Academic literature on the topic 'Anacrobic wastewater treatment processes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Anacrobic wastewater treatment processes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Anacrobic wastewater treatment processes"
Määttä, R. K. "Anaerobic Wastewater Treatment Processes." Water Science and Technology 17, no. 1 (January 1, 1985): 53–59. http://dx.doi.org/10.2166/wst.1985.0004.
Full textSanginova, Olga, Nataliia Tolstopalova, Sergii Bondarenko, and Valentyna Yankauskaite. "Secondary wastewater treatment processes optimization." Proceedings of the NTUU “Igor Sikorsky KPI”. Series: Chemical engineering, ecology and resource saving, no. 1 (March 30, 2021): 31–37. http://dx.doi.org/10.20535/2617-9741.1.2021.228092.
Full textKyzas, George Z., and Kostas A. Matis. "Wastewater Treatment Processes: Part I." Processes 8, no. 3 (March 12, 2020): 334. http://dx.doi.org/10.3390/pr8030334.
Full textMcAdam, E. J., D. Lüffler, N. Martin-Garcia, A. L. Eusebi, J. N. Lester, B. Jefferson, and E. Cartmell. "Integrating anaerobic processes into wastewater treatment." Water Science and Technology 63, no. 7 (April 1, 2011): 1459–66. http://dx.doi.org/10.2166/wst.2011.378.
Full textShmyrin, A. M., I. A. Sedykh, A. M. Smetannikova, and E. Yu Nikiforova. "NEIGHBORHOOD MODELING OF WASTEWATER TREATMENT PROCESSES." Tambov University Reports. Series: Natural and Technical Sciences 22, no. 3 (2017): 596–604. http://dx.doi.org/10.20310/1810-0198-2017-22-3-596-604.
Full textBaimukasheva, Shynar, Burak Demirel, Samal Syrlybekkyzy, and Yerazak Manapovich Tileubergenov. "ECOLOGICAL EFFICIENCY OF WASTEWATER TREATMENT PROCESSES." International journal of ecosystems and ecology science (IJEES) 12, no. 3 (June 30, 2022): 435–40. http://dx.doi.org/10.31407/ijees12.355.
Full textSingh, Krishna Raj. "Assessment of industrial wastewater treatment processes." ACADEMICIA: An International Multidisciplinary Research Journal 11, no. 11 (2021): 755–64. http://dx.doi.org/10.5958/2249-7137.2021.02587.8.
Full textWang, Sen, Xin Ping Li, An Long Zhang, and Zhao Rong Wang. "Study on Papermaking Processes Wastewater Treatment." Advanced Materials Research 291-294 (July 2011): 1866–69. http://dx.doi.org/10.4028/www.scientific.net/amr.291-294.1866.
Full textH. Jones, O. A., N. Voulvoulis, and J. N. Lester. "Human Pharmaceuticals in Wastewater Treatment Processes." Critical Reviews in Environmental Science and Technology 35, no. 4 (July 2005): 401–27. http://dx.doi.org/10.1080/10643380590956966.
Full textLessard, Paul, and M. B. Beck. "Dynamic modeling of wastewater treatment processes." Environmental Science & Technology 25, no. 1 (January 1991): 30–39. http://dx.doi.org/10.1021/es00013a002.
Full textDissertations / Theses on the topic "Anacrobic wastewater treatment processes"
See, Hwee J. "Optimisation of water and wastewater treatment processes." Thesis, University of Cambridge, 2002. https://www.repository.cam.ac.uk/handle/1810/272064.
Full textEscalona, Hernández Ivonne Graciela. "Membrane-assisted advanced oxidation processes for wastewater treatment." Doctoral thesis, Universitat Rovira i Virgili, 2014. http://hdl.handle.net/10803/284445.
Full textBisfenol A (BPA) y tartrazina (TAR) pertenecen al grupo de compuestos que son potencialmente dañinos para la recuperación de aguas residuales. BPA es un perturbador del sistema hormonal o disruptor endocrino, mientras que la TAR es un colorante azo. Variedad de industrias, especialmente la industria papelera y textil producen un gran volumen de aguas residuales que están contaminadas con BPA y colorantes. Por lo tanto, los efluentes que contiene tanto BPA como colorantes, deben ser gestionados de manera eficiente con la finalidad de evitar problemas ambientales vinculados a ellos. Durante la última década, varios métodos para la eliminación de BPA y TAR de aguas residuales han sido probados, resultando ser eficaces y potencialmente aplicables a gran escala. Sin embargo, la mayoría de ellos todavía enfrentan problemas de costes, lo cual exige su desarrollo. La nanofiltración (NF) ofrece una solución adecuada para la eliminación de BPA y colorantes de las soluciones acuosas debido a su capacidad para remover sustancias orgánicas disueltas. Es por ello que en esta tesis, la NF en flujo cruzado usando membranas poliméricas fue utilizada para remover BPA y TAR de soluciones acuosas. Adicionalmente, la degradación de BPA y TAR durante los tratamientos por Fenton, ozonación y enzimático bajo diferentes condiciones de operación, en combinación con su posterior NF fueron ensayados. Resultados indican que tanto el BPA como la TAR pueden ser eficientemente degradados por estos procesos. El uso de un sistema integrado membrana-reactor mostró el potencial y las limitaciones del uso de los procesos de oxidación avanzada en conjunto con membranas de NF para la remoción del BPA y de la TAR. En general elevadas eficiencias de remoción fueron alcanzadas con las diferentes membranas de NF utilizadas.
Bisphenol A (BPA) and tartrazine (TAR) belong to the compounds which are potentially harmful during wastewater reclamation. BPA is a typical Endocrine Disrupting Chemical and TAR is an azo dye. Variety of industry, especially paper and textile industries produces a large volume of wastewater that is polluted with BPA and dyes. Therefore, BPA and dyes-charged effluents need to be efficiently managed in order to avoid environmental problems linked to them. During the last decade, several methods for BPA and TAR removal of wastewater have been found effective and potentially applicable for scaling up. However, most of them still face cost problems, thus demanding further development. It is generally accepted that nanofiltration (NF) offers an adequate solution for the removal of BPA and dyes from the aqueous solutions owing to its capacity to remove dissolved organics. In the present thesis, crossflow NF using thin film composite polymeric membranes were applied to reject BPA and TAR from aqueous solutions. Additionally, the degradation of BPA and TAR during Fenton’s, ozonation and enzymatic processes under different operational conditions, in combination with subsequent NF of low concentration remnant BPA and TAR and compounds derived from oxidation was investigated. Results indicate that BPA and TAR could be degraded efficiently in aqueous phase by Fenton, ozonation and enzymatic processes. The use of a membrane-reactor integrated system for BPA and TAR degradation demonstrated the potential and limitations of using advance oxidation processes, operated in a recycling mode coupled to a NF membrane. In general, high BPA and TAR removal efficiencies for several NF membranes were achieved.
Yalfani, Mohammad Sadegh. "New catalytic advanced oxidation processes for wastewater treatment." Doctoral thesis, Universitat Rovira i Virgili, 2011. http://hdl.handle.net/10803/34768.
Full textRegarding to the improvement of Advanced Oxidation Processes for wastewater treatment, new catalytic Fenton process and catalytic ozonation were designed and studied in the removal of organic pollutants from water. Fenton process was performed using in situ generated hydrogen peroxide, which was produced from formic acid and oxygen over alumina-supported palladium catalyst. Then, the system was fully heterogenized by using bimetallic Pd-Fe catalyst and applied successfully for different categories of organic pollutants. The combination of the above oxidation process with hydrodechlorination led to high efficiency in the degradation of chlorophenols. The performance of different hydrogen substitutes in the Fenton process using in situ generated hydrogen peroxide showed higher efficiency of hydroxylamine for neutral solutions. Concerning the development of new catalytic materials for catalytic ozonation, the degradation of pharmaceutical compounds was performed using dawsonite-derived copper catalysts. The copper incorporated into the structure of dawsonite indicated higher activity in catalytic ozonation with respect to the calcined sample, soluble copper and aluminasupported copper oxide.
Tapia, Tlatelpa Tecilli. "Optoelectronic optimization of photocatalytic processes for wastewater treatment." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/667685.
Full textLa contaminación del agua es un problema alarmante que pone en peligro la salud de todos los seres vivos. La industria textil está catalogada como una de las industrias más contaminantes, puesto que para realizar sus procesos de teñido y acabado requieren de una gran cantidad de recursos hídricos; desde hace décadas esta industria ha usado los Procesos de Oxidación Avanzada (AOPs) al presentar diversas ventajas (e. g. destrucción de sustancias tóxicas, reducción de metales pesados, permitir su uso en conjunto con otros procesos, entre otros). Entre los AOPs, sobresale la fotocatálisis heterogénea, por su alta eficiencia para la remoción de contaminantes, incluidos los colorantes azoicos. Para realizar un proceso fotocatalítico, es necesario tener un fotorreactor, el cual requerirá de un fotocatalizador y al menos una fuente de iluminación que active el catalizador. Este tipo de fotorreactores pueden presentar diversos problemas, tales como, el uso fotocatalizadores de alto costo, la generación de subproductos tóxicos en algunos fotocatalizadores de bajo, el alto consumo eléctrico causado por la utilización de fuentes tradicionales de iluminación e incluso dificultades con la geometría de los fotorreactores. Por lo tanto la comunidad científica ha intentado optimizar los procesos fotocatalíticos, algunos científicos han trabajado en la generación de nuevos fotocatalizadores para poder utilizarlos en longitudes de onda generada por fuentes de iluminación de bajo coste (e. g. luz visible), no obstante, lo que en muchas ocasiones incrementa el precio del fotocatalizador. Otro enfoque se encuentra en la reducción del consumo eléctrico optando por la sustitución de las lámparas tradicionales por iluminación de bajo consumo, por ejemplo, iluminación LED; sin embargo, actualmente esta sustitución se realiza de manera arbitraria, por lo que en ocasiones algunos autores dudan de la capacidad de utilizar estas fuentes en este tipo de procesos. Además al intentar mejorar las fuentes de iluminación puede alterarse el fotorreactor, por lo que es importante tomar en consideración sus características para lograr una mejora significativa. Esta tesis se enfoca en una optimización optoelectrónica para mejorar la eficiencia de las fuentes de iluminación utilizadas en reactores fotocatalíticos. Para ello se ha generado una metodología para calcular arreglos de LEDs utilizando modelos de irradiancia uniforme, esta irradiancia debe ser homogénea, con energía suficiente para fotoactivar el catalizador y sustituir las lámparas tradicionales, evitando la alteración química de los fotocatalizadores; asimismo, se ha diseñado e implementado un reactor fotocatalítico a escala de laboratorio con iluminación ultravioleta ajustada a sus características (geometría, dimensiones, entre otros) para trabajar con un fotocatalizador de bajo coste (TiO2) en la decoloración de agua con colorantes textiles. Para finalizar se ha diseñado e implementado un sistema de monitorización in-situ para la decoloración de aguas teñidas, este tipo de monitorización evita la toma de muestras de durante el proceso, sin alterar la geometría del reactor ni disminuir el volumen de agua tratada del reactor.
McMahan, Erin K. "Impacts of rainfall events on wastewater treatment processes." [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001609.
Full textDe, Bel Maud. "Techniques for the evaluation of wastewater treatment processes." Thesis, Cranfield University, 2001. http://dspace.lib.cranfield.ac.uk/handle/1826/10437.
Full textJelić, Aleksandra. "Occurrence and fate of pharmaceuticals in wastewater treatment processes." Doctoral thesis, Universitat de Barcelona, 2012. http://hdl.handle.net/10803/98403.
Full textDesde hace más de cuarenta años se ha detectado la presencia de fármacos en el ciclo de aguas, sobre todo debido a los avances en la química analítica que han permitido el desarrollo de nuevas metodologías analíticas para la determinación de estos compuestos de modo fiable y a bajas concentraciones. Las estaciones depuradoras de aguas residuales (EDARs) han sido identificadas como la ruta principal de entrada de fármacos de origen humano en el medioambiente. Por tanto, el principal objetivo de esta tesis ha sido el estudio de la presencia, destino y eliminación de 43 fármacos seleccionados, durante el tratamiento convencional realizado en las EDARs. Los compuestos estudiados fueron seleccionados en base a los índices de consumo en España, a la frecuencia de detección en aguas residuales y además en base a la posibilidad de ser analizados bajo las mismas condiciones experimentales. Estos compuestos pertenecen a diferentes clases terapéuticas, i.e. antiinflamatorios no esteroideos , los agentes que reducen los lípidos séricos, ansiolíticos y antiepilépticos, los agentes bloqueadores beta-adrenérgicos, agonistas β2 adrenérgico, antagonistas H2 , antibióticos, inhibidores de la enzima convertidora de angiotensina, diuréticos y antidiabéticos. Para el análisis cuantitativo se utilizó la cromatografía de líquidos acoplada a espectrometría de masas en tándem (LC-MS/MS), empleando un sistema híbrido triple quadrupolo/trampa de iones lineal. Como segundo objetivo hemos considerado evaluar tratamientos avanzados alternativos al tratamiento convencional para la eliminación de un fármaco antiepiléptico, la carbamazepina, uno de los compuestos más recalcitrantes al tratamiento biológico convencional. Se procedió a estudiar su degradación en medio acuoso mediante dos procedimientos a escala laboratorio: a) biodegradación utilizando el hongo ligninolitico Trametes Versicolor en un reactor fluidizado por pulsos de aire operando en modo batch y continuo, y b) oxidación avanzada mediante un tratamiento fotocatalitico en presencia de TiO2 bajo irradiación UV-A y solar, y aplicando la radiación UV en combinación con ultrasonidos (sonofotocatálisis). Para la evaluación de los tratamientos alternativos, se identificaron los productos de transformación de la carbamazepina, y se evaluó la toxicidad de las muestras tratadas. Se utilizó la LC-MS/MS con analizador de tipo cuadrupolo-tiempo de vuelo. También se evaluó la toxicidad de las muestras tratadas.
Bernat, Camí Xavier. "Treatment of biorefractory wastewater through membrane-assisted oxidation processes." Doctoral thesis, Universitat Rovira i Virgili, 2010. http://hdl.handle.net/10803/8583.
Full textWater scarcity is one of the major challenges for assuring a sustainable development. Among other measures, research into efficient wastewater treatment systems to deal with biorefractory wastewaters, which need to be amended before their biological degradation, is required. The Fenton process is an advanced oxidation process that can be used as potential pre-treatment for this purpose. However, the pre-treatment presents two main limitations: the use of iron salts as homogeneous catalyst, which are continuously thrown away in the reactor effluent, and the high consumption of oxidant, which is partially wasted. The present thesis aims at studying the improvement of the Fenton process applied on phenolic wastewater through its coupling with membrane technologies such as nanofiltration, membrane emulsification or membrane reactors. The coupling allows confining the catalyst and increasing the oxidation efficiency, thus enhancing the treatment efficiency in environmental and economic terms.
Ghasemzadeh, Shahram M. S. "Effect of Hydraulic Fracturing Waste in Wastewater Treatment Processes." University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1471254155.
Full textGonzalez-Estrella, Jorge Gonzalez. "Toxicity of Engineered Nanoparticles to Anaerobic Wastewater Treatment Processes." Diss., The University of Arizona, 2014. http://hdl.handle.net/10150/347117.
Full textBooks on the topic "Anacrobic wastewater treatment processes"
Debbie, Bryan, Day Martin, and Water Research Centre (Great Britain), eds. Wastewater and sludge treatment processes. Medmenham, UK: WRC, 1995.
Find full textWastewater treatment: Advanced processes and technologies. Boca Raton, FL: Taylor & Francis, 2012.
Find full textShah, Maulin P., Sweta Parimita Bera, and Günay Yıldız Töre. Advanced Oxidation Processes for Wastewater Treatment. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003165958.
Full textDezotti, Márcia, Geraldo Lippel, and João Paulo Bassin. Advanced Biological Processes for Wastewater Treatment. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-58835-3.
Full textKeen, Patricia L., and Raphaël Fugère, eds. Antimicrobial Resistance in Wastewater Treatment Processes. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119192428.
Full textM, Henze, ed. Wastewater treatment: Biological and chemical processes. 2nd ed. Berlin: Springer, 1997.
Find full textShah, Maulin P. Phycoremediation Processes in Industrial Wastewater Treatment. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003165101.
Full textStronach, Sandra M., Thomasine Rudd, and John N. Lester. Anaerobic Digestion Processes in Industrial Wastewater Treatment. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71215-9.
Full textMullick, M. A. Hussein. Wastewater treatment processes in the Middle East. Sussex, England: Book Guild, 1987.
Find full textdir, Parsons Simon Dr, ed. Advanced oxidation processes for water and wastewater treatment. London: IWA, 2004.
Find full textBook chapters on the topic "Anacrobic wastewater treatment processes"
Henze, Mogens. "Basic Biological Processes." In Wastewater Treatment, 55–112. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-22605-6_3.
Full textHenze, Mogens. "Basic Biological Processes." In Wastewater Treatment, 65–129. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04806-1_3.
Full textRanjit, Pabbati, Vulise Jhansi, and Kondakindi Venkateswar Reddy. "Conventional Wastewater Treatment Processes." In Environmental and Microbial Biotechnology, 455–79. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8999-7_17.
Full textDhiman, Sahil, and Ayushi Sharma. "Secondary Clarification of Wastewater Relying on Biological Treatment Processes: Advancements and Drawbacks." In Wastewater Treatment, 157–68. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003165057-13.
Full textKumar Gupta, Ashok, Venkatesh Uddameri, Abhradeep Majumder, and Shripad K. Nimbhorkar. "Overview of Conventional Wastewater Treatment Processes." In Wastewater Engineering, 181–211. New York: CRC Press, 2023. http://dx.doi.org/10.1201/9781003364450-7.
Full textKumar Gupta, Ashok, Venkatesh Uddameri, Abhradeep Majumder, and Shripad K. Nimbhorkar. "Overview of Conventional Wastewater Treatment Processes." In Wastewater Engineering, 99–122. New York: CRC Press, 2023. http://dx.doi.org/10.1201/9781003364450-5.
Full textKumar Gupta, Ashok, Venkatesh Uddameri, Abhradeep Majumder, and Shripad K. Nimbhorkar. "Overview of Conventional Wastewater Treatment Processes." In Wastewater Engineering, 123–80. New York: CRC Press, 2023. http://dx.doi.org/10.1201/9781003364450-6.
Full textThulasisingh, Anitha, Poojitha Nagapushnam, Yamunadevi Balakrishnan, and Sathishkumar Kannaiyan. "Different Methods and Technologies of Advanced Oxidation Processes Adopted in Industrial Wastewater Treatment." In Wastewater Treatment, 35–46. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003165057-4.
Full textRiffat, Rumana, and Taqsim Husnain. "Advanced treatment processes." In Fundamentals of Wastewater Treatment and Engineering, 325–58. 2nd ed. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003134374-13.
Full textAkunna, Joseph C. "Biological Treatment Processes." In Anaerobic Waste-Wastewater Treatment and Biogas Plants, 1–22. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, [2018] | “A CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa plc.”: CRC Press, 2018. http://dx.doi.org/10.1201/9781351170529-1.
Full textConference papers on the topic "Anacrobic wastewater treatment processes"
Wu, Yongming, Mi Deng, Lizhen Liu, Jianyong Wang, Jie Zhang, and Jinbao Wan. "Wastewater treatment processes for industrial organosilicon wastewater." In 2016 International Conference on Innovative Material Science and Technology (IMST 2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/imst-16.2016.9.
Full textMuhaba, Sitra, Freselam Mulubrhan, and Mohd Ridzuan Darun. "Application of petrochemical wastewater treatment processes." In INTERNATIONAL CONFERENCE ON BIOENGINEERING AND TECHNOLOGY (IConBET2021). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0078414.
Full textSimonič, Marjana. "Electrocoagulation Implementation for Textile Wastewater Treatment Processes." In International Conference on Technologies & Business Models for Circular Economy. University of Maribor Press, 2023. http://dx.doi.org/10.18690/um.fkkt.1.2023.6.
Full textRavshanov, N., O. Ja Kravets, D. Karshiev, and U. Saidov. "Numerical modeling approach of wastewater treatment processes." In PROCEEDINGS OF THE III INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES IN MATERIALS SCIENCE, MECHANICAL AND AUTOMATION ENGINEERING: MIP: Engineering-III – 2021. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0071882.
Full textSingrova, Veronika, and Petr Hlustik. "FACTORS AFFECTING BIOLOGICAL PROCESSES OF WASTEWATER TREATMENT." In 21st SGEM International Multidisciplinary Scientific GeoConference Proceedings 2021. STEF92 Technology, 2021. http://dx.doi.org/10.5593/sgem2021/4.1/s17.10.
Full textPolle, Juergen, Shelley Blackwell, Carly Lesne, John Coyne, John Benemann, and Tryg Lundquist. "Decarbonization of Wastewater Treatment with Microalgae Processes." In TechConnect World, National Harbor, MD, USA. US DOE, 2023. http://dx.doi.org/10.2172/1985811.
Full textRobescu, Diana. "IMPROVING BIOLOGICAL WASTEWATER TREATMENT PROCESSES FOR TEXTILE INDUSTRY." In 15th International Multidisciplinary Scientific GeoConference SGEM2015. Stef92 Technology, 2011. http://dx.doi.org/10.5593/sgem2015/b52/s20.035.
Full textMazurkiewicz, Jakub. "BIOCHAR POTENTIAL IN WASTEWATER AND SLUDGE TREATMENT PROCESSES." In 18th International Multidisciplinary Scientific GeoConference SGEM2018. STEF92 Technology, 2018. http://dx.doi.org/10.5593/sgem2018v/1.5/s02.027.
Full textMazurkiewicz, Jakub. "BIOCHAR POTENTIAL IN WASTEWATER AND SLUDGE TREATMENT PROCESSES." In 18th International Multidisciplinary Scientific GeoConference SGEM2018. STEF92 Technology, 2018. http://dx.doi.org/10.5593//sgem2018v/1.5/s02.027.
Full textManea, Elena Elisabeta. "SIMULATION OF FULL-SCALE WASTEWATER TREATMENT BIOLOGICAL PROCESSES." In International Symposium "The Environment and the Industry". National Research and Development Institute for Industrial Ecology, 2016. http://dx.doi.org/10.21698/simi.2016.0059.
Full textReports on the topic "Anacrobic wastewater treatment processes"
Mueller, Mitch, Danny Rellergert, Mike Preston, Jess VanWagoner, and Marc Turner. TECHNO-ECONOMIC ANALYSIS AND EVALUATION OF WET FGD WASTEWATER TREATMENT PROCESSES AT EXISTING PLANTS. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1565922.
Full textArnett, Clint M., Giselle Rodriguez, and Stephen W. Maloney. Polymerase Chain Reaction (PCR) Analysis of Microbial Consortia on Wastewater Treatment Processes for High Explosives. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada544671.
Full textHusson, Scott M., Viatcheslav Freger, and Moshe Herzberg. Antimicrobial and fouling-resistant membranes for treatment of agricultural and municipal wastewater. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7598151.bard.
Full textKalman, Joseph, and Maryam Haddad. Wastewater-derived Ammonia for a Green Transportation Fuel. Mineta Transportation Institute, July 2022. http://dx.doi.org/10.31979/mti.2021.2041.
Full textKalman, Joseph, and Maryam Haddad. Wastewater-derived Ammonia for a Green Transportation Fuel. Mineta Transportation Institute, July 2022. http://dx.doi.org/10.31979/mti.2022.2041.
Full textBanin, Amos, Joseph Stucki, and Joel Kostka. Redox Processes in Soils Irrigated with Reclaimed Sewage Effluents: Field Cycles and Basic Mechanism. United States Department of Agriculture, July 2004. http://dx.doi.org/10.32747/2004.7695870.bard.
Full textBorch, Thomas, Yitzhak Hadar, and Tamara Polubesova. Environmental fate of antiepileptic drugs and their metabolites: Biodegradation, complexation, and photodegradation. United States Department of Agriculture, January 2012. http://dx.doi.org/10.32747/2012.7597927.bard.
Full textMinz, Dror, Stefan J. Green, Noa Sela, Yitzhak Hadar, Janet Jansson, and Steven Lindow. Soil and rhizosphere microbiome response to treated waste water irrigation. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7598153.bard.
Full text