Academic literature on the topic 'Anacrobic wastewater treatment processes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Anacrobic wastewater treatment processes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Anacrobic wastewater treatment processes"

1

Määttä, R. K. "Anaerobic Wastewater Treatment Processes." Water Science and Technology 17, no. 1 (January 1, 1985): 53–59. http://dx.doi.org/10.2166/wst.1985.0004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sanginova, Olga, Nataliia Tolstopalova, Sergii Bondarenko, and Valentyna Yankauskaite. "Secondary wastewater treatment processes optimization." Proceedings of the NTUU “Igor Sikorsky KPI”. Series: Chemical engineering, ecology and resource saving, no. 1 (March 30, 2021): 31–37. http://dx.doi.org/10.20535/2617-9741.1.2021.228092.

Full text
Abstract:
Introduction. The level of water pollution in Ukraine continues to grow, despite the strengthening of requirements for the treated water, so the existing approaches to the water treatment processes control need to be revised and improved. Materials and methods. Mathematical Programming methods for formalization and solving the optimization problem are used. Computer simulation research using the program developed by the authors are applied to verify the compliance of the obtained results with the normative values and data of normal operation. Results and discussion. The optimization of processes control was performed on the example of a typical process of secondary wastewater treatment, which is used for wastewater treatment in Kyiv and nearby settlements. The secondary treatment unit consists of an aeration tank, into which air is forcibly supplied and evenly distributed, and a secondary settling tank with recycling. The problem of optimization of biological wastewater treatment control process is formalized: minimization of pollutant concentration in treated water is chosen as the main aim of optimization, air flow to aeration tank is chosen as control parameter, quadratic deviation of current concentration values from normative ones is chosen for target function. To solve the optimization task, a software module in JavaScript was developed using a client-server architecture that works in real time and allows to obtain such values of oxygen consumption in the aeration tank, which provide a minimum deviation of the concentration of pollutants from the normative values. The simulations showed that the calculated control values provide a reduction in the concentration of pollutants to the normative values within 6-10 hours, which corresponds to the data of normal operation, and the difference between the calculated and actual data does not exceed 5%. Conclusions. The obtained results allow to find a set of technological influences to ensure optimal control according to the selected criterion, and are also the basis for calculating the control system. The results of calculations can be used for short-term - up to 8 hours - forecasting of water quality indicators.
APA, Harvard, Vancouver, ISO, and other styles
3

Kyzas, George Z., and Kostas A. Matis. "Wastewater Treatment Processes: Part I." Processes 8, no. 3 (March 12, 2020): 334. http://dx.doi.org/10.3390/pr8030334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

McAdam, E. J., D. Lüffler, N. Martin-Garcia, A. L. Eusebi, J. N. Lester, B. Jefferson, and E. Cartmell. "Integrating anaerobic processes into wastewater treatment." Water Science and Technology 63, no. 7 (April 1, 2011): 1459–66. http://dx.doi.org/10.2166/wst.2011.378.

Full text
Abstract:
Over the past decade, the concept of anaerobic processes for the treatment of low temperature domestic wastewater has been introduced. This paper uses a developed wastewater flowsheet model and experimental data from several pilot scale studies to establish the impact of integrating anaerobic process into the wastewater flowsheet. The results demonstrate that, by integrating an expanded granular sludge blanket reactor to treat settled wastewater upstream of the activated sludge process, an immediate reduction in imported electricity of 62.5% may be achieved for a treated flow of c. 10,000 m3 d−1. This proposed modification to the flowsheet offers potential synergies with novel unit processes including physico-chemical ammonia removal and dissolved methane recovery. Incorporating either of these unit operations can potentially further improve the flowsheet net energy balance to between +0.037 and +0.078 kWh m−3 of produced water. The impact of these secondary unit operations is significant as it is this contribution to the net energy balance that facilitates the shift from energy negative to energy positive wastewater treatment.
APA, Harvard, Vancouver, ISO, and other styles
5

Shmyrin, A. M., I. A. Sedykh, A. M. Smetannikova, and E. Yu Nikiforova. "NEIGHBORHOOD MODELING OF WASTEWATER TREATMENT PROCESSES." Tambov University Reports. Series: Natural and Technical Sciences 22, no. 3 (2017): 596–604. http://dx.doi.org/10.20310/1810-0198-2017-22-3-596-604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Baimukasheva, Shynar, Burak Demirel, Samal Syrlybekkyzy, and Yerazak Manapovich Tileubergenov. "ECOLOGICAL EFFICIENCY OF WASTEWATER TREATMENT PROCESSES." International journal of ecosystems and ecology science (IJEES) 12, no. 3 (June 30, 2022): 435–40. http://dx.doi.org/10.31407/ijees12.355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Singh, Krishna Raj. "Assessment of industrial wastewater treatment processes." ACADEMICIA: An International Multidisciplinary Research Journal 11, no. 11 (2021): 755–64. http://dx.doi.org/10.5958/2249-7137.2021.02587.8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Sen, Xin Ping Li, An Long Zhang, and Zhao Rong Wang. "Study on Papermaking Processes Wastewater Treatment." Advanced Materials Research 291-294 (July 2011): 1866–69. http://dx.doi.org/10.4028/www.scientific.net/amr.291-294.1866.

Full text
Abstract:
In this paper, Cost-effectiveness of various straw pulp wastewater treatment technologies were compared in detail, moreover the separate and combined process of Coagulation Sedimentation, Anaerobic Baffled Reactor, Sequencing Batch Reactor and Biological Aerated Filter processes were researched. The test result has showed that when addition dosage of PAM and PAC is 4mg/L and 80mg/L in Coagulation Sedimentation separately, and ABR HRT is 10h, the biodegradability of the straw wastewater increased from 0.25 after pretreatment to about 0.45. As the best SBR HRT is 8h, the CODcr removal rate was about 62%, the BOD5 removal rate was 70.7% averagely, and the treatment effectiveness is steady correspondingly. But in combined process, the CODcr removal rate of SBR unit is significantly increased to 78%, the CODcr removal rate of whole system is higher than 90%. Finally, the BAF has been applied to the advanced treatment on outwater of two biological treatment. The experimental results show that there is a good efficiency on the advanced treatment of the using the method, the CODcr of outwater is 78 mg/L, the BOD5 is 28 mg/L, the chroma is 32 times, the SS is 38 mg/L, and the treated water not only meets the state's new discharge standards (GB3544-2008), but also satisfies the requirements of reuse water, and the cost of whole treatment is only RMB 1.80 yuan / m3 wastewater.
APA, Harvard, Vancouver, ISO, and other styles
9

H. Jones, O. A., N. Voulvoulis, and J. N. Lester. "Human Pharmaceuticals in Wastewater Treatment Processes." Critical Reviews in Environmental Science and Technology 35, no. 4 (July 2005): 401–27. http://dx.doi.org/10.1080/10643380590956966.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lessard, Paul, and M. B. Beck. "Dynamic modeling of wastewater treatment processes." Environmental Science & Technology 25, no. 1 (January 1991): 30–39. http://dx.doi.org/10.1021/es00013a002.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Anacrobic wastewater treatment processes"

1

See, Hwee J. "Optimisation of water and wastewater treatment processes." Thesis, University of Cambridge, 2002. https://www.repository.cam.ac.uk/handle/1810/272064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Escalona, Hernández Ivonne Graciela. "Membrane-assisted advanced oxidation processes for wastewater treatment." Doctoral thesis, Universitat Rovira i Virgili, 2014. http://hdl.handle.net/10803/284445.

Full text
Abstract:
El bisfenol A (BPA) i la tartrazina (TAR) pertanyen al grup de compostos que són potencialment nocius per a la recuperació d'aigües residuals. El BPA és un disruptor del sistema hormonal o disruptor endocrí, mentre que la TAR és un colorant azoic. Una diversitat d'indústries, especialment la indústria paperera i tèxtil, produeixen un gran volum d'aigües residuals que estan contaminades amb BPA i colorants. Per tant, els efluents que contenen tant BPA com colorants han de ser gestionats de manera eficient amb la finalitat d'evitar problemes ambientals vinculats a ells. Durant l'última dècada, s’han assajat diversos mètodes per a l'eliminació de BPA i TAR d'aigües residuals, resultant ser eficaços i potencialment aplicables a gran escala. No obstant això, la majoria d'ells encara enfronten problemes de costos, la qual cosa exigeix el seu desenvolupament. La nanofiltració (NF) ofereix una solució adequada per a l'eliminació de BPA i colorants de les solucions aquoses, degut a la seva capacitat per retenir substàncies orgàniques dissoltes. És per això que en aquest treball de tesi, es va utilitzar la NF en flux tangencial mitjançant membranes polimèriques per eliminar BPA i TAR de solucions aquoses. Addicionalment, la degradació de BPA i TAR durant els tractaments per Fenton, ozonación i enzimàtic sota diferents condicions d'operació, en combinació amb la seva posterior NF van ser assajats. Resultats indiquen que tant el BPA com la TAR poden ser eficientment degradats per aquests processos. L'ús d'un sistema integrat membrana-reactor va mostrar el potencial i les limitacions de l'ús dels processos d'oxidació avançada en conjunt amb membranes de NF per a la remoció del BPA i de la TAR. En general elevades eficiències de remoció van ser aconseguides amb les diferents membranes de NF utilitzades.
Bisfenol A (BPA) y tartrazina (TAR) pertenecen al grupo de compuestos que son potencialmente dañinos para la recuperación de aguas residuales. BPA es un perturbador del sistema hormonal o disruptor endocrino, mientras que la TAR es un colorante azo. Variedad de industrias, especialmente la industria papelera y textil producen un gran volumen de aguas residuales que están contaminadas con BPA y colorantes. Por lo tanto, los efluentes que contiene tanto BPA como colorantes, deben ser gestionados de manera eficiente con la finalidad de evitar problemas ambientales vinculados a ellos. Durante la última década, varios métodos para la eliminación de BPA y TAR de aguas residuales han sido probados, resultando ser eficaces y potencialmente aplicables a gran escala. Sin embargo, la mayoría de ellos todavía enfrentan problemas de costes, lo cual exige su desarrollo. La nanofiltración (NF) ofrece una solución adecuada para la eliminación de BPA y colorantes de las soluciones acuosas debido a su capacidad para remover sustancias orgánicas disueltas. Es por ello que en esta tesis, la NF en flujo cruzado usando membranas poliméricas fue utilizada para remover BPA y TAR de soluciones acuosas. Adicionalmente, la degradación de BPA y TAR durante los tratamientos por Fenton, ozonación y enzimático bajo diferentes condiciones de operación, en combinación con su posterior NF fueron ensayados. Resultados indican que tanto el BPA como la TAR pueden ser eficientemente degradados por estos procesos. El uso de un sistema integrado membrana-reactor mostró el potencial y las limitaciones del uso de los procesos de oxidación avanzada en conjunto con membranas de NF para la remoción del BPA y de la TAR. En general elevadas eficiencias de remoción fueron alcanzadas con las diferentes membranas de NF utilizadas.
Bisphenol A (BPA) and tartrazine (TAR) belong to the compounds which are potentially harmful during wastewater reclamation. BPA is a typical Endocrine Disrupting Chemical and TAR is an azo dye. Variety of industry, especially paper and textile industries produces a large volume of wastewater that is polluted with BPA and dyes. Therefore, BPA and dyes-charged effluents need to be efficiently managed in order to avoid environmental problems linked to them. During the last decade, several methods for BPA and TAR removal of wastewater have been found effective and potentially applicable for scaling up. However, most of them still face cost problems, thus demanding further development. It is generally accepted that nanofiltration (NF) offers an adequate solution for the removal of BPA and dyes from the aqueous solutions owing to its capacity to remove dissolved organics. In the present thesis, crossflow NF using thin film composite polymeric membranes were applied to reject BPA and TAR from aqueous solutions. Additionally, the degradation of BPA and TAR during Fenton’s, ozonation and enzymatic processes under different operational conditions, in combination with subsequent NF of low concentration remnant BPA and TAR and compounds derived from oxidation was investigated. Results indicate that BPA and TAR could be degraded efficiently in aqueous phase by Fenton, ozonation and enzymatic processes. The use of a membrane-reactor integrated system for BPA and TAR degradation demonstrated the potential and limitations of using advance oxidation processes, operated in a recycling mode coupled to a NF membrane. In general, high BPA and TAR removal efficiencies for several NF membranes were achieved.
APA, Harvard, Vancouver, ISO, and other styles
3

Yalfani, Mohammad Sadegh. "New catalytic advanced oxidation processes for wastewater treatment." Doctoral thesis, Universitat Rovira i Virgili, 2011. http://hdl.handle.net/10803/34768.

Full text
Abstract:
En cuanto a la mejora de los Procesos de Oxidación Avanzada para el tratamiento de aguas residuales, se han diseñado y estudiado nuevos procesos catalíticos Fenton y ozonización catalítica para la eliminación de contaminantes orgánicos del agua. El proceso Fenton se ha realizado mediante peróxido de hidrógeno generado in situ, el cual se ha producido a partir de ácido fórmico y oxígeno sobre un catalizador de paladio soportado en alúmina. A continuación, se ha heterogeneizado totalmente el sistema utilizando un catalizador bimetálico Pd-Fe y se ha aplicado con éxito en la degradación de diferentes categorías de contaminantes orgánicos. La combinación de este proceso de oxidación con hidrodecloración ha obtenido una alta eficiencia en la degradación de clorofenoles. En cuanto al uso de diferentes sustitutos de H2, se ha observado una mayor eficiencia de la hidroxilamina en el proceso Fenton con generación in situ de peróxido de hidrógeno para efluentes neutros. Con respecto al desarrollo de nuevos materiales para ozonización catalítica, se ha estudiado la degradación de compuestos farmacéuticos mediante catalizadores de cobre-dawsonita. El cobre incorporado en la estructura de dawsonita presenta una mayor actividad en la ozonización catalítica con respecto a la muestra calcinada, cobre en solución y óxido de cobre soportado en alúmina.
Regarding to the improvement of Advanced Oxidation Processes for wastewater treatment, new catalytic Fenton process and catalytic ozonation were designed and studied in the removal of organic pollutants from water. Fenton process was performed using in situ generated hydrogen peroxide, which was produced from formic acid and oxygen over alumina-supported palladium catalyst. Then, the system was fully heterogenized by using bimetallic Pd-Fe catalyst and applied successfully for different categories of organic pollutants. The combination of the above oxidation process with hydrodechlorination led to high efficiency in the degradation of chlorophenols. The performance of different hydrogen substitutes in the Fenton process using in situ generated hydrogen peroxide showed higher efficiency of hydroxylamine for neutral solutions. Concerning the development of new catalytic materials for catalytic ozonation, the degradation of pharmaceutical compounds was performed using dawsonite-derived copper catalysts. The copper incorporated into the structure of dawsonite indicated higher activity in catalytic ozonation with respect to the calcined sample, soluble copper and aluminasupported copper oxide.
APA, Harvard, Vancouver, ISO, and other styles
4

Tapia, Tlatelpa Tecilli. "Optoelectronic optimization of photocatalytic processes for wastewater treatment." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/667685.

Full text
Abstract:
Water pollution is an alarming problem that endangers the health of all living beings. The textile industry is listed as one of the most contaminating industries, since in order to carry out its dyeing and finishing processes, it requires a large amount of water resources; by decades, this industry has used Advanced Oxidation Processes (AOPs), since they have several advantages (e. g. destruction of toxic substances, reduction of heavy metals, allowing their use in conjunction with other processes, among others). Among the AOPs, heterogeneous photocatalysis stands out for its high efficiency for the removal of contaminants, including azo dyes. In order to perform a photocatalytic process, it is necessary to have a photoreactor, which will require a photocatalyst and at least one light source that activates the catalyst. This type of photoreactors can present several problems, such as the use of high cost photocatalysts, the generation of toxic byproducts in some low photocatalysts, the high electrical consumption caused by the use of traditional lighting sources and even difficulties with the geometry of the photoreactors. Hence the scientific community has tried to optimize the photocatalytic processes, some scientists have worked in the generation of new photocatalysts to be able to use them in wavelengths generated by low cost lighting sources (e. g. visible light), nevertheless, which in many times it increases the price of the photocatalyst. Another approach is to reduce electricity consumption by opting for the replacement of traditional lamps with low consumption lighting, for example, LED lighting; However, this substitution is currently done arbitrarily, so sometimes some authors doubt the ability to use these sources in this type of process. Moreover, when trying to improve the lighting sources, the photoreactor can be altered, so it is important to take into account its characteristics in order to achieve a significant improvement. This thesis focuses on an optoelectronic optimization to improve the efficiency of the lighting sources used in photocatalytic reactors. For this, a methodology has been generated to calculate LED arrays using uniform irradiance models, this irradiance must be homogeneous, with enough energy to photoactivate the catalyst with the aim to replace the traditional lamps, avoiding the chemical alteration of the photocatalysts; Likewise, a photocatalytic reactor has been designed and implemented on a laboratory scale with ultraviolet illumination adjusted to its characteristics (i.e. geometry, dimensions, among others) to work with a low cost photocatalyst (TiO2) in the decolorization of wastewater with textile dyes. Finally, in-situ monitoring has been designed and implemented in order to analyze the decolorization of textile water, this type of monitoring avoids the collection of water samples during the process, without altering the geometry of the reactor or reducing the volume of treated water in the reactor.
La contaminación del agua es un problema alarmante que pone en peligro la salud de todos los seres vivos. La industria textil está catalogada como una de las industrias más contaminantes, puesto que para realizar sus procesos de teñido y acabado requieren de una gran cantidad de recursos hídricos; desde hace décadas esta industria ha usado los Procesos de Oxidación Avanzada (AOPs) al presentar diversas ventajas (e. g. destrucción de sustancias tóxicas, reducción de metales pesados, permitir su uso en conjunto con otros procesos, entre otros). Entre los AOPs, sobresale la fotocatálisis heterogénea, por su alta eficiencia para la remoción de contaminantes, incluidos los colorantes azoicos. Para realizar un proceso fotocatalítico, es necesario tener un fotorreactor, el cual requerirá de un fotocatalizador y al menos una fuente de iluminación que active el catalizador. Este tipo de fotorreactores pueden presentar diversos problemas, tales como, el uso fotocatalizadores de alto costo, la generación de subproductos tóxicos en algunos fotocatalizadores de bajo, el alto consumo eléctrico causado por la utilización de fuentes tradicionales de iluminación e incluso dificultades con la geometría de los fotorreactores. Por lo tanto la comunidad científica ha intentado optimizar los procesos fotocatalíticos, algunos científicos han trabajado en la generación de nuevos fotocatalizadores para poder utilizarlos en longitudes de onda generada por fuentes de iluminación de bajo coste (e. g. luz visible), no obstante, lo que en muchas ocasiones incrementa el precio del fotocatalizador. Otro enfoque se encuentra en la reducción del consumo eléctrico optando por la sustitución de las lámparas tradicionales por iluminación de bajo consumo, por ejemplo, iluminación LED; sin embargo, actualmente esta sustitución se realiza de manera arbitraria, por lo que en ocasiones algunos autores dudan de la capacidad de utilizar estas fuentes en este tipo de procesos. Además al intentar mejorar las fuentes de iluminación puede alterarse el fotorreactor, por lo que es importante tomar en consideración sus características para lograr una mejora significativa. Esta tesis se enfoca en una optimización optoelectrónica para mejorar la eficiencia de las fuentes de iluminación utilizadas en reactores fotocatalíticos. Para ello se ha generado una metodología para calcular arreglos de LEDs utilizando modelos de irradiancia uniforme, esta irradiancia debe ser homogénea, con energía suficiente para fotoactivar el catalizador y sustituir las lámparas tradicionales, evitando la alteración química de los fotocatalizadores; asimismo, se ha diseñado e implementado un reactor fotocatalítico a escala de laboratorio con iluminación ultravioleta ajustada a sus características (geometría, dimensiones, entre otros) para trabajar con un fotocatalizador de bajo coste (TiO2) en la decoloración de agua con colorantes textiles. Para finalizar se ha diseñado e implementado un sistema de monitorización in-situ para la decoloración de aguas teñidas, este tipo de monitorización evita la toma de muestras de durante el proceso, sin alterar la geometría del reactor ni disminuir el volumen de agua tratada del reactor.
APA, Harvard, Vancouver, ISO, and other styles
5

McMahan, Erin K. "Impacts of rainfall events on wastewater treatment processes." [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

De, Bel Maud. "Techniques for the evaluation of wastewater treatment processes." Thesis, Cranfield University, 2001. http://dspace.lib.cranfield.ac.uk/handle/1826/10437.

Full text
Abstract:
This study focussed on extending and applying techniques to measure hydrodynamic characteristics in treatment units at sewage works. Use was made of tracer dye studies and a spreadsheet based analysis tool. The resulting infonnation about residence time, tank conguration and pathological behaviour was linked to other infonnation from respirometry and flow and load studies. Characterising the wastewater process will become increasingly important as the economic and compliance drivers in the operation of wastewater treatment facilities become increasingly pronounced. Case studies at Royton WWTW, Chorley WWTW, Preston WWTW and Montebello WWTW were used to develop, improve and apply the methodology. Tests at Royton and Chorley were used to develop the practical side of conducting tracer studies. The Preston case study was used to improve the diagnostic methodology. It was demonstrated that consent failures as a result of events are usually a result of a number of (linked) factors, in the case of Preston influenced by the tank conguration. The response of a pulse of dye was measured at Preston in vessel outlet throughout the works. The tracer dyeresponse was used to predict the response to a discharge of high ammoniacal leachate liquor and compared to measured data. This type of calibration experiment facilitated the simulation of different discharge event scenarios. The tracer and modelling techniques were incorporated in a general diagnostic methodology, which caters for a phased approach in diagnostic studies. A series of diagnostic tables take the user through cause - effect hypotheses and possible measurement techniques to use in the diagnostic investigation. Although the diagnostic methodology proved to be a versatile asset optimisation tool, which required considerable less effort than deterministic models, implementation in United Utilities' AMP3 Capital Investment Programme was problematic. The size of the programme and lack of resources forced the company to implement standard rather than tailor-made solutions. However, the diagnostic methodology can easily be applied elsewhere in the wastewater industry.
APA, Harvard, Vancouver, ISO, and other styles
7

Jelić, Aleksandra. "Occurrence and fate of pharmaceuticals in wastewater treatment processes." Doctoral thesis, Universitat de Barcelona, 2012. http://hdl.handle.net/10803/98403.

Full text
Abstract:
Pharmaceuticals have been detected in natural waters for more than forty years, but with improvements in sample preparation procedures and analytical instrumentation, the number of scientific publications on the issue has increased significantly. Even though the concentration of pharmaceutical residues in surface and drinking water is not critical for human health according to the present level of knowledge, the consequences for the environment are not clear. Wastewater treatment plants (WWTPs) have been identified as the primary route of pharmaceuticals to the environment, with households as the major source point for most of the over-the-counter and prescription drugs. In this thesis, the first aim was to study the occurrence, fate and removal of 43 pharmaceuticals during conventional wastewater treatment. The target compounds were selected on the basis of their high consumption in Spain or/and frequently reported detection in wastewaters and the possibility to be analyzed under the same experimental conditions. They belong to different therapeutic classes, i.e. nonsteroidal anti-inflammatory agents and analgesics, lipid modifying agents, psycholeptic and antiepileptic drugs, beta-blocking agents, beta-2-adrenoreceptor agonists, H2-receptor antagonists, antibiotics, angiotensin converting enzyme agents, diuretics and antidiabetic drugs. A wide variation in removal efficiencies was observed even for individual compounds, and across therapeutic classes and treatment processes, without clear conclusion on the removal of any particular compound. According to mass balance calculations and estimated partition coefficients, the loss of the selected pharmaceuticals during biological wastewater treatment can be fully attributed to biodegradation/biotransformation. None of the studied compounds was entirely biodegraded and/or transformed during biological wastewater treatment, but the measured concentrations were below the levels of concern according to available toxicity data. Conventional WWTPs cannot be expected to be the only mechanism for controlling the entry of pharmaceuticals into the environment because they were neither designed nor can provide their complete removal. Therefore, the challenge is to look for solutions that would be the most economical and effective means of preventing further pollution of natural waters by pharmaceuticals. More appropriate management of sewage waters before they enter treatment plants as well as a stricter control of effluent discharges, along with an in-depth investigation on the development of new designs and strategies for the improvement of existing wastewater treatments should be considered. In light of this, as the second objective of this thesis, alternative approaches for the removal of the antiepileptic carbamazepine (CBZ) were studied in aqueous media in two laboratory scale experiments: a) biodegradation using white rot fungus T. versicolor in an air-pulsed fluidized bioreactor operated in batch and continuous modes, and b) advanced oxidation using TiO2-heterogeneous photocatalysis under simulated solar and UV-A irradiation, and under the combined use of ultrasound and UV-A irradiation (sonophotocatalysis). We selected CBZ as a representative example of compounds that are found to be refractory to biological treatment and ubiquitous in various environmental matrices. Both, the fungal and UVA-driven TiO2-photocatalytic treatments, very different in their nature, have been shown to be very effective in degrading carbamazepine in aqueous media. The fungal treatment resulted in average removals of 54 and 96% in batch and continuous reactor, respectively. Acute toxicity test using the bioluminescent marine bacterium Vibrio fischeri showed a decrease in toxicity during the treatment in both types of bioreactor. In the other study, initial CBZ concentrations were reduced for 95% during 120 min of the UV-driven photocatalytic experiment and sonophotocatalysis, while only 10 % of CBZ was photodegraded during under solar irradiation. A slight increase in toxicity in Daphnia magna acute toxicity testing was observed over the time-course of the photocatalytic experiments, which can be associated with the formation of transformation products of CBZ. Ultraperformance liquid chromatography coupled to a quadrupole-time-of-flight mass spectrometry was used for a tentative identification of the transformation products of CBZ formed during the performed experiments. Most of the tentatively identified intermediates exhibited only slight modifications of the CBZ molecular structure. The fungal as well as the photocatalytic processes yielded oxygenated transformation products. In the biological treatment using T. versicolor, transformation products were formed by enzymatic epoxidation and hydroxylation of seven-membered heterocyclic ring of the carbamazepine molecule. During the photocatalytic experiments, CBZ-related transformation products emerged from hydroxylation and further oxidation of different parts of the molecule of carbamazepine. The generated transformation products appeared to be more persistent than their parent compound, as they were present, although at low concentration, until the end of the experiments. The results of the thesis contribute to a better understanding of a) the magnitude of the selected pharmaceuticals that reach the environment through the wastewater and sludge discharge, b) the efficiency of typical conventional wastewater treatment plants regarding the removal of these compounds from raw wastewater, and c) possible developments of alternative technologies for their enhanced elimination.
Desde hace más de cuarenta años se ha detectado la presencia de fármacos en el ciclo de aguas, sobre todo debido a los avances en la química analítica que han permitido el desarrollo de nuevas metodologías analíticas para la determinación de estos compuestos de modo fiable y a bajas concentraciones. Las estaciones depuradoras de aguas residuales (EDARs) han sido identificadas como la ruta principal de entrada de fármacos de origen humano en el medioambiente. Por tanto, el principal objetivo de esta tesis ha sido el estudio de la presencia, destino y eliminación de 43 fármacos seleccionados, durante el tratamiento convencional realizado en las EDARs. Los compuestos estudiados fueron seleccionados en base a los índices de consumo en España, a la frecuencia de detección en aguas residuales y además en base a la posibilidad de ser analizados bajo las mismas condiciones experimentales. Estos compuestos pertenecen a diferentes clases terapéuticas, i.e. antiinflamatorios no esteroideos , los agentes que reducen los lípidos séricos, ansiolíticos y antiepilépticos, los agentes bloqueadores beta-adrenérgicos, agonistas β2 adrenérgico, antagonistas H2 , antibióticos, inhibidores de la enzima convertidora de angiotensina, diuréticos y antidiabéticos. Para el análisis cuantitativo se utilizó la cromatografía de líquidos acoplada a espectrometría de masas en tándem (LC-MS/MS), empleando un sistema híbrido triple quadrupolo/trampa de iones lineal. Como segundo objetivo hemos considerado evaluar tratamientos avanzados alternativos al tratamiento convencional para la eliminación de un fármaco antiepiléptico, la carbamazepina, uno de los compuestos más recalcitrantes al tratamiento biológico convencional. Se procedió a estudiar su degradación en medio acuoso mediante dos procedimientos a escala laboratorio: a) biodegradación utilizando el hongo ligninolitico Trametes Versicolor en un reactor fluidizado por pulsos de aire operando en modo batch y continuo, y b) oxidación avanzada mediante un tratamiento fotocatalitico en presencia de TiO2 bajo irradiación UV-A y solar, y aplicando la radiación UV en combinación con ultrasonidos (sonofotocatálisis). Para la evaluación de los tratamientos alternativos, se identificaron los productos de transformación de la carbamazepina, y se evaluó la toxicidad de las muestras tratadas. Se utilizó la LC-MS/MS con analizador de tipo cuadrupolo-tiempo de vuelo. También se evaluó la toxicidad de las muestras tratadas.
APA, Harvard, Vancouver, ISO, and other styles
8

Bernat, Camí Xavier. "Treatment of biorefractory wastewater through membrane-assisted oxidation processes." Doctoral thesis, Universitat Rovira i Virgili, 2010. http://hdl.handle.net/10803/8583.

Full text
Abstract:
La escasez de agua se presenta como uno de los mayores retos para asegurar el desarrollo sostenible. Entre otras actuaciones, se deben investigar e implementar sistemas eficientes de tratamiento de aguas biorecalcitrantes, que necesitan ser condicionadas antes de su depuración biológica. Uno de los posibles pre-tratamientos es el proceso Fenton de oxidación avanzada, que presenta dos principales inconvenientes: la utilización de sales de hierro como catalizador homogéneo, que abandonan continuamente la etapa de oxidación, y el elevado consumo de oxidante, en parte desaprovechado. La presente tesis se centra en el estudio de la mejora del proceso Fenton de aguas fenólicas mediante su acoplamiento con tecnologías de membrana como la nanofiltración, la emulsificación con membranas o los reactores de membrana. El acoplamiento de dichas tecnologías con el proceso Fenton permite el confinamiento del catalizador y el aumento de la eficiencia de oxidación, mejorando así el tratamiento en términos ambientales y económicos.
Water scarcity is one of the major challenges for assuring a sustainable development. Among other measures, research into efficient wastewater treatment systems to deal with biorefractory wastewaters, which need to be amended before their biological degradation, is required. The Fenton process is an advanced oxidation process that can be used as potential pre-treatment for this purpose. However, the pre-treatment presents two main limitations: the use of iron salts as homogeneous catalyst, which are continuously thrown away in the reactor effluent, and the high consumption of oxidant, which is partially wasted. The present thesis aims at studying the improvement of the Fenton process applied on phenolic wastewater through its coupling with membrane technologies such as nanofiltration, membrane emulsification or membrane reactors. The coupling allows confining the catalyst and increasing the oxidation efficiency, thus enhancing the treatment efficiency in environmental and economic terms.
APA, Harvard, Vancouver, ISO, and other styles
9

Ghasemzadeh, Shahram M. S. "Effect of Hydraulic Fracturing Waste in Wastewater Treatment Processes." University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1471254155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gonzalez-Estrella, Jorge Gonzalez. "Toxicity of Engineered Nanoparticles to Anaerobic Wastewater Treatment Processes." Diss., The University of Arizona, 2014. http://hdl.handle.net/10150/347117.

Full text
Abstract:
Nanotechnology is an increasing market. Engineered nanoparticles (NPs), materials with at least one dimension between 1 and 100 nm, are produced on a large scale. NPs are vastly used in industrial processes and consumer products and they are most likely discharged into wastewater treatment plants after being used. Activated Sludge is one of the most applied biological wastewater treatment processes for the degradation of organic matter in sewage. Activated sludge produces an excess of sludge that is commonly treated and stabilized by anaerobic digestion. Recent studies have found that NPs accumulate in the activated sludge; thus, there is a potential for the concentrations of NPs to magnify as concentrated waste sludge is fed into the anaerobic digestion process. For this reason, it is important to study the possible toxic effects of NPs on the microorganisms involved in the anaerobic digestion process and the approaches to overcome toxicity if necessary. The present work evaluates the toxic effect of NPs on anaerobic wastewater treatment processes and also presents approaches for toxicity attenuation. The first objective of this dissertation (Chapter III) was to evaluate the toxicity of high concentrations (1, 500 mg L⁻¹) of Ag⁰, Al₂O₃, CeO₂, Cu⁰, CuO, Fe⁰, Fe₂O₃, Mn₂O₃, SiO₂, TiO₂, and ZnO NPs to acetoclastic and hydrogenotrophic methanogens and the effect of a dispersant on the NPs toxicity to methanogens. The findings indicated that only Cu⁰ and ZnO NPs caused severe toxicity to hydrogenotrophic methanogens and Cu⁰, CuO, and ZnO NPs to acetoclastic methanogens. The dispersant did not impact the NPs toxicity. The concentrations of Cu⁰ and ZnO causing 50% of inhibition (IC₅₀) to hydrogenotrophic methanogens were 68 and 250 mg L⁻¹, respectively. Whereas the IC₅₀ values for acetoclastic methanogens were 62, 68, and 179 for Cu⁰, ZnO, and CuO-Cu NPs respectively. These findings indicate that acetoclastic methanogens are more sensitive to NP toxicity compared to hydrogenotrophic methanogens and that Cu⁰ and ZnO NPs are highly toxic to both. Additionally, it was observed that the toxicity of any given metal was highly correlated with its final dissolved concentration in the assay irrespective of whether it was initially added as a NP or chloride salt, indicating that corrosion and dissolution of metals from NPs may have been responsible for the toxicity. The second objective of this dissertation (Chapter IV) was to evaluate the Cu⁰ NP toxicity to anaerobic microorganisms of wastewater treatment processes. Cu⁰ is known to be toxic to methanogens; nonetheless, little is known about its toxic effects on microorganisms of upper trophic levels of anaerobic digestion or other anaerobic process used for nitrogen removal. This specific objective evaluated Cu⁰ NP toxicity to glucose fermentation, syntrophic propionic oxidation, methanogenesis, denitrification and anaerobic ammonium oxidation (anammox). Chapter IV showed that anammox and glucose fermentation were the least and most inhibited processes with inhibition constants (K(i)) values of 0.324 and 0.004 mM of added Cu⁰ NPs, respectively. The Ki values obtained from the residual soluble concentration of the parallel experiments using CuCl₂ indicated that Cu⁰ NP toxicity is most likely caused by the release of soluble ions for each one of the microorganisms tested. The results taken as a whole demonstrate that Cu⁰ NPs are toxic to a variety of anaerobic microorganisms of wastewater treatment processes. The third objective of this document (Chapter V) was to study the role of biogenic sulfide in attenuating Cu⁰ and ZnO NP toxicity to acetoclastic methanogens. Previous literature results and research presented in this dissertation indicated that the release of soluble ions from Cu and ZnO NPs cause toxicity to methanogens. In the past, the application of sulfide to precipitate heavy metals as inert non-soluble sulfides was used to attenuate the toxicity of Cu and Zn salts. Building on this principle, Chapter V evaluated the toxicity of Cu⁰ and ZnO NPs in sulfate-containing (0.4 mM) and sulfate-free conditions. The results show that Cu⁰ and ZnO were 7 and 14x less toxic in sulfate-containing than in sulfate-free assays as indicated by the differences in K(i) values. The K(i) values obtained based on the residual metal concentration of the sulfate-free and sulfate-containing assays were very similar, indicating that the toxicity is well correlated with the release of soluble ions. Overall, this study demonstrated that biogenic sulfide is an effective attenuator of Cu⁰ and ZnO NP toxicity to acetoclastic methanogens. Finally, the last objective (Chapter VI) of this dissertation was to evaluate the effect of iron sulfide (FeS) on the attenuation of Cu⁰ and ZnO toxicity to acetoclastic methanogens. FeS is formed by the reaction of iron(II) and sulfide. This reaction is common in anaerobic sediments where the reduction of iron(III) to iron(II) and sulfate to sulfide occurs. FeS plays a key role controlling the soluble concentrations of heavy metals and thus their toxic effects in aquatic sediments. This study evaluated the application of FeS as an approach to attenuate Cu⁰ and ZnO NP toxicity and their salt analogs to acetoclastic methanogens. Two particle sizes, coarse FeS (FeS-c, 500-1200 µm) and fine FeS (FeS-f, 25-75 µm) were synthesized and used in this study. The results showed 2.5x less FeS-f than FeS-c was required to recover the methanogenic activity to the same extent from the exposure to highly inhibitory concentrations of CuCl₂ and ZnCl₂ (0.2 mM). The results also showed that a molar ratio of FeS-f/Cu⁰, FeS-f/ZnO, FeS-f/Zn Cl₂, and FeS-f/CuCl₂ of 3, 3, 6, and 12 respectively, was necessary to provide a high recovery of methanogenic activity (>75%). The excess of FeS needed to overcome the toxicity indicates that not all the sulfide in FeS was readily available to attenuate the toxicity. Overall, Chapter VI demonstrated that FeS is an effective attenuator of the toxicity of Cu⁰ NP and ZnO NPs and their salt analogs to methanogens, albeit molar excesses of FeS were required.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Anacrobic wastewater treatment processes"

1

Debbie, Bryan, Day Martin, and Water Research Centre (Great Britain), eds. Wastewater and sludge treatment processes. Medmenham, UK: WRC, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wastewater treatment: Advanced processes and technologies. Boca Raton, FL: Taylor & Francis, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shah, Maulin P., Sweta Parimita Bera, and Günay Yıldız Töre. Advanced Oxidation Processes for Wastewater Treatment. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003165958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dezotti, Márcia, Geraldo Lippel, and João Paulo Bassin. Advanced Biological Processes for Wastewater Treatment. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-58835-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Keen, Patricia L., and Raphaël Fugère, eds. Antimicrobial Resistance in Wastewater Treatment Processes. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119192428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

M, Henze, ed. Wastewater treatment: Biological and chemical processes. 2nd ed. Berlin: Springer, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shah, Maulin P. Phycoremediation Processes in Industrial Wastewater Treatment. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003165101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stronach, Sandra M., Thomasine Rudd, and John N. Lester. Anaerobic Digestion Processes in Industrial Wastewater Treatment. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71215-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mullick, M. A. Hussein. Wastewater treatment processes in the Middle East. Sussex, England: Book Guild, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

dir, Parsons Simon Dr, ed. Advanced oxidation processes for water and wastewater treatment. London: IWA, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Anacrobic wastewater treatment processes"

1

Henze, Mogens. "Basic Biological Processes." In Wastewater Treatment, 55–112. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-22605-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Henze, Mogens. "Basic Biological Processes." In Wastewater Treatment, 65–129. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04806-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ranjit, Pabbati, Vulise Jhansi, and Kondakindi Venkateswar Reddy. "Conventional Wastewater Treatment Processes." In Environmental and Microbial Biotechnology, 455–79. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8999-7_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dhiman, Sahil, and Ayushi Sharma. "Secondary Clarification of Wastewater Relying on Biological Treatment Processes: Advancements and Drawbacks." In Wastewater Treatment, 157–68. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003165057-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kumar Gupta, Ashok, Venkatesh Uddameri, Abhradeep Majumder, and Shripad K. Nimbhorkar. "Overview of Conventional Wastewater Treatment Processes." In Wastewater Engineering, 181–211. New York: CRC Press, 2023. http://dx.doi.org/10.1201/9781003364450-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kumar Gupta, Ashok, Venkatesh Uddameri, Abhradeep Majumder, and Shripad K. Nimbhorkar. "Overview of Conventional Wastewater Treatment Processes." In Wastewater Engineering, 99–122. New York: CRC Press, 2023. http://dx.doi.org/10.1201/9781003364450-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kumar Gupta, Ashok, Venkatesh Uddameri, Abhradeep Majumder, and Shripad K. Nimbhorkar. "Overview of Conventional Wastewater Treatment Processes." In Wastewater Engineering, 123–80. New York: CRC Press, 2023. http://dx.doi.org/10.1201/9781003364450-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Thulasisingh, Anitha, Poojitha Nagapushnam, Yamunadevi Balakrishnan, and Sathishkumar Kannaiyan. "Different Methods and Technologies of Advanced Oxidation Processes Adopted in Industrial Wastewater Treatment." In Wastewater Treatment, 35–46. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003165057-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Riffat, Rumana, and Taqsim Husnain. "Advanced treatment processes." In Fundamentals of Wastewater Treatment and Engineering, 325–58. 2nd ed. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003134374-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Akunna, Joseph C. "Biological Treatment Processes." In Anaerobic Waste-Wastewater Treatment and Biogas Plants, 1–22. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, [2018] | “A CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa plc.”: CRC Press, 2018. http://dx.doi.org/10.1201/9781351170529-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Anacrobic wastewater treatment processes"

1

Wu, Yongming, Mi Deng, Lizhen Liu, Jianyong Wang, Jie Zhang, and Jinbao Wan. "Wastewater treatment processes for industrial organosilicon wastewater." In 2016 International Conference on Innovative Material Science and Technology (IMST 2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/imst-16.2016.9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Muhaba, Sitra, Freselam Mulubrhan, and Mohd Ridzuan Darun. "Application of petrochemical wastewater treatment processes." In INTERNATIONAL CONFERENCE ON BIOENGINEERING AND TECHNOLOGY (IConBET2021). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0078414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Simonič, Marjana. "Electrocoagulation Implementation for Textile Wastewater Treatment Processes." In International Conference on Technologies & Business Models for Circular Economy. University of Maribor Press, 2023. http://dx.doi.org/10.18690/um.fkkt.1.2023.6.

Full text
Abstract:
Electrocoagulation (EC) has been employed recently to treat tannery, textile, and coloured wastewater. Three main processes are gathered in EC process, namely electrochemistry, coagulation, and flotation. This technique uses DC currents source between metal electrodes immersed in the textile effluent, which causes the dissolution of electrode plates into the effluent. The main advantage of EC compared to chemical coagulation technique is that EC generates less sludge. The objective of the present manuscript is to review the potential of electrocoagulation for the treatment of textile effluent. The most influential factors on removal efficiency, such as initial pH, time of EC, conductivity, current density, initial dye concentration and periodically reversal current on electrodes were discussed. Considering the circular economy concept, which focuses on positive society-wide benefits, manufacturing brick or ceramic materials is feasible method for disposing sludge.
APA, Harvard, Vancouver, ISO, and other styles
4

Ravshanov, N., O. Ja Kravets, D. Karshiev, and U. Saidov. "Numerical modeling approach of wastewater treatment processes." In PROCEEDINGS OF THE III INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES IN MATERIALS SCIENCE, MECHANICAL AND AUTOMATION ENGINEERING: MIP: Engineering-III – 2021. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0071882.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Singrova, Veronika, and Petr Hlustik. "FACTORS AFFECTING BIOLOGICAL PROCESSES OF WASTEWATER TREATMENT." In 21st SGEM International Multidisciplinary Scientific GeoConference Proceedings 2021. STEF92 Technology, 2021. http://dx.doi.org/10.5593/sgem2021/4.1/s17.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Polle, Juergen, Shelley Blackwell, Carly Lesne, John Coyne, John Benemann, and Tryg Lundquist. "Decarbonization of Wastewater Treatment with Microalgae Processes." In TechConnect World, National Harbor, MD, USA. US DOE, 2023. http://dx.doi.org/10.2172/1985811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Robescu, Diana. "IMPROVING BIOLOGICAL WASTEWATER TREATMENT PROCESSES FOR TEXTILE INDUSTRY." In 15th International Multidisciplinary Scientific GeoConference SGEM2015. Stef92 Technology, 2011. http://dx.doi.org/10.5593/sgem2015/b52/s20.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mazurkiewicz, Jakub. "BIOCHAR POTENTIAL IN WASTEWATER AND SLUDGE TREATMENT PROCESSES." In 18th International Multidisciplinary Scientific GeoConference SGEM2018. STEF92 Technology, 2018. http://dx.doi.org/10.5593/sgem2018v/1.5/s02.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mazurkiewicz, Jakub. "BIOCHAR POTENTIAL IN WASTEWATER AND SLUDGE TREATMENT PROCESSES." In 18th International Multidisciplinary Scientific GeoConference SGEM2018. STEF92 Technology, 2018. http://dx.doi.org/10.5593//sgem2018v/1.5/s02.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Manea, Elena Elisabeta. "SIMULATION OF FULL-SCALE WASTEWATER TREATMENT BIOLOGICAL PROCESSES." In International Symposium "The Environment and the Industry". National Research and Development Institute for Industrial Ecology, 2016. http://dx.doi.org/10.21698/simi.2016.0059.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Anacrobic wastewater treatment processes"

1

Mueller, Mitch, Danny Rellergert, Mike Preston, Jess VanWagoner, and Marc Turner. TECHNO-ECONOMIC ANALYSIS AND EVALUATION OF WET FGD WASTEWATER TREATMENT PROCESSES AT EXISTING PLANTS. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1565922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Arnett, Clint M., Giselle Rodriguez, and Stephen W. Maloney. Polymerase Chain Reaction (PCR) Analysis of Microbial Consortia on Wastewater Treatment Processes for High Explosives. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada544671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Husson, Scott M., Viatcheslav Freger, and Moshe Herzberg. Antimicrobial and fouling-resistant membranes for treatment of agricultural and municipal wastewater. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7598151.bard.

Full text
Abstract:
This research project introduced a novel membrane coating strategy to combat biofouling, which is a major problem for the membrane-based treatment of agricultural and municipal wastewaters. The novelty of the strategy is that the membrane coatings have the unique ability to switch reversibly between passive (antifouling) and active (antimicrobial) fouling control mechanisms. This dual-mode approach differs fundamentally from other coating strategies that rely solely on one mode of fouling control. The research project had two complementary objectives: (1) preparation, characterization, and testing of dual-mode polymer nanolayers on planar surfaces and (2) evaluation of these nanolayers as membrane modifiers. The first objective was designed to provide a fundamental understanding of how polymer nanolayer chemistry and structure affect bacterial deposition and to demonstrate the reversibility of chemical switching. The second objective, which focused on membrane development, characterization, and testing, was designed to demonstrate methods for the production of water treatment membranes that couple passive and active biofouling control mechanisms. Both objectives were attained through synergistic collaboration among the three research groups. Using planar silicon and glass surfaces, we demonstrated using infrared spectroscopy that this new polymer coating can switch reversibly between the anti-fouling, zwitterion mode and an anti-microbial, quaternary amine mode. We showed that switching could be done more than 50 times without loss of activity and that the kinetics for switching from a low fouling zwitterion surface to an antimicrobial quaternary amine surface is practical for use. While a low pH was required for switching in the original polymer, we illustrated that by slightly altering the chemistry, it is possible to adjust the pH at which the switching occurs. A method was developed for applying the new zwitterionic surface chemistry onto polyethersulfone (PES) ultrafiltration membranes. Bacteria deposition studies showed that the new chemistry performed better than other common anti-fouling chemistries. Biofilm studies showed that PESultrafiltration membranes coated with the new chemistry accumulated half the biomass volume as unmodified membranes. Biofilm studies also showed that PES membranes coated with the new chemistry in the anti-microbial mode attained higher biofilm mortality than PES membranes coated with a common, non-switchablezwitterionic polymer. Results from our research are expected to improve membrane performance for the purification of wastewaters prior to use in irrigation. Since reduction in flux due to biofouling is one of the largest costs associated with membrane processes in water treatment, using dual-mode nanolayer coatings that switch between passive and active control of biofouling and enable detachment of attached biofoulants would have significant economic and societal impacts. Specifically, this research program developed and tested advanced ultrafiltration membranes for the treatment of wastewaters. Such membranes could find use in membrane bioreactors treating municipal wastewater, a slightly upgraded version of what presently is used in Israel for irrigation. They also may find use for pretreatment of agricultural wastewaters, e.g., rendering facility wastewater, prior to reverse osmosis for desalination. The need to desalinate such impaired waters water for unlimited agricultural use is likely in the near future.
APA, Harvard, Vancouver, ISO, and other styles
4

Kalman, Joseph, and Maryam Haddad. Wastewater-derived Ammonia for a Green Transportation Fuel. Mineta Transportation Institute, July 2022. http://dx.doi.org/10.31979/mti.2021.2041.

Full text
Abstract:
The energy-water nexus (i.e., availability of potable water and clean energy) is among the most important problems currently facing society. Ammonia is a carbon-free fuel that has the potential to reduce the carbon footprint in combustion related vehicles. However, ammonia production processes typically have their own carbon footprint and do not necessarily come from sustainable sources. This research examines wastewater filtration processes to harvest ammonia for transportation processes. The research team studied mock wastewater solutions and was able to achieve ammonia concentrations above 80%(nanofiltration) and 90% (reverse osmosis). The research team also investigated the influence of transmembrane pressure and flow rates. No degradation to the membrane integrity was observed during the process. This research used constant pressure combustion simulations to calculate the ignition delay times for NH3-air flames with expected impurities from the wastewater treatment processes. The influence of impurities, such as H2O, CO, CO2, and HCl, were studied under a range of thermodynamic conditions expected in compression ignition engines. The team observed carbon monoxide and water vapor to slightly decrease (at most 5%) ignition delay time, whereas HCl, in general, increased the ignition delay. The changes to the combustion chemistry and its influence of the reaction mechanism on the results are discussed. The experimental wastewater treatment study determined that reverse osmosis produced higher purity ammonia. The findings of the combustion work suggest that ignition delays will be similar to pure ammonia if HCl is filtered from the final product.
APA, Harvard, Vancouver, ISO, and other styles
5

Kalman, Joseph, and Maryam Haddad. Wastewater-derived Ammonia for a Green Transportation Fuel. Mineta Transportation Institute, July 2022. http://dx.doi.org/10.31979/mti.2022.2041.

Full text
Abstract:
The energy-water nexus (i.e., availability of potable water and clean energy) is among the most important problems currently facing society. Ammonia is a carbon-free fuel that has the potential to reduce the carbon footprint in combustion related vehicles. However, ammonia production processes typically have their own carbon footprint and do not necessarily come from sustainable sources. This research examines wastewater filtration processes to harvest ammonia for transportation processes. The research team studied mock wastewater solutions and was able to achieve ammonia concentrations above 80%(nanofiltration) and 90% (reverse osmosis). The research team also investigated the influence of transmembrane pressure and flow rates. No degradation to the membrane integrity was observed during the process. This research used constant pressure combustion simulations to calculate the ignition delay times for NH3-air flames with expected impurities from the wastewater treatment processes. The influence of impurities, such as H2O, CO, CO2, and HCl, were studied under a range of thermodynamic conditions expected in compression ignition engines. The team observed carbon monoxide and water vapor to slightly decrease (at most 5%) ignition delay time, whereas HCl, in general, increased the ignition delay. The changes to the combustion chemistry and its influence of the reaction mechanism on the results are discussed. The experimental wastewater treatment study determined that reverse osmosis produced higher purity ammonia. The findings of the combustion work suggest that ignition delays will be similar to pure ammonia if HCl is filtered from the final product.
APA, Harvard, Vancouver, ISO, and other styles
6

Banin, Amos, Joseph Stucki, and Joel Kostka. Redox Processes in Soils Irrigated with Reclaimed Sewage Effluents: Field Cycles and Basic Mechanism. United States Department of Agriculture, July 2004. http://dx.doi.org/10.32747/2004.7695870.bard.

Full text
Abstract:
The overall objectives of the project were: (a) To measure and study in situ the effect of irrigation with reclaimed sewage effluents on redox processes and related chemical dynamics in soil profiles of agricultural fields. (b) To study under controlled conditions the kinetics and equilibrium states of selected processes that affect redox conditions in field soils or that are effected by them. Specifically, these include the effects on heavy metals sorption and desorption, and the effect on pesticide degradation. On the basis of the initial results from the field study, increased effort was devoted to clarifying and quantifying the effects of plants and water regime on the soil's redox potential while the study of heavy metals sorption was limited. The use of reclaimed sewage effluents as agricultural irrigation water is increasing at a significant rate. The relatively high levels of suspended and, especially, dissolved organic matter and nitrogen in effluents may affect the redox regime in field soils irrigated with them. In turn, the changes in redox regime may affect, among other parameters, the organic matter and nitrogen dynamics of the root zone and trace organic decomposition processes. Detailed data of the redox potential regime in field plots is lacking, and the detailed mechanisms of its control are obscure and not quantified. The study established the feasibility of long-term, non-disturbing monitoring of redox potential regime in field soils. This may enable to manage soil redox under conditions of continued inputs of wastewater. The importance of controlling the degree of wastewater treatment, particularly of adding ultrafiltration steps and/or tertiary treatment, may be assessed based on these and similar results. Low redox potential was measured in a field site (Site A, KibutzGivat Brenner), that has been irrigated with effluents for 30 years and was used for 15 years for continuous commercial sod production. A permanently reduced horizon (Time weighted averaged pe= 0.33±3.0) was found in this site at the 15 cm depth throughout the measurement period of 10 months. A drastic cultivation intervention, involving prolonged drying and deep plowing operations may be required to reclaim such soils. Site B, characterized by a loamy texture, irrigated with tap water for about 20 years was oxidized (Time weighted average pe=8.1±1.0) throughout the measurement period. Iron in the solid phases of the Givat Brenner soils is chemically-reduced by irrigation. Reduced Fe in these soils causes a change in reactivity toward the pesticide oxamyl, which has been determined to be both cytotoxic and genotoxic to mammalian cells. Reaction of oxamyl with reduced-Fe clay minerals dramatically decreases its cytotoxicity and genotoxicity to mammalian cells. Some other pesticides are affected in the same manner, whereas others are affected in the opposite direction (become more cyto- and genotoxic). Iron-reducing bacteria (FeRB) are abundant in the Givat Brenner soils. FeRB are capable of coupling the oxidation of small molecular weight carbon compounds (fermentation products) to the respiration of iron under anoxic conditions, such as those that occur under flooded soil conditions. FeRB from these soils utilize a variety of Fe forms, including Fe-containing clay minerals, as the sole electron acceptor. Daily cycles of the soil redox potential were discovered and documented in controlled-conditions lysimeter experiments. In the oxic range (pe=12-8) soil redox potential cycling is attributed to the effect of the daily temperature cycle on the equilibrium constant of the oxygenation reaction of H⁺ to form H₂O, and is observed under both effluent and freshwater irrigation. The presence of plants affects considerably the redox potential regime of soils. Redox potential cycling coupled to the irrigation cycles is observed when the soil becomes anoxic and the redox potential is controlled by the Fe(III)/Fe(II) redox couple. This is particularly seen when plants are grown. Re-oxidation of the soil after soil drying at the end of an irrigation cycle is affected to some degree by the water quality. Surprisingly, the results suggest that under certain conditions recovery is less pronounced in the freshwater irrigated soils.
APA, Harvard, Vancouver, ISO, and other styles
7

Borch, Thomas, Yitzhak Hadar, and Tamara Polubesova. Environmental fate of antiepileptic drugs and their metabolites: Biodegradation, complexation, and photodegradation. United States Department of Agriculture, January 2012. http://dx.doi.org/10.32747/2012.7597927.bard.

Full text
Abstract:
Many pharmaceutical compounds are active at very low doses, and a portion of them regularly enters municipal sewage systems and wastewater-treatment plants following use, where they often do not fully degrade. Two such compounds, CBZ and LTG, have been detected in wastewater effluents, surface waters, drinking water, and irrigation water, where they pose a risk to the environment and the food supply. These compounds are expected to interact with organic matter in the environment, but little is known about the effect of such interactions on their environmental fate and transport. The original objectives of our research, as defined in the approved proposal, were to: Determine the rates, mechanisms and products of photodegradation of LTG, CBZ and selected metabolites in waters exposed to near UV light, and the influence of DOM type and binding processes on photodegradation. Determine the potential and pathways for biodegradation of LTG, CBZ and selected metabolites using a white rot fungus (Pleurotusostreatus) and ADP, and reveal the effect of DOM complexation on these processes. Reveal the major mechanisms of binding of LTG, CBZ and selected metabolites to DOM and soil in the presence of DOM, and evaluate the effect of this binding on their photodegradation and/or biodegradation. We determined that LTG undergoes relatively slow photodegradation when exposed to UV light, and that pH affects each of LTG’s ability to absorb UV light, the efficiency of the resulting reaction, and the identities of LTG’sphotoproducts (t½ = 230 to 500 h during summer at latitude 40 °N). We observed that LTG’sphotodegradation is enhanced in the presence of DOM, and hypothesized that LTG undergoes direct reactions with DOM components through nucleophilic substitution reactions. In combination, these data suggest that LTG’s fate and transport in surface waters are controlled by environmental conditions that vary with time and location, potentially affecting the environment and irrigation waters. We determined that P. ostreatusgrows faster in a rich liquid medium (glucose peptone) than on a natural lignocellulosic substrate (cotton stalks) under SSF conditions, but that the overall CBZ removal rate was similar in both media. Different and more varied transformation products formed in the solid state culture, and we hypothesized that CBZ degradation would proceed further when P. ostreatusand the ᵉⁿᶻʸᵐᵃᵗⁱᶜ ᵖʳᵒᶠⁱˡᵉ ʷᵉʳᵉ ᵗᵘⁿᵉᵈ ᵗᵒ ˡⁱᵍⁿⁱⁿ ᵈᵉᵍʳᵃᵈᵃᵗⁱᵒⁿ. ᵂᵉ ᵒᵇˢᵉʳᵛᵉᵈ ¹⁴C⁻Cᴼ2 ʳᵉˡᵉᵃˢᵉ ʷʰᵉⁿ ¹⁴C⁻ᶜᵃʳᵇᵒⁿʸˡ⁻ labeled CBZ was used as the substrate in the solid state culture (17.4% of the initial radioactivity after 63 days of incubation), but could not conclude that mineralization had occurred. In comparison, we determined that LTG does not degrade in agricultural soils irrigated with treated wastewater, but that P. ostreatusremoves up to 70% of LTG in a glucose peptone medium. We detected various metabolites, including N-oxides and glycosides, but are still working to determine the degradation pathway. In combination, these data suggest that P. ostreatuscould be an innovative and effective tool for CBZ and LTG remediation in the environment and in wastewater used for irrigation. In batch experiments, we determined that the sorption of LTG, CBZ and selected metabolites to agricultural soils was governed mainly by SOM levels. In lysimeter experiments, we also observed LTG and CBZ accumulation in top soil layers enriched with organic matter. However, we detected CBZ and one of its metabolites in rain-fed wheat previously irrigated with treated wastewater, suggesting that their sorption was reversible, and indicating the potential for plant uptake and leaching. Finally, we used macroscale analyses (including adsorption/desorption trials and resin-based separations) with molecular- level characterization by FT-ICR MS to demonstrate the adsorptive fractionation of DOM from composted biosolids by mineral soil. This suggests that changes in soil and organic matter types will influence the extent of LTG and CBZ sorption to agricultural soils, as well as the potential for plant uptake and leaching.
APA, Harvard, Vancouver, ISO, and other styles
8

Minz, Dror, Stefan J. Green, Noa Sela, Yitzhak Hadar, Janet Jansson, and Steven Lindow. Soil and rhizosphere microbiome response to treated waste water irrigation. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7598153.bard.

Full text
Abstract:
Research objectives : Identify genetic potential and community structure of soil and rhizosphere microbial community structure as affected by treated wastewater (TWW) irrigation. This objective was achieved through the examination soil and rhizosphere microbial communities of plants irrigated with fresh water (FW) and TWW. Genomic DNA extracted from soil and rhizosphere samples (Minz laboratory) was processed for DNA-based shotgun metagenome sequencing (Green laboratory). High-throughput bioinformatics was performed to compare both taxonomic and functional gene (and pathway) differences between sample types (treatment and location). Identify metabolic pathways induced or repressed by TWW irrigation. To accomplish this objective, shotgun metatranscriptome (RNA-based) sequencing was performed. Expressed genes and pathways were compared to identify significantly differentially expressed features between rhizosphere communities of plants irrigated with FW and TWW. Identify microbial gene functions and pathways affected by TWW irrigation*. To accomplish this objective, we will perform a metaproteome comparison between rhizosphere communities of plants irrigated with FW and TWW and selected soil microbial activities. Integration and evaluation of microbial community function in relation to its structure and genetic potential, and to infer the in situ physiology and function of microbial communities in soil and rhizospere under FW and TWW irrigation regimes. This objective is ongoing due to the need for extensive bioinformatics analysis. As a result of the capabilities of the new PI, we have also been characterizing the transcriptome of the plant roots as affected by the TWW irrigation and comparing the function of the plants to that of the microbiome. *This original objective was not achieved in the course of this study due to technical issues, especially the need to replace the American PIs during the project. However, the fact we were able to analyze more than one plant system as a result of the abilities of the new American PI strengthened the power of the conclusions derived from studies for the 1ˢᵗ and 2ⁿᵈ objectives. Background: As the world population grows, more urban waste is discharged to the environment, and fresh water sources are being polluted. Developing and industrial countries are increasing the use of wastewater and treated wastewater (TWW) for agriculture practice, thus turning the waste product into a valuable resource. Wastewater supplies a year- round reliable source of nutrient-rich water. Despite continuing enhancements in TWW quality, TWW irrigation can still result in unexplained and undesirable effects on crops. In part, these undesirable effects may be attributed to, among other factors, to the effects of TWW on the plant microbiome. Previous studies, including our own, have presented the TWW effect on soil microbial activity and community composition. To the best of our knowledge, however, no comprehensive study yet has been conducted on the microbial population associated BARD Report - Project 4662 Page 2 of 16 BARD Report - Project 4662 Page 3 of 16 with plant roots irrigated with TWW – a critical information gap. In this work, we characterize the effect of TWW irrigation on root-associated microbial community structure and function by using the most innovative tools available in analyzing bacterial community- a combination of microbial marker gene amplicon sequencing, microbial shotunmetagenomics (DNA-based total community and gene content characterization), microbial metatranscriptomics (RNA-based total community and gene content characterization), and plant host transcriptome response. At the core of this research, a mesocosm experiment was conducted to study and characterize the effect of TWW irrigation on tomato and lettuce plants. A focus of this study was on the plant roots, their associated microbial communities, and on the functional activities of plant root-associated microbial communities. We have found that TWW irrigation changes both the soil and root microbial community composition, and that the shift in the plant root microbiome associated with different irrigation was as significant as the changes caused by the plant host or soil type. The change in microbial community structure was accompanied by changes in the microbial community-wide functional potential (i.e., gene content of the entire microbial community, as determined through shotgun metagenome sequencing). The relative abundance of many genes was significantly different in TWW irrigated root microbiome relative to FW-irrigated root microbial communities. For example, the relative abundance of genes encoding for transporters increased in TWW-irrigated roots increased relative to FW-irrigated roots. Similarly, the relative abundance of genes linked to potassium efflux, respiratory systems and nitrogen metabolism were elevated in TWW irrigated roots when compared to FW-irrigated roots. The increased relative abundance of denitrifying genes in TWW systems relative FW systems, suggests that TWW-irrigated roots are more anaerobic compare to FW irrigated root. These gene functional data are consistent with geochemical measurements made from these systems. Specifically, the TWW irrigated soils had higher pH, total organic compound (TOC), sodium, potassium and electric conductivity values in comparison to FW soils. Thus, the root microbiome genetic functional potential can be correlated with pH, TOC and EC values and these factors must take part in the shaping the root microbiome. The expressed functions, as found by the metatranscriptome analysis, revealed many genes that increase in TWW-irrigated plant root microbial population relative to those in the FW-irrigated plants. The most substantial (and significant) were sodium-proton antiporters and Na(+)-translocatingNADH-quinoneoxidoreductase (NQR). The latter protein uses the cell respiratory machinery to harness redox force and convert the energy for efflux of sodium. As the roots and their microbiomes are exposed to the same environmental conditions, it was previously hypothesized that understanding the soil and rhizospheremicrobiome response will shed light on natural processes in these niches. This study demonstrate how newly available tools can better define complex processes and their downstream consequences, such as irrigation with water from different qualities, and to identify primary cues sensed by the plant host irrigated with TWW. From an agricultural perspective, many common practices are complicated processes with many ‘moving parts’, and are hard to characterize and predict. Multiple edaphic and microbial factors are involved, and these can react to many environmental cues. These complex systems are in turn affected by plant growth and exudation, and associated features such as irrigation, fertilization and use of pesticides. However, the combination of shotgun metagenomics, microbial shotgun metatranscriptomics, plant transcriptomics, and physical measurement of soil characteristics provides a mechanism for integrating data from highly complex agricultural systems to eventually provide for plant physiological response prediction and monitoring. BARD Report
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography