Academic literature on the topic 'Amyloid-beta peptide (A-beta)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Amyloid-beta peptide (A-beta).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Amyloid-beta peptide (A-beta)"

1

Buneeva, O. A., O. V. Gnedenko, M. V. Medvedeva, A. S. Ivanov, and A. E. Medvedev. "The effect of neuroprotector isatin on binding of some model proteins with beta-amyloid peptide: a biosensor study." Biomeditsinskaya Khimiya 62, no. 6 (2016): 720–24. http://dx.doi.org/10.18097/pbmc20166206720.

Full text
Abstract:
The amyloid-beta peptide 1-42 formed during proteolytic processing of the amyloid precursor protein (APP) plays a key role in the development or progression of Alzheimer's disease (AD) and other pathologies associated with formation of protein aggregates in the central nervous system. Recent proteomic profiling of mouse and rat brain preparations by means of beta-amyloid peptide immobilized on Affigel-10 revealed a large group of amyloid-binding proteins (n>80). Many (about 25%) of these proteins were previously identified as isatin-binding proteins. The aim of this study was to validate direct interaction between beta-amyloid peptide and highly purified intact and oxidized peroxiredoxin, M-type pyruvate kinase, alpha-enolase, and the effect of isatin on this interaction. The study performed using SPR-based Biacore 3000 and Biacore X100 biosensors has shown that all the proteins form molecular complexes with immobilized beta-amyloid peptide. The Kd values for these complexes varied from 8.36х10^-8 M (peroxiredoxin) to 1.97х10^-6 M (alpha-enolase). Oxidative modification of investigated proteins caused opposite effects on complexes of these peptides with beta-amyloid. The endogenous neuroprotector isatin increased dissociation of complexes formed by beta-amyloid peptide with both intact proteins (peroxiredoxin, glyceraldehyde-3-phosphate dehydrogenase) and/or oxidized proteins (peroxiredoxin, pyruvate kinase) used in this study.
APA, Harvard, Vancouver, ISO, and other styles
2

Aloufi, Bandar. "Molecular dynamics simulation analysis of the beta amyloid peptide with docked inhibitors." Bioinformation 18, no. 7 (July 31, 2022): 622–29. http://dx.doi.org/10.6026/97320630018622.

Full text
Abstract:
Beta amyloid peptide is widely studied due to its association with Alzheimer disease (AD). Various study reported that the accumulation of beta amyloid in brain cells leads to Alzheimer disease. Hence, Beta amyloid peptide could be a potential target of anti-AD therapy. Hence, it is of interest to develop potent inhibitors for Beta amyloid peptide in the context of Alzheimer disease (AD). We report the binding features of Ascorbic acid, Cysteine, Dithioerythriol, Dithiothreitol, Malic acid and α-Tocopherol with beta amyloid having binding energy values of -6.7, -6.5, -6.0, -6.5, -6.7 and - 7.0 kcal/mol respectively. The molecular docking of top-scoring compounds with beta amyloid suggests that amino acids such as ASP23, GLU22, Phe19, are crucial in binding. Molecular dynamics simulation study showed steady-state interaction of compounds with beta amyloid for further consideration.
APA, Harvard, Vancouver, ISO, and other styles
3

Uéda, K., H. Fukushima, E. Masliah, Y. Xia, A. Iwai, M. Yoshimoto, D. A. Otero, J. Kondo, Y. Ihara, and T. Saitoh. "Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease." Proceedings of the National Academy of Sciences 90, no. 23 (December 1, 1993): 11282–86. http://dx.doi.org/10.1073/pnas.90.23.11282.

Full text
Abstract:
A neuropathological hallmark of Alzheimer disease (AD) is a widespread amyloid deposition. We analyzed the entire amino acid sequences in an amyloid preparation and found, in addition to the major beta/A4-protein (A beta) fragment, two unknown peptides. We raised antibodies against synthetic peptides using subsequences of these peptides. These antibodies immunostained amyloid in neuritic and diffuse plaques as well as vascular amyloid. Electron microscopic analysis demonstrated that the immunostaining was localized on amyloid fibrils. We have isolated an apparently full-length cDNA encoding a 140-amino-acid protein within which two previously unreported amyloid sequences are encoded in tandem in the most hydrophobic domain. We tentatively named this 35-amino acid peptide NAC (non-A beta component of AD amyloid) and its precursor NACP. NAC is the second component, after A beta, identified chemically in the purified AD amyloid preparation. Secondary structure predictions indicate that the NAC peptide sequence has a strong tendency to form beta-structures consistent with its association with amyloid. NACP is detected as a M(r) 19,000 protein in the cytosolic fraction of brain homogenates and comigrates on immunoblots with NACP synthesized in Escherichia coli from NACP cDNA. NACP mRNA is expressed principally in brain but is also expressed in low concentrations in all tissues examined except in liver, suggesting its ubiquitous and brain-specific functions. The availability of the cDNA encoding full-length NACP should help to elucidate the mechanisms of amyloidosis in AD.
APA, Harvard, Vancouver, ISO, and other styles
4

Jiang, H., D. Burdick, C. G. Glabe, C. W. Cotman, and A. J. Tenner. "beta-Amyloid activates complement by binding to a specific region of the collagen-like domain of the C1q A chain." Journal of Immunology 152, no. 10 (May 15, 1994): 5050–59. http://dx.doi.org/10.4049/jimmunol.152.10.5050.

Full text
Abstract:
Abstract beta-amyloid peptides that accumulate within the brain of individuals with Alzheimer's disease bind to C1q and activate the classical C pathway via a specific interaction with a site within the collagen-like domain of C1q (C1q-CLF). Synthetic analogues of beta-amyloid peptides, beta 1-42 and beta 1-40, bound to C1q and were strong activators of C as assessed by both total C consumption and C4 consumption. beta 1-42 was significantly more effective than beta 1-40 in binding to C1q and triggering C activation, whereas beta 1-28 demonstrated little or no binding or C activation. This C-activating capacity seems to be largely correlated with the assembly of the beta 1-42 into low speed sedimentable aggregates and/or macromolecular fibrils. Radiolabeled C1q and C1q-CLF bind specifically to these aggregates or amyloid fibrils. In addition, using synthetic C1q peptides in a solid phase binding assay, the major binding site of beta 1-42 to C1q was localized to the C1q A chain collagen-like residues 14-26, a region previously described as a novel interaction site for Ab-independent activators of C1. C1q A chain peptide 14-26 blocked the ability of beta-amyloid peptides to activate the classical C pathway, providing evidence that this relatively unrecognized mechanism of C activation (via binding to the C1q-CLF) may have crucial physiologic consequences. Finally, these observations provide further support for the hypothesis that C activation and inflammation may be a component in the pathogenesis of AD and suggest possibilities for modulating the progression of AD.
APA, Harvard, Vancouver, ISO, and other styles
5

Klunk, W. E., J. W. Pettegrew, and D. J. Abraham. "Quantitative evaluation of congo red binding to amyloid-like proteins with a beta-pleated sheet conformation." Journal of Histochemistry & Cytochemistry 37, no. 8 (August 1989): 1273–81. http://dx.doi.org/10.1177/37.8.2666510.

Full text
Abstract:
The binding of Congo red to several purified amyloid-like peptides having a beta-pleated sheet conformation was quantitatively examined. Congo red binds preferentially to the beta-pleated sheet conformation of both insulin fibrils and poly-L-lysine. Congo red does not bind nearly so well to poly-L-serine or polyglycine, despite the fact that these peptides also have a beta-pleated sheet conformation. Binding to insulin fibrils was saturable with an apparent Bmax of 2 moles of Congo red per mole of insulin fibrils and an apparent KD of 1.75 x 10(-7) M. Binding to beta-poly-L-lysine was similar but had a much higher apparent Bmax of 43. Binding of Congo red to beta-poly-L-lysine was pH dependent and appeared to be determined by the number of protonated lysine residues in the 250 amino acid peptide. We present a new hypothesis in which Congo red binds to amyloid-like proteins via bonds between the two negatively charged sulfonic acid groups of Congo red and two positively charged amino acid residues of two separate protein molecules which are properly oriented by virtue of the beta-pleated sheet conformation of the peptide backbone.
APA, Harvard, Vancouver, ISO, and other styles
6

Jensen, P. H., E. S. Sørensen, T. E. Petersen, J. Gliemann, and L. K. Rasmussen. "Residues in the synuclein consensus motif of the α-synuclein fragment, NAC, participate in transglutaminase-catalysed cross-linking to Alzheimer-disease amyloid βA4 peptide." Biochemical Journal 310, no. 1 (August 15, 1995): 91–94. http://dx.doi.org/10.1042/bj3100091.

Full text
Abstract:
The widespread deposition of amyloid plaques is one of the hallmarks of Alzheimer disease (AD). A recently described component of amyloid plaques is the 35-residue peptide, non-A beta component of AD amyloid, which is derived from a larger intracellular neuronal constituent, alpha-synuclein. We demonstrate that transglutaminase catalyses the formation of the covalent non-A beta component of AD amyloid polymers in vitro as well as polymers with beta-amyloid peptide, the major constituent of AD plaques. The transglutaminase-reactive amino acid residues in the non-A beta component of AD amyloid were identified as Gln79 and Lys80. Lys80 is localized in a consensus motif Lys-Thr-Lys-Glu-Gly-Val, which is conserved in the synuclein gene family. Thus transglutaminase might be involved in the formation of insoluble amyloid deposits and participate in the modification of other members of the synuclein family.
APA, Harvard, Vancouver, ISO, and other styles
7

Usui, Kenji, Shin-ichiro Yokota, Kazuya Iwata, and Yoshio Hamada. "Novel Purification Process for Amyloid Beta Peptide(1-40)." Processes 8, no. 4 (April 15, 2020): 464. http://dx.doi.org/10.3390/pr8040464.

Full text
Abstract:
Amyloid beta peptide (Aβ)-related studies require an adequate supply of purified Aβ peptide. However, Aβ peptides are “difficult sequences” to synthesize chemically, and low yields are common due to aggregation during purification. Here, we demonstrate an easier synthesis, deprotection, reduction, cleavage, and purification process for Aβ(1-40) using standard 9-fluorenylmethyloxycarbonyl (Fmoc)-protected amino acids and solid-phase peptide synthesis (SPPS) resin [HMBA (4-hydroxymethyl benzamide) resin] that provides higher yields of Aβ(1-40) than previous standard protocols. Furthermore, purification requires a similar amount of time as conventional purification processes, although the peptide must be cleaved from the resin immediately prior to purification. The method described herein is not limited to the production of Aβ(1-40), and can be used to synthesize other easily-oxidized and aggregating sequences. Our proposed methodology will contribute to various fields using “difficult sequence” peptides, such as pharmaceutical and materials science, as well as research for the diagnosis and treatment of protein/peptide misfolding diseases.
APA, Harvard, Vancouver, ISO, and other styles
8

Naushad, Mehjabeen, Siva Sundara Kumar Durairajan, Amal Kanti Bera, Sanjib Senapati, and Min Li. "Natural Compounds with Anti-BACE1 Activity as Promising Therapeutic Drugs for Treating Alzheimerʼs Disease." Planta Medica 85, no. 17 (October 16, 2019): 1316–25. http://dx.doi.org/10.1055/a-1019-9819.

Full text
Abstract:
AbstractAlzheimerʼs disease is a neurodegenerative disease that leads to irreversible neuronal damage. Senile plaques, composed of amyloid beta peptide, is the principal abnormal characteristic of the disease. Among the factors involved, the secretase enzymes, namely, α secretase, beta-site amyloid precursor protein-cleaving enzyme, β secretase, and γ secretase, hold consequential importance. Beta-site amyloid precursor protein-cleaving enzyme 1 is considered to be the rate-limiting factor in the production of amyloid beta peptide. Research supporting the concept of inhibition of beta-site amyloid precursor protein-cleaving enzyme activity as one of the effective therapeutic targets in the mitigation of Alzheimerʼs disease is well accepted. The identification of natural compounds, such as β-amyloid precursor protein-selective beta-site amyloid precursor protein-cleaving enzyme inhibitors, and the idea of compartmentalisation of the beta-site amyloid precursor protein-cleaving enzyme 1 action have caused a dire need to closely examine the natural compounds and their effectiveness in the disease mitigation. Many natural compounds have been reported to effectively modulate beta-site amyloid precursor protein-cleaving enzyme 1. At lower doses, compounds like 2,2′,4′-trihydroxychalcone acid, quercetin, and myricetin have been shown to effectively reduce beta-site amyloid precursor protein-cleaving enzyme 1 activity. The currently used five drugs that are marketed and used for the management of Alzheimerʼs disease have an increased risk of toxicity and restricted therapeutic efficiency, hence, the search for new anti-Alzheimerʼs disease drugs is of primary concern. A variety of natural compounds having pure pharmacological moieties showing multitargeting activity and others exhibiting specific beta-site amyloid precursor protein-cleaving enzyme 1 inhibition as discussed below have superior biosafety. Many of these compounds, which are isolated from medicinal herbs and marine flora, have been long used for the treatment of various ailments since ancient times in the Chinese and Ayurvedic medical systems. The aim of this article is to review the available data on the selected natural compounds, giving emphasis to the inhibition of beta-site amyloid precursor protein-cleaving enzyme 1 activity as a mode of Alzheimerʼs disease treatment.
APA, Harvard, Vancouver, ISO, and other styles
9

Borutaite, Vilmante, Ramune Morkuniene, and Gintaras Valincius. "Beta-amyloid oligomers: recent developments." BioMolecular Concepts 2, no. 3 (June 1, 2011): 211–22. http://dx.doi.org/10.1515/bmc.2011.019.

Full text
Abstract:
AbstractRecent studies point to a critical role of soluble β-amyloid oligomers in the pathogenesis of one of the most common neurodegenerative diseases, Alzheimer's disease (AD). Beta-amyloid peptides are cleavage products of a ubiquitously expressed protein, the amyloid precursor protein. Early studies suggested that accumulation of extracellular β-amyloid aggregates are the most toxic species causing synaptic dysfunction and neuronal loss in particular regions of the brain (neurobiological features underlying cognitive decline of the AD patients). In recent years, a shift of pardigm occurred, and now there is accumulating evidence that soluble oligomeric forms of the peptide are the most toxic to neuronal cells. In this review, we discuss recent findings on the toxic effects of amyloid-β oligomers, their physico-chemical properties and the possible pathways of their formation in vitro and in vivo.
APA, Harvard, Vancouver, ISO, and other styles
10

Ghiso, J., E. Matsubara, A. Koudinov, N. H. Choi-Miura, M. Tomita, T. Wisniewski, and B. Frangione. "The cerebrospinal-fluid soluble form of Alzheimer's amyloid β is complexed to SP-40,40 (apolipoprotein J), an inhibitor of the complement membrane-attack complex." Biochemical Journal 293, no. 1 (July 1, 1993): 27–30. http://dx.doi.org/10.1042/bj2930027.

Full text
Abstract:
The amyloid fibrils deposited in Alzheimer's neuritic plaque cores and cerebral blood vessels are mainly composed of aggregated forms of a unique peptide, 39-42 amino acids long, named amyloid beta (A beta). A similar, although soluble, A beta (‘sA beta’) has been identified in cerebrospinal fluid, plasma and cell supernatants, indicating that it is normally produced by proteolytic processing of its precursor protein, amyloid precursor protein (APP). Using direct binding experiments we have isolated and characterized an 80 kDa circulating protein that specifically interacts with a synthetic peptide identical with A beta. The protein was unmistakably identified as SP-40,40 or ApoJ, a cytolytic inhibitor and lipid carrier, by means of amino acid sequence and immunoreactivity with specific antibodies. Immunoprecipitation with anti-SP-40,40 retrieved soluble A beta from cerebrospinal fluid, indicating that the interaction occurs in vivo.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Amyloid-beta peptide (A-beta)"

1

Han, Wei. "Development of a coarse-grained protein model and molecular dynamics studies of amyloid-[beta] peptide aggregation /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?CHEM%202007%20HAN.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Han, Fang. "AMYLOID A-BETA PEPTIDE: IN-CELL STUDIES AND MECHANISM OF POLYPHENOL-BASED INHIBITION TO AGGREGATION." Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1404771350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shirwany, Najeeb A. "Neurotoxicity induced by A[beta] 40 and A[beta] 42 in transgenic mouse models of Alzheimer's disease." Oklahoma City : [s.n.], 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Beckett, Christina. "VARIANCE OF THE AMYLOID BETA PEPTIDE AS A METRIC FOR THE DIAGNOSIS OF ALZHEIMER'S DISEASE." UKnowledge, 2016. http://uknowledge.uky.edu/medsci_etds/6.

Full text
Abstract:
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder associated with aging. AD is by far the best understood and most studied neurodegenerative disease. Substantial advances have been made over the last decade, however it is debatable how much closer we are to a clinically useful therapy. A long standing goal in the AD field has been to improve the accuracy of early detection, with the assumption that the ability to intervene earlier in the disease process will lead to a better clinical outcome. Major facets of this effort have been the continued development and improvement of AD biomarkers, with a strong focus on developing imaging modalities. AD is accompanied by two pathological hallmarks in the brain: extracellular neuritic plaques composed of the beta-amyloid peptide (Aβ) and intracellular neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein. Evidence of Aβ as the driving force behind the progression of AD (the amyloid cascade hypothesis) was first published by Hardy & Higgins in 1992, and this peptide has been the focus of therapeutic and diagnostic testing for decades. Significant technological advances in recent years now allow imaging of amyloid pathology in vivo. These methods evaluate Aβ burden in a living person, and could potentially serve as both a biomarker, and as a diagnostic tool to detect disease. Pittsburgh Compound B (PiB) is currently the best studied of these imaging agents, however, our current knowledge of the quantitative relationship between PiB binding and amyloid pathology in the brain is limited. A better understanding of how these variables relate to one another is essential for the continued development of reliable diagnostic biomarkers for AD. We analyzed increasingly insoluble pools of Aβ to quantify their relative contributions to the overall Aβ burden, and to determine if any of these measures could be used to predict disease status. We found that the amount of PiB binding in a cortical region of the brain could distinguish cases of mild cognitive impairment (MCI) when corrected to the amount of PiB binding in the cerebellum. As the Aβ peptide ages, the amino acid aspartate may spontaneously convert to an isoaspartate residue through a succinimide intermediary. The presence of iso-Asp Aβ has been used to indicate the presence of aged plaques in AD and Down syndrome cases. We sought to investigate the potential relationship between levels of ‘aged’ Aβ in the plasma as indicated by iso-Asp Aβ and disease state, as a potential biomarker for the presence of AD pathology. We found that AD cases had lower levels of all forms of Aβ in plasma when standardized to the group average, and that plasma levels of Aβ and iso-Asp Aβ were reversed between disease groups. A follow up study is required, however, these initial data are a promising step towards utilizing aged iso-Asp Aβ plasma levels as a potential biomarker to indicate disease state.
APA, Harvard, Vancouver, ISO, and other styles
5

Gulisano, Walter. "A renewed vision for Amyloid beta and tau in Alzheimer s disease pathophysiology." Doctoral thesis, Università di Catania, 2018. http://hdl.handle.net/10761/4152.

Full text
Abstract:
The aim of this thesis was to study the pathogenetic mechanisms underlying Alzheimer s disease (AD), a neurodegenerative disorder affecting the elderly and characterized by memory loss, personality changes and cognitive dysfunction leading to dementia. I will discuss the main projects in which I participated aimed at understanding the role of the main molecular interactors involved in AD pathogenesis, i.e. Amyloid-beta peptide and tau protein, on hippocampal synaptic plasticity and memory in animal models. After reviewing the pathophysiological models that have been developed so far, our general purpose was to study novel aspects of Amyloid-beta peptide and tau involvement in physiological and pathological conditions to give a different interpretation of the disease.
APA, Harvard, Vancouver, ISO, and other styles
6

Hilt, Silvia. "Spin Labeled Fluorene Compounds are a Versatile Sword in the Fight Against Amyloid Beta Peptide of Alzheimer's Disease." Thesis, University of California, Davis, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10182862.

Full text
Abstract:

Amyloid-β (Aβ) peptide is generated after sequential cleavage of the constitutively expressed amyloid precursor protein (APP) by γ and β secretases, and is recognized as the primary causative agent underlying the neuropathogenesis of Alzheimer’sDisease (AD). Once generated, monomeric Aβ demonstrates a high propensity to aggregate into toxic Aβ oligomers (AβO) of various sizes, which eventually accumulate in the brain in the form of amyloid plaques. Mutations in either the gene for APP or one or both of its processing genes, presenilin-1 (PS1) and presenilin-2 (PS2) of the secretases complex leading to accumulation of Aβ and early-onset familial AD. Late onset AD is modulated by mutations in the gene for apolipoprotein E (apo-E), with the isoform apo-E4 leading to an approximate eight-fold increase in risk for AD, and by environmental and life style factors. The Alzheimer’s disease process develops over decades, with substantial neurological loss occurring before a clinical diagnosis of dementia can be rendered. A major roadblock to the management of AD is the inability to definitively diagnose AD until post-mortem examination. It is therefore imperative to develop methods that permit safe, early detection and monitoring of disease progression. Magnetic resonance imaging (MRI) is a non-invasive way to detect and monitor AD progression and therapy, but so far MRI contrast has been obtained only using Gd(III) based contrast agents. Fluorene compounds have garnered attention as amyloid imaging agents. Our lab has developed a spin labeled fluorene (SLF) compound that contains a fluorene moiety with known affinity for Aβ and a pyrroline nitroxyl spin-label moiety. We hypothesized that the SLF compound will specifically coat assemblies of amyloid beta in the brain and, by establishing a boundary of magnetic field inhomogeneity, produce MRI contrast in tissues with elevated levels of the Aβ peptide. I found that labeling of brain specimens with the SLF compound produces negative contrast in samples from AD model mice whereas no negative contrast is seen in specimens harvested from wild-type mice. Injection of SLF into live mice resulted in good brain penetration, with the compound able to generate contrast 24-hr post injection. (Abstract shortened by ProQuest.)

APA, Harvard, Vancouver, ISO, and other styles
7

Luheshi, Leila Mohamed. "Mutational analysis of the aggregation and toxicity of the amyloid beta peptide in a Drosophila model of Alzheimer's Disease." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ameen, Muhammad T., and Patrick C. Bradshaw. "VITAMIN B2 REDUCES AMYLOID-BETA PROTEOTOXICITY AND IMPROVES HEALTH IN A CAENORHABDITIS ELEGANS ALZHEIMER’S DISEASE MODEL." Digital Commons @ East Tennessee State University, 2018. https://dc.etsu.edu/asrf/2018/schedule/24.

Full text
Abstract:
Alzheimer’s disease (AD) is a neurodegenerative disease and the most common form of dementia associated with amyloid-beta peptide deposition and loss of mitochondrial function and regulation. Currently, there is no cure for AD, thus, there is a need to continuously develop therapeutic strategies that could address the complex multifactorial causes of AD development. Due to this necessity, this study has investigated the role of vitamin B2 as a disease modifying drug for AD by employingamyloid-beta and mitochondrial based AD therapeutic strategies. Using a transgenic C. elegans AD worm model expressing amyloid-beta (Aβ1-42) in muscle cells at temperature upshift to 25°C, we screened for protective effect of dose-dependent concentrations of active forms of vitamin B2, FMN (flavin mononucleotide) and FAD (flavin adenine dinucleotide), against amyloid-beta mediated paralysis. Protective concentrations were then assayed for improvement of mitochondrial metabolic functions by performing ATP, oxygen consumption and reactive oxygen species (ROS) production assays. Consequently, we investigated for drug protective mechanisms of FMN and FAD using RNAi genetic screening technique. FMN and FAD significantly delayed amyloid-beta mediated paralysis and improved mitochondrial metabolic functions at final concentrations of 0.74mM and 0.74µM respectively. More so, both compounds induced activation of stress response FOXO transcription factor, daf-16. Specifically, FMN treatment induced mitochondrial unfolded protein response (UPRmt) pathway through ubiquitin-like protein (ubl-5) activation as well as other stress response pathway signature such as Activating Transcription Factor Associated with Stress (atfs-1). This study will be useful in understanding the importance of micronutrients such as vitamin B2 in normal cellular function as related to neurodegenerativediseases and aging. Therefore, vitamin B2 supplementation could be an important source of Alzheimer’s disease therapeutic strategy.
APA, Harvard, Vancouver, ISO, and other styles
9

Ameen, Muhammad Tukur. "A Role of Vitamin B2 in Reducing Amyloid-beta Toxicity in a Caenorhabditis elegans Alzheimer’s Disease Model." Digital Commons @ East Tennessee State University, 2018. https://dc.etsu.edu/etd/3398.

Full text
Abstract:
Alzheimer’s disease (AD) is associated with amyloid-beta peptide deposition and loss of mitochondrial function. Using a transgenic C. elegans AD worm model expressing amyloid-beta in body wall muscle, we determined that supplementation with either of the forms of vitamin B2, flavin mononucleotide (FMN) or flavin adenine dinucleotide (FAD) protected against amyloid-beta mediated paralysis. FMN and FAD were then assayed to determine effects on ATP, oxygen consumption, and reactive oxygen species (ROS) with these compounds not significantly improving any of these mitochondrial bioenergetic functions. Knockdown of the daf-16/FOXO transcriptional regulator or the FAD synthase enzyme completely abrogated the protective effects of FMN and FAD, while knockdown of the mitochondrial unfolded protein response factors ubl-5 or atfs-1 also blocked the protective effects. Therefore, vitamin B2 supplementation could lead to the activation of conserved signaling pathways in humans to delay the onset and progression of neurodegenerative diseases such as AD.
APA, Harvard, Vancouver, ISO, and other styles
10

Casley, Christopher Stuart. "Amyloid beta peptide-induced oxidative stress and mitochondrial respiratory chain damage : a mechanism for cell death in Alzheimer's disease?" Thesis, University College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.252296.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Amyloid-beta peptide (A-beta)"

1

Alzheimer amyloid-[beta] peptide aggregation: A potential in vivo model of ealry aggregate formation. Ottawa: National Library of Canada, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Abeta Peptide and Alzheimer's Disease: Celebrating a Century of Research. Springer, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Saido, Takaomi. A-Beta Metabolism and Alzheimer's Disease. Landes Bioscience, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Safar, Jiri G. Prion Paradigm of Human Neurodegenerative Diseases Caused by Protein Misfolding. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190233563.003.0005.

Full text
Abstract:
Data accumulated from different laboratories argue that a growing number of proteins causing neurodegeneration share certain characteristics with prions. Prion-like particles were produced from synthetic amyloid beta (Aβ‎) peptides of Alzheimer’s disease (AD), from recombinant α‎-synuclein linked to Parkinson’s disease (PD), and from recombinant tau associated with frontotemporal dementias (FTD). Evidence from human prions reveals that variable disease phenotypes, rates of propagation, and targeting of different brain structures are determined by distinct conformers (strains) of pathogenic prion protein. Recent progress in the development of advanced biophysical tools identified the structural characteristics of Aβ‎ in the brain cortex of phenotypically diverse AD patients and thus allowed an investigation of the prion paradigm of AD. The findings of distinctly structured strains of human brain Aβ‎, forming a unique spectrum of oligomeric particles in the cortex of rapidly progressive cases, implicates these structures in variable rates of propagation in the brain.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Amyloid-beta peptide (A-beta)"

1

Lin, Meng-chin, Tajib Mirzabekov, and Bruce Kagan. "Channel Formation by a Neurotoxic Beta Amyloid Peptide, Aβ25–35." In Neurodegenerative Diseases, 331–36. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-0209-2_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lahiri, Debomoy K., and Martin R. Farlow. "Tacrine Reduces the Secretion of Soluble Amyloid Beta-Peptides in a Neuroblastoma Cell Line." In Advances in Behavioral Biology, 563–69. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5337-3_80.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kondela, Tomáš, Pavol Hrubovčák, Dmitry Soloviov, Dina Badreeva, Tatiana Murugova, Vadim Skoi, Alexander Kuklin, Oleksandr Ivankov, and Norbert Kučerka. "Approaches for a Closer Look at Problems of Liquid Membranes with Amyloid-Beta Peptides." In Springer Proceedings in Physics, 265–94. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80924-9_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Anand, Abhinav, Neha Sharma, Monica Gulati, and Navneet Khurana. "Amyloid Beta." In Research Anthology on Diagnosing and Treating Neurocognitive Disorders, 1–17. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-3441-0.ch001.

Full text
Abstract:
Alzheimer's disease (AD), exhibiting accumulation of amyloid beta (Aβ) peptide as a foremost protagonist, is one of the top five causes of deaths. It is a neurodegenerative disorder (ND) that causes a progressive decline in memory and cognitive abilities. It is characterized by deposition of Aβ plaques and neurofibrillary tangles (NFTs) in the neurons, which in turn causes a decline in the brain acetylcholine levels. Aβ hypothesis is the most accepted hypothesis pertaining to the pathogenesis of AD. Amyloid Precursor Protein (APP) is constitutively present in brain and it is cleaved by three proteolytic enzymes (i.e., alpha, beta, and gamma secretases). Beta and gamma secretases cleave APP to form Aβ. Ubiquitin Proteasome System (UPS) is involved in the clearing of Aβ plaques. AD also involves impairment in UPS. The novel disease-modifying approaches involve inhibition of beta and gamma secretases. A number of clinical trials are going on worldwide with moieties targeting beta and gamma secretases. This chapter deals with an overview of APP and its enzymatic cleavage leading to AD.
APA, Harvard, Vancouver, ISO, and other styles
5

Anand, Abhinav, Neha Sharma, Monica Gulati, and Navneet Khurana. "Amyloid Beta." In Advances in Medical Diagnosis, Treatment, and Care, 235–51. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-5282-6.ch011.

Full text
Abstract:
Alzheimer's disease (AD), exhibiting accumulation of amyloid beta (Aβ) peptide as a foremost protagonist, is one of the top five causes of deaths. It is a neurodegenerative disorder (ND) that causes a progressive decline in memory and cognitive abilities. It is characterized by deposition of Aβ plaques and neurofibrillary tangles (NFTs) in the neurons, which in turn causes a decline in the brain acetylcholine levels. Aβ hypothesis is the most accepted hypothesis pertaining to the pathogenesis of AD. Amyloid Precursor Protein (APP) is constitutively present in brain and it is cleaved by three proteolytic enzymes (i.e., alpha, beta, and gamma secretases). Beta and gamma secretases cleave APP to form Aβ. Ubiquitin Proteasome System (UPS) is involved in the clearing of Aβ plaques. AD also involves impairment in UPS. The novel disease-modifying approaches involve inhibition of beta and gamma secretases. A number of clinical trials are going on worldwide with moieties targeting beta and gamma secretases. This chapter deals with an overview of APP and its enzymatic cleavage leading to AD.
APA, Harvard, Vancouver, ISO, and other styles
6

Sonawane, Kailas Dashrath, and Maruti Jayram Dhanavade. "Molecular Docking Technique to Understand Enzyme-Ligand Interactions." In Pharmaceutical Sciences, 727–46. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-1762-7.ch028.

Full text
Abstract:
Molecular docking has advanced to such an extent that one can rapidly and accurately identify pharmaceutically useful lead compounds. It is being used routinely to understand molecular interactions between enzyme and ligand molecules. Several computational approaches are combined with experimental work to investigate molecular mechanisms in detail at the atomic level. Molecular docking method is also useful to investigate proper orientation and interactions between receptor and ligand. In this chapter we have discussed protein-protein approach to understand interactions between enzyme and amyloid beta (Aß) peptide. The Aß peptide is a causative agent of Alzheimer's disease. The Aß peptides can be cleaved specifically by several enzymes. Their interactions with Aß peptide and specific enzyme can be investigated using molecular docking. Thus, the molecular information obtained from docking studies might be useful to design new therapeutic approaches in treatment of Alzheimer's as well as several other diseases.
APA, Harvard, Vancouver, ISO, and other styles
7

Sonawane, Kailas Dashrath, and Maruti Jayram Dhanavade. "Molecular Docking Technique to Understand Enzyme-Ligand Interactions." In Methods and Algorithms for Molecular Docking-Based Drug Design and Discovery, 246–66. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-5225-0115-2.ch010.

Full text
Abstract:
Molecular docking has advanced to such an extent that one can rapidly and accurately identify pharmaceutically useful lead compounds. It is being used routinely to understand molecular interactions between enzyme and ligand molecules. Several computational approaches are combined with experimental work to investigate molecular mechanisms in detail at the atomic level. Molecular docking method is also useful to investigate proper orientation and interactions between receptor and ligand. In this chapter we have discussed protein-protein approach to understand interactions between enzyme and amyloid beta (Aß) peptide. The Aß peptide is a causative agent of Alzheimer's disease. The Aß peptides can be cleaved specifically by several enzymes. Their interactions with Aß peptide and specific enzyme can be investigated using molecular docking. Thus, the molecular information obtained from docking studies might be useful to design new therapeutic approaches in treatment of Alzheimer's as well as several other diseases.
APA, Harvard, Vancouver, ISO, and other styles
8

Díaz, Mario, and Raquel Marin. "Lipid Rafts and Development of Alzheimer’s Disease." In Cerebral and Cerebellar Cortex – Interaction and Dynamics in Health and Disease. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.94608.

Full text
Abstract:
A wealth of evidence accumulated over the last two decades has unambiguously linked lipid rafts to neurodegenerative diseases, in particular to Alzheimer’s disease (AD). These microdomains are highly dynamic membrane platforms with differentiated physicochemical and molecular properties compared to the surrounding membrane microenvironment, and are the locus for a number of central processes in neuronal physiology. Most recent evidence pinpoint to lipid rafts as main players in AD neuropathology. It is now widely accepted that lipid rafts actively participate in the processing of amyloid precursor protein to generate amyloid beta peptides, a main component of amyloid plaques. Current evidence have highlighted the existence of severe alterations in the molecular structure and functionality of lipid rafts in the frontal cortex of human brains affected by Alzheimer’s disease. An exceptionally interesting observation is that lipid raft destabilization can be demonstrated even at the earliest stages of AD neuropathology. In the present review, we will first elaborate on the structure and function of these multifaceted subcellular structures and second to focus on the impact of their alterations in neuronal pathophysiology along the onset and progression of AD continuum.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Amyloid-beta peptide (A-beta)"

1

Gonçalves, Brenda, Isadora Ribeiro, Thamires Magalhães, Christian Gerbelli, Luciana Pimentel Silva, Helena Joaquim, Leda Talib, Orestes Forlenza, and Marcio Balthazar. "NEUROPSYCHOLOGICAL TESTS AS PREDICTORS OF CONVERSION TO ALZHEIMER’S DISEASE IN BETA-AMYLOID POSITIVE INDIVIDUALS." In XIII Meeting of Researchers on Alzheimer's Disease and Related Disorders. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1980-5764.rpda007.

Full text
Abstract:
Background: amnestic Mild Cognitive Impairment (aMCI) refers to a possibletransitional stage between healthy aging and dementia and has an increased chance of converting to Alzheimer’s disease (AD). Objectives: to assess whether neuropsychological tests can predict the conversion to AD in patients with aMCI and altered CSF amyloid peptide (βA+). Methods: 48 individuals underwent neuropsychological assessment (time 0 and time 1), being 18 healthy controls and 30 aMCI βA+, who performed a single CSF collection (time 0). All subjects with aMCI scored 0.5 in the Memory category of the Clinical Dementia Rating (CDR) test, and we considered the conversion to AD if the overall score changed from 0.5 to 1. We performed different additional univariate analyses with MANOVAs to differentiate between groups. Results : 8 subjects converted to AD (converters), and 22 remained stable (non-converters). The converters performed worse in the sub-item test Recognition of Rey Auditory Verbal Learning Test (RAVLT) compared to controls and non-converters (F = 14,58, p <0,001). Conclusions: the Recognition task of the RAVLT was able to differentiate aMCI βA+ individuals who converted to AD in our sample, which was not observed in the other investigated tests. We suggest additional studies with larger sample sizes and validation cohorts to contribute to our findings.
APA, Harvard, Vancouver, ISO, and other styles
2

Mendonça, Pedro Henrique Carvalho Furtado de, Fernanda Rabello Detoni, Letícia Silva Brandão dos Santos, Talita Cardoso Gomes, and Ivan Magalhães Viana. "Monoclonal antibodies in the treatment of Alzheimer’s disease: a literature review." In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.597.

Full text
Abstract:
Background: Alzheimer’s disease (AD) is a neurodegenerative disorder, whose treatment is limited to drugs that offer comfort to the patient. Immunotherapy with monoclonal antibodies (mAbs) has been the subject of a study with the promise of reversing cognitive deficits. In this scenario, we conducted a systematic review to elucidate aspects about the effectiveness of such treatment. Objectives: Analyze the prognostic of patients with AD through immunotherapy using anti-amilody mAbs. Methods: It was used the PubMed database using the descriptors: “Amyloid beta-Peptides AND Alzheimer disease AND Immunotherapy”. Filters: clinical trial, randomized controlled trial. 6 articles from 2015 to 2021 were selected. Inclusion criteria: (1) mAbs as treatment for AD; (2) Analyze the prognostic. Results: The immunotherapy with bapineuzumab and solanezumab didn’t showed no statistically significant difference between the groups of bapineuzumab 0,5 mg / kg (p = 0,979) and placebo (p = 0,973) and a change of 6.65 in the solanezumab group and 7.44 in the placebo group (difference, −0.80; P = 0 , 10). However, subcutaneous treatment of bapineuzumab exhibited fewer abnormalities of images related to amyloid with edema or effusion (AIRA), so, better tolerated compared to intravenous treatment. In the study with the ABvac40 vaccine, about 92% of the individuals in the test group developed specific anti-Aβ 40 antibodies. Conclusion: Bapineuzumab and solanezumab didn’t achieve significant results in the reduction of cognitive decline, however bapineuzumab enabled the prevention of Aβ aggregation. However, the use of mAbs can trigger collateral effects, requiring an individual analysis.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography