Academic literature on the topic 'ANABRANCH CHANNELS'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'ANABRANCH CHANNELS.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "ANABRANCH CHANNELS"

1

Koehn, John D., and D. J. Harrington. "Collection and distribution of the early life stages of the Murray cod (Maccullochella peelii peelii) in a regulated river." Australian Journal of Zoology 53, no. 3 (2005): 137. http://dx.doi.org/10.1071/zo04086.

Full text
Abstract:
The Murray cod (Maccullochella peelii peelii) is a large fish species keenly sought by anglers. However, this species has declined in distribution and abundance and is now listed nationally as vulnerable. This study was undertaken in the Ovens and Murray rivers, to collect larvae and age-0 Murray cod and determine the distribution of larval Murray cod around the mid-Murray River irrigation storage of Lake Mulwala. Murray cod larvae were collected from 17 of 18 sites: main channels and flowing anabranch channels of regulated and unregulated rivers, sites upstream and downstream of the lake, in the upper and lower reaches of the lake, and in the outflowing Yarrawonga irrigation channel. Larval Murray cod were collected only by methods that sampled drift in flowing waters. Age-0 Murray cod were collected by electrofishing in the main river, but not in off-channel waters, suggesting that cod are likely to settle into habitats in the main channel at a post-larval stage. The widespread occurrence of drifting larvae suggests that this species may be subject to previously unrecognised threats as they pass through hydro-electric power stations or become stranded in anabranch and irrigation channels. Results of this study are likely to be applicable to other species with drifting larval stages, and are relevant to other locations in the Murray–Darling Basin.
APA, Harvard, Vancouver, ISO, and other styles
2

Cyples, Natasha N., Alessandro Ielpi, and Randy W. Dirszowsky. "Planform and stratigraphic signature of proximal braided streams: remote-sensing and ground-penetrating-radar analysis of the Kicking Horse River, Canadian Rocky Mountains." Journal of Sedimentary Research 90, no. 1 (January 31, 2020): 131–49. http://dx.doi.org/10.2110/jsr.2020.6.

Full text
Abstract:
ABSTRACT Braided rivers have accumulated a dominant fraction of the terrestrial sedimentary record, and yet their morphodynamics in proximal intermountain reaches are still not fully documented—a shortcoming that hampers a full understanding of sediment fluxes and stratigraphic preservation in proximal-basin tracts. Located in the eastern Canadian Cordillera near the continental divide, the Kicking Horse River is an iconic stream that has served as a model for proximal-braided rivers since the 1970s. Legacy work on the river was based solely on ground observations of small, in-channel bars; here we integrate field data at the scale of individual bars to the entire channel belt with time-lapse remote sensing and ground-penetrating-radar (GPR) imaging, in order to produce a more sophisticated morphodynamic model for the river. Cyclical discharge fluctuations related to both diurnal and seasonal variations in melt-water influx control the planform evolution and corresponding stratigraphic signature of trunk channels, intermittently active anabranch channels, and both bank-attached and mid-channel bars. Three-dimensional GPR fence diagrams of compound-bar complexes are built based on the identification of distinct radar facies related to: i) accretion and migration of unit bars, ii) both downstream and lateral outbuilding of bar-slip foresets; iii) buildup of bedload sheets, iv) channel avulsion, and v) accretion of mounded bars around logs or outsized clasts. Trends observed downstream-ward include decreases in gradient and grain size decreases, trunk-channel shrinkage, intensified avulsion (with increase in abundance for anabranch channels), and a shift from high-relief to low-relief bar topography. The integration of ground sedimentology, time-lapse remote sensing, and GPR imaging demonstrates that proximal-braided streams such as the Kicking Horse River can be critically compared to larger systems located farther away from their source uplands despite obvious scale differences.
APA, Harvard, Vancouver, ISO, and other styles
3

Leigh, Sandra J., and Brenton P. Zampatti. "Movement and mortality of Murray cod, Maccullochella peelii, during overbank flows in the lower River Murray, Australia." Australian Journal of Zoology 61, no. 2 (2013): 160. http://dx.doi.org/10.1071/zo12124.

Full text
Abstract:
Conservation of Murray cod (Maccullochella peelii), a large endangered fish species of Australia’s Murray–Darling Basin, relies on a detailed understanding of life history, including movement patterns and habitat use. We used radio-tracking to investigate the movement of 36 Murray cod in main channel and anabranch habitats of the lower River Murray during a flood and associated hypoxic blackwater event. During a flood peak of ~93 000 ML day–1, dissolved oxygen decreased to 1.2 mg L–1. Four movement types were observed: (1) localised small-scale movement, (2) broad-scale movement within anabranch habitats, (3) movement between anabranch and main channel habitats, and (4) large-scale riverine movement. Murray cod exhibited high fidelity to anabranch habitats but also moved extensively between anabranches and the main channel. Fish were consistently located in the main channel or permanent anabranches, suggesting that use of ephemeral floodplain habitats is limited, and highlighting the importance of connectivity between off-channel and main channel habitats. Mortality of radio-tagged fish was considerable (25%) in association with low dissolved oxygen concentrations, indicating that hypoxic blackwater may have had a substantial impact on Murray cod populations in the lower River Murray.
APA, Harvard, Vancouver, ISO, and other styles
4

Guerit, L., L. Barrier, C. Narteau, F. Métivier, Y. Liu, E. Lajeunesse, E. Gayer, P. Meunier, L. Malverti, and B. Ye. "The Grain-size Patchiness of Braided Gravel-Bed Streams – example of the Urumqi River (northeast Tian Shan, China)." Advances in Geosciences 37 (February 11, 2014): 27–39. http://dx.doi.org/10.5194/adgeo-37-27-2014.

Full text
Abstract:
Abstract. In gravel-bed rivers, sediments are often sorted into patches of different grain-sizes, but in braided streams, the link between this sorting and the channel morpho-sedimentary elements is still unclear. In this study, the size of the bed sediment in the shallow braided gravel-bed Urumqi River is characterized by surface-count and volumetric sampling methods. Three morpho-sedimentary elements are identified in the active threads of the river: chutes at flow constrictions, which pass downstream to anabranches and bars at flow expansions. The surface and surface-layer grain-size distributions of these three elements show that they correspond to only two kinds of grain-size patches: (1) coarse-grained chutes, coarser than the bulk river bed, and (2) finer-grained anabranches and bars, consistent with the bulk river bed. In cross-section, the chute patches are composed of one coarse-grained top layer, which can be interpreted as a local armour layer overlying finer deposits. In contrast, the grain size of the bar-anabranch patches is finer and much more homogeneous in depth than the chute patches. Those patches, which are features of lateral and vertical sorting associated to the transport dynamics that build braided patterns, may be typical of active threads in shallow gravel-bed rivers and should be considered in future works on sorting processes and their geomorphologic and stratigraphic results.
APA, Harvard, Vancouver, ISO, and other styles
5

Ashmore, Peter. "Intensity and characteristic length of braided channel patternsThis paper is one of a selection of papers in this Special Issue in honour of Professor M. Selim Yalin (1925–2007)." Canadian Journal of Civil Engineering 36, no. 10 (October 2009): 1656–66. http://dx.doi.org/10.1139/l09-088.

Full text
Abstract:
Recent research on braided river morphology shows that the intensity (number of anabranches) of braiding channels increases with dimensionless discharge and (or) stream power. This variation in intensity reflects the adjustment of total sinuosity of the river to imposed gradient at a given discharge and grain size. Only a subset of channels is active at a given time and this active braiding intensity reflects the limited number of channels that can sustain bed load transport as the flow is divided. This is governed mechanistically by the dynamics of bifurcations and avulsions. Braided channel networks also have a characteristic length scale (or scales) related to the wavelength of the bars from which braiding develops and to the scale of the bars and confluence–bifurcation units within the braided network. The range of scales is limited by the size (and, therefore, number) of the active channels within the network and the width of the entire river.
APA, Harvard, Vancouver, ISO, and other styles
6

Marcinkowski, Paweł, Adam Kiczko, and Tomasz Okruszko. "Modeling of water flow in multi-channel river system in the Narew National Park." Annals of Warsaw University of Life Sciences – SGGW. Land Reclamation 49, no. 3 (September 1, 2017): 167–77. http://dx.doi.org/10.1515/sggw-2017-0014.

Full text
Abstract:
Abstract Modeling of water flow in multi-channel river system in the Narew National Park. Anastomosing rivers constitute a rare example of multi-channel systems, which used to be very common before the agricultural and industrial development. Presently few of them remain worldwide and the only example in Poland is the Upper River Narew within Narew National Park. Although hydraulic modeling using one-dimensional models is commonly used to describe water flow in rivers, for multi-channel rivers problem is more complicated. For this type of rivers it is expected that the feedback between process of plants growth (expressed by Manning’s coefficient) and distribution of flow in anabranches is high. However, assignment procedure on roughness coefficients in splitting and rejoining channels is laborious and difficult. Therefore, for efficient water flow modeling in multi-channel systems a stand-alone hydraulic model equipped with automatic optimization procedure was developed. Optimization and validation stages, based on field measurements data of discharge and water levels, indicated that the model accurately simulates water flow in multi-channel system.
APA, Harvard, Vancouver, ISO, and other styles
7

Alauddin, M., and T. Tsujimoto. "Sandbars in alluvial channels: their formation processes and interaction with groins." World Journal of Engineering 11, no. 5 (November 1, 2014): 473–80. http://dx.doi.org/10.1260/1708-5284.11.5.473.

Full text
Abstract:
Large sandbars resulted from the instability of loose sedimentary materials are very common in lowland rivers. These, not only, interrupt the inland waterways at low flow, but also make the channels highly unstable forming anabranches, influencing bank erosion, and so on. Groins have key roles to play in such cases. Formation processes of sandbars and their interactions with groins become very urgent to learn for better management of river engineering. RIC-Nays, a two-dimensional model for flow and morphology, is utilized in this study. Computation results reveal that different initial conditions lead to different equilibrium states, and periodic boundary conditions with a small computation domain tend to stabilize multiple bars. Intrusion of groins accelerates the flow in the main channel, which triggers the sediment movement there. Thus the bars move downstream reducing their scale and finally they disappear from the main channel.
APA, Harvard, Vancouver, ISO, and other styles
8

Marcinkowski, Paweł, Adam Kiczko, and Tomasz Okruszko. "Model-Based Analysis of Macrophytes Role in the Flow Distribution in the Anastomosing River System." Water 10, no. 7 (July 18, 2018): 953. http://dx.doi.org/10.3390/w10070953.

Full text
Abstract:
The impact of vegetation on the hydrology and geomorphology of aquatic ecosystems has been studied intensively in recent years. Numerous hydraulic models developed to date help to understand and quantitatively assess the influence of in-stream macrophytes on a channel’s hydraulic conditions. However, special focus is placed on single-thread rivers, leaving anastomosing rivers practically uninvestigated. To fill this gap, the objective of this study was to investigate the impact of vegetation on flow distribution in a complex anastomosing river system situated in northeastern Poland. The newly designed, one-dimensional, steady-flow model, dedicated for anastomosing rivers used in this study indicated high influence of vegetation on water flow distribution during the whole year in general, but—as expected—significantly higher in the summer season. Simulations of in-stream vegetation removal in selected channels reflected in Manning’s coefficient alterations caused relatively high discharge transitions during the growing season. This proved the significance of feedback between process of plants growth and distribution of flow in anabranches. The results are unique and relevant and could be successfully considered for the protection of semi-natural anabranching rivers.
APA, Harvard, Vancouver, ISO, and other styles
9

Rust, B. R., M. R. Gibling, M. A. Best, S. J. Dilles, and A. G. Masson. "A sedimentological overview of the coal-bearing Morien Group (Pennsylvanian), Sydney Basin, Nova Scotia, Canada." Canadian Journal of Earth Sciences 24, no. 9 (September 1, 1987): 1869–85. http://dx.doi.org/10.1139/e87-177.

Full text
Abstract:
The onshore part of the Sydney Basin, Nova Scotia, contains a 2 km fining-upward coal-bearing succession, the Pennsylvanian Morien Group. Facies analysis indicates an upward change in depositional environment from mid- through distal braid-plain to meandering fluvial plain. This change occurred earliest in the southeast part of the basin, where the meandering channels were incised through penecontemporaneous duricrusts. Northeastward drainage was maintained throughout, and the basin fill records gradually decreasing slopes as source relief was worn down and rate of subsidence declined during a period of increasing tectonic quiescence. The uneconomic coals of the lower Morien Group (South Bar and Waddens Cove formations) are thin and inextensive and formed in well-drained swamps of anabranches from the active braided system or between incised meandering channels. The economic coals of the upper Morien (Sydney Mines Formation) are more extensive and formed in broad, humid swamps of large flood basins between the unconfined channels of large meandering rivers.
APA, Harvard, Vancouver, ISO, and other styles
10

Redolfi, M., G. Zolezzi, and M. Tubino. "Free instability of channel bifurcations and morphodynamic influence." Journal of Fluid Mechanics 799 (June 28, 2016): 476–504. http://dx.doi.org/10.1017/jfm.2016.389.

Full text
Abstract:
Channel bifurcations are a fundamental element of a broad variety of flowing freshwater environments worldwide, such as braiding and anabranching rivers, river deltas and alluvial fans. River bifurcations often develop asymmetrical configurations with uneven discharge partition and a bed elevation gap between the downstream anabranches. This has been reproduced by one-dimensional (1-D) analytical theories which, however, rely on the empirical calibration of one or more parameters and cannot provide a clear and detailed physical explanation of the observed dynamics. We propose a novel two-dimensional (2-D) solution for the flow and bed topography in channel bifurcations based on an innovative application to a multi-thread channel configuration of the 2-D steady linear solution developed decades ago to study river bars and meandering in single thread river settings. The resonant value of the upstream channel aspect ratio, corresponding to the theoretical resonance condition of regular river meanders (Blondeaux & Seminara, J. Fluid Mech., vol. 157, 1985, pp. 449–470) is the key parameter discriminating between symmetrical and asymmetrical bifurcations, in quantitative agreement with experimental observations and numerical simulations, and qualitatively matching field observations. Only when the aspect ratio of the upstream channel of the bifurcation exceeds resonance, is the bifurcation node able to trigger the upstream development of a steady alternate bar pattern, thus creating an unbalanced configuration. Ultimately, the work provides an analytical explanation of the intrinsic legacy between bifurcation asymmetry and the phenomenon of 2-D upstream morphodynamic influence discovered by Zolezzi & Seminara (J. Fluid Mech., vol. 438, 2001, pp. 183–211).
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "ANABRANCH CHANNELS"

1

McGinness, Heather M., and n/a. "SPATIAL HETEROGENEITY AND HYDROLOGICAL CONNECTIVITY IN A DRYLAND, ANABRANCHING FLOODPLAIN RIVER SYSTEM." University of Canberra. Resource, Environmental & Heritage Sciences, 2007. http://erl.canberra.edu.au./public/adt-AUC20070731.094606.

Full text
Abstract:
Riverine landscapes are complex. More than just a single channel, they comprise a shifting mosaic of hydrogeomorphic patches with varying physical and biological characteristics. These patches are connected by water during flows of varying magnitude and frequency, at a range of spatial and temporal scales. Combined, landscape complexity and hydrological connectivity create biological diversity that in turn maintains the productivity, ecological function, and resilience of these systems. This thesis investigates the ecological importance of spatial heterogeneity and temporal hydrological connectivity in a dryland floodplain river landscape. It focuses on anabranch channels, and uses major carbon sources in these and adjacent landscape patches as indicators of ecological pattern and process. A conceptual model was proposed, describing the potential effects upon the distribution and availability of major carbon sources of: a) a spatial mosaic of hydrogeomorphic patches in the landscape (e.g. anabranches, river channel, and wider floodplain); and b) four primary temporal phases of hydrological connection during flow pulses (disconnection, partial connection, complete connection, and draining). This was then tested by data collected over a three year period from a 16 km reach of the lower Macintyre River (NSW/QLD Australia). Results were examined at multiple spatial scales (patch scale � river channel vs. anabranches vs. floodplain; between individual anabranches; and within anabranches � entry, middle and exit sites). The data indicate that spatial heterogeneity in the lower Macintyre River landscape significantly influences ecological pattern. Carbon quantity was greater in anabranch channels compared to adjacent river channel patches, but not compared to the floodplain; while carbon quality was greater in anabranch channels compared to both adjacent river channel and floodplain patches. Stable isotope analysis indicated that carbon sources that were predominantly found in anabranch channels supported both anabranch and river organisms during a winter disconnection phase. Other carbon sources found in the main river channel and the wider floodplain appeared to play a comparatively minimal role in the food web. Different phases of hydrological connection between anabranch channels and the main river channel were associated with differences in the availability of carbon sources. In the river channel, draining of water from anabranches (the draining phase) was associated with relatively high concentrations of dissolved organic carbon (DOC) and low concentrations of phytoplankton. Conversely, the disconnection phase was associated with relatively low concentrations of DOC and high concentrations of phytoplankton in the river channel. In anabranch channels and their waterbodies, the disconnection and draining phases were associated with high concentrations of both DOC and phytoplankton. Concentrations of these carbon sources were lowest in anabranches during the partial and complete connection phases. Different hydrological connection phases were also associated with changes in trophic status in the aquatic components of the landscape. On the riverbanks, relatively low rates of benthic production and respiration during the complete connection phase were associated with heterotrophy. The remaining phases appeared to be autotrophic. Benthic production on riverbanks was greatest during the disconnection phase, and respiration was greatest during the partial connection phase. In the anabranch channels, rates of production and respiration were similar during the disconnection phase, and were associated with heterotrophy in the anabranch waterbodies. The remaining phases appeared to be autotrophic. Respiration was greatest in anabranches during the disconnection phase, and production was greatest during the draining phase. Both production and respiration were lowest during complete connection. These differences and changes varied according to the landscape patch examined. At a landscape scale, anabranch channels act as both sinks and suppliers of carbon. High rates of sediment deposition facilitate their role as sinks for sediment-associated carbon and other particulate, refractory carbon sources. Simultaneously, anabranch channels supply aquatic carbon sources from their waterbodies, as well as via processes such as inundation-stimulated release of DOC from surface sediments. Modelled data indicated that water resource development reduces the frequency and duration of connection between anabranch channels and the main river channel. This loss of landscape complexity via loss of connectivity with anabranches has the potential to reduce the total availability of carbon sources to the ecosystem, as demonstrated by a modelled 13% reduction in potential dissolved organic carbon release from anabranch sediments. This thesis has demonstrated the importance of spatial heterogeneity in riverine landscapes, by documenting its association with variability in the distribution and quality of primary energy sources for the ecosystem. It has shown that this variability is augmented by different phases of hydrological connectivity over time. Spatial heterogeneity and hydrological connectivity interact to increase the diversity and availability of ecological energy sources across the riverine landscape, at multiple spatial and temporal scales. This has positive implications for the resilience and sustainability of the system. Anabranch channels are particularly important facilitators of these effects in this dryland floodplain river system. Anabranch channels are �intermediate� in terms of spatial placement, temporal hydrological connection, and availability of carbon sources; of high value in terms of high-quality carbon sources; and relatively easy to target for management because of their defined commence-to-flow levels. Further research should be directed toward evaluating other ecological roles of anabranch channels in dryland rivers, thereby providing a more complete understanding of the importance of connectivity between these features and other patches. This knowledge would assist management of floodplain river landscapes at larger regional scales, including amelioration of the effects of water resource development.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "ANABRANCH CHANNELS"

1

Croil, James Stuart. Channel pattern alternation, anabranch development and floodplain evolution of the lower Grand River, Ontario. Ottawa: National Library of Canada, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "ANABRANCH CHANNELS"

1

Peters, J., J. Gautier, and S. Rodrigues. "Sediment dynamics in anabranched channels of the Loire River." In River Flow 2006. Taylor & Francis, 2006. http://dx.doi.org/10.1201/9781439833865.ch137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography