development. Latvia University of Life Sciences and Technologies, Faculty of Engineering, 2023. http://dx.doi.org/10.22616/erdev.2023.22.tf123.
Full textHegde, Swati, Shwe Sin Win, and Thomas A. Trabold. "Stabilizing the Anaerobic Digestion of Food Waste for Biomethane Production." In ASME 2017 11th International Conference on Energy Sustainability collocated with the ASME 2017 Power Conference Joint With ICOPE-17, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/es2017-3097.
Full text"Comparison of digestate from solid anaerobic digesters and effluent from liquid anaerobic digesters as inocula for solid state anaerobic digestion of yard trimming." In 2015 ASABE International Meeting. American Society of Agricultural and Biological Engineers, 2015. http://dx.doi.org/10.13031/aim.20152190124.
Full textDAPKIENĖ, Midona, Laima ČESONIENĖ, and Tomas PILIPAUSKAS,. "COMPARISON OF OPERATION OF KAUNAS AND KLAIPĖDA WWTPS DIGESTERS." In Rural Development 2015. Aleksandras Stulginskis University, 2015. http://dx.doi.org/10.15544/rd.2015.042.
Full textBettocchi, R., M. Pinelli, P. R. Spina, M. Venturini, M. Cadorin, G. Cenci, and M. Morini. "Energetic and Economic Analyses of Integrated Biogas-Fed Energy Systems." In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-50044.
Full textReports on the topic "Anaerobic Digestor"
Pullammanappallil, Pratap, Haim Kalman, and Jennifer Curtis. Investigation of particulate flow behavior in a continuous, high solids, leach-bed biogasification system. United States Department of Agriculture, January 2015. http://dx.doi.org/10.32747/2015.7600038.bard.
Full textRivard, C. J., and D. R. Boone. The anaerobic digestion process. Office of Scientific and Technical Information (OSTI), January 1996. http://dx.doi.org/10.2172/530632.
Full textAsvapathanagul, Pitiporn, Leanne Deocampo, and Nicholas Banuelos. Biological Hydrogen Gas Production from Food Waste as a Sustainable Fuel for Future Transportation. Mineta Transportation Institute, July 2022. http://dx.doi.org/10.31979/mti.2021.2141.
Full textAsvapathanagul, Pitiporn, Leanne Deocampo, and Nicholas Banuelos. Biological Hydrogen Gas Production from Food Waste as a Sustainable Fuel for Future Transportation. Mineta Transportation Institute, July 2022. http://dx.doi.org/10.31979/mti.2022.2141.
Full textWellinger, A. Economic viability of anaerobic digestion. Office of Scientific and Technical Information (OSTI), January 1996. http://dx.doi.org/10.2172/530638.
Full textNakayama, Yoshio, Nobuyuki Kusama, and Katsuya Wada. FCPP application to utilize anaerobic digester gas. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/460328.
Full textRuth, M., and R. Landucci. Anaerobic digestion analysis model: User`s manual. Office of Scientific and Technical Information (OSTI), August 1994. http://dx.doi.org/10.2172/10180357.
Full textLusk, P., P. Wheeler, and C. Rivard. Deploying anaerobic digesters: Current status and future possibilities. Office of Scientific and Technical Information (OSTI), January 1996. http://dx.doi.org/10.2172/481517.
Full textKoker, John, and Michael Lizotte. University of Wisconsin Oshkosh Anaerobic Dry Digestion Facility. Office of Scientific and Technical Information (OSTI), February 2017. http://dx.doi.org/10.2172/1345064.
Full textRivard, C. J. Anaerobic digestion of municipal solid waste: Technical developments. Office of Scientific and Technical Information (OSTI), January 1996. http://dx.doi.org/10.2172/530635.
Full text