Academic literature on the topic 'Amplitude variation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Amplitude variation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Amplitude variation"
Yu, Gary. "Offset‐amplitude variation and controlled‐amplitude processing." GEOPHYSICS 50, no. 12 (December 1985): 2697–708. http://dx.doi.org/10.1190/1.1441890.
Full textNeidell, Norman S. "Amplitude variation with offset." Leading Edge 5, no. 3 (March 1986): 47–51. http://dx.doi.org/10.1190/1.1439241.
Full textLi, Jun, H. Jay Zwally, Helen Cornejo, and Donghui Yi. "Seasonal variation of snow-surface elevation in North Greenland as modeled and detected by satellite radar altimetry." Annals of Glaciology 37 (2003): 233–38. http://dx.doi.org/10.3189/172756403781815889.
Full textCarey, M. G., S. S. Al-Zaiti, T. M. Kozik, H. Schell-Chaple, and M. M. Pelter. "QRS Amplitude Variation During Monitoring." American Journal of Critical Care 25, no. 1 (December 31, 2015): 97–98. http://dx.doi.org/10.4037/ajcc2016791.
Full textSzabados, L. "New Ways of Revealing Cepheid Binaries." International Astronomical Union Colloquium 139 (1993): 406–7. http://dx.doi.org/10.1017/s0252921100118068.
Full textDeepa, V., G. Ramkumar, M. Antonita, K. K. Kumar, and M. N. Sasi. "Vertical propagation characteristics and seasonal variability of tidal wind oscillations in the MLT region over Trivandrum (8.5° N, 77° E): first results from SKiYMET Meteor Radar." Annales Geophysicae 24, no. 11 (November 21, 2006): 2877–89. http://dx.doi.org/10.5194/angeo-24-2877-2006.
Full textGeiss, E., N. Petersen, and U. Bleil. "Amplitude variation of marine magnetic anomalies." Geologische Rundschau 78, no. 3 (October 1989): 741–52. http://dx.doi.org/10.1007/bf01829319.
Full textBier, M., K. S. Kits, and J. G. Borst. "Relation between rise times and amplitudes of GABAergic postsynaptic currents." Journal of Neurophysiology 75, no. 3 (March 1, 1996): 1008–12. http://dx.doi.org/10.1152/jn.1996.75.3.1008.
Full textRishbeth, H., K. J. F. Sedgemore-Schulthess, and T. Ulich. "Semiannual and annual variations in the height of the ionospheric F2-peak." Annales Geophysicae 18, no. 3 (March 31, 2000): 285–99. http://dx.doi.org/10.1007/s00585-000-0285-6.
Full textStening, R. J., and C. Jacobi. "Lunar tidal winds in the upper atmosphere over Collm." Annales Geophysicae 18, no. 12 (December 31, 2000): 1645–50. http://dx.doi.org/10.1007/s00585-001-1645-6.
Full textDissertations / Theses on the topic "Amplitude variation"
Wahl, Linda Marie. "Sources of quantal variance in synaptic transmission." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318451.
Full textWalia, Rakesh Kumar. "Effect of horizon roughness on lateral continuity and amplitude variation of deeper reflections." Thesis, University of Southampton, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242226.
Full textAbdulrahman, Hazha, and Aaron Mach. "Does photographic documentation of the position of the recording electrodes decrease motor amplitude variation in electroneurography?" Thesis, Uppsala University, Department of Medical Biochemistry and Microbiology, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-106405.
Full textIt is known that there is an intraindividual amplitude variation in motor electroneurography when the same person is examined at different times. This variation affects the evaluation the status of the patient. The aim of this study was to investigate if the intraindividual amplitude variation decreased by photographing the electrode position, that later is used in the follow-up study. Twenty test persons were examined by four laboratory scientists. The nerves that were examined were median, ulnar, peroneal and tibial nerve. At the first examination the laboratory scientists used method guidelines and took photographs of the electrode position. The photographs were then used in the follow-up. The results showed that there was an indication of decreased of the intraindividual amplitude variation when photographic documentation was used instead of method guidelines.
Butterfield, Andrei. "Characterization of a Utica Shale Reflector Package Using Well Log Data and Amplitude Variation with Offset Analysis." Wright State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=wright1401462908.
Full textGough, H. "The latitudinal variation of geomagnetic pulsation amplitude and phase : A model of the magnetosphere and a study of two selected intervals." Thesis, University of York, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.354381.
Full textMurchek, Jacob T. "Pre-Stack Seismic Inversion and Amplitude Variation with Offset (AVO) Attributes as Hydrocarbon Indicators in Carbonate Rocks: A Case Study from the Illinois Basin." Wright State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=wright1620214269732212.
Full textLe, Duff Alain. "Contribution à l'estimation paramétrique de signaux à variation sinusoi͏̈dale de la fréquence instantanée et à amplitude variable : application à l'anémométrie laser Doppler pour l'acoustique." Le Mans, 2003. http://cyberdoc.univ-lemans.fr/theses/2003/2003LEMA1012.pdf.
Full textLaser Doppler Anemometry (LDA), which is widely used in fluid mechanics, can also be used in order to measure acoustic particle velocity. The knowledge of this vector quantity could be especially useful to characterize a complex acoustic field, allowing for example the study of phenomena close to vibrating surfaces or around duct discontinuities. In addition, LDA ensures, for this kind of problem, theoretically non-invasive velocity measurements with an excellent spatial résolution. The Laboratoire d'Acoustique de l'Université du Maine (LAUM) is equipped with a system designed for acoustic velocity measurement. For nearly eight years, research has been directed towards the experimental assessment of this technique and the development of signal processing methods based on post-processing techniques, with the assomption of a constant amplitude Doppler signal. However, in order to design a more integrated set-up, furthermore easy to manipulate, it is essential to design a system providing real-time measurements of acoustic velocity and taking into account the varying amplitude of the Doppler signal. This research work offers signal processing methods adapted to the estimation of acoustic particle velocity, for a sine-wave excitation, and defines hardware and software architectures suited to this measurement. The latter is performed with the help of the in-phase and the quadrature components of the Doppler signal, which is downshifted thanks to an analog quadrature demodulation technique especially designed for this application. Three estimators are then proposed: the first is based on the Doppler phase derivation, and is the starting point of a second method based on maximum likelihood estimation. The extended Kalman filter is the third method explored. Finally, the approximated, though accurate, analytical forms of the Cramer-Rao bounds show the influence of the parameters on the quality of the estimations. Estimator performance is then illustrated by means of statistical Monte-Carlo simulations. An assessment of the complexity of these algorithms also supplements this evaluation. Finally, the assessment of the estimation technique is obtained thanks to two experiments. Firstly, the measurement of the sinusoidal velocity of the displacement of a needle assembled in a vibration exciter allows the comparison of the results obtained by LDA with those obtained with a laser vibrometer. Then, the measurement of the acoustic particle velocity field radiated by a loudspeaker, is proposed. The measurements obtained in free field by LDA are then compared with the reference velocities obtained using a sound intensity probe
Zeiler, Cleat Philip. "Improving nuclear explosion detection using seismic and geomorphic data sets." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2008. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.
Full textLE, DUFF Alain. "Contribution à l'estimation paramétrique de signaux à variation sinusoïdale de la fréquence instantanée et à amplitude variable : application à l'anémométrie laser à effet Doppler pour l'acoustique." Phd thesis, Université du Maine, 2003. http://tel.archives-ouvertes.fr/tel-00004877.
Full textLe Laboratoire d'Acoustique de l'Université du Maine est équipé d'un banc de mesure conçu pour la mesure de vitesse acoustique. Depuis près de huit ans, les recherches se sont orientées vers la validation expérimentale de cette technique ainsi que vers l'élaboration de méthodes de traitement des signaux propres à extraire la vitesse particulaire dans un contexte de traitement différé et avec l'hypothèse d'un signal Doppler d'amplitude constante. Cependant, pour que l'ALD soit exploitable efficacement il est indispensable de concevoir un système de mesure, simple d'utilisation, permettant d'accéder rapidement à la vitesse acoustique et prenant en compte la nature variable de l'amplitude du signal Doppler.
L'objectif de cette étude est donc de proposer des méthodes de traitement du signal adaptées à l'estimation de la vitesse particulaire acoustique, dans le cas d'une excitation sinusoïdale, et de définir une architecture matérielle et logicielle indispensable à cette mesure. Celle-ci s'opère à partir des composantes en phase et en quadrature du signal Doppler ramenées en bande de base à l'aide d'un dispositif de démodulation analogique spécialement développé pour cette application. Trois estimateurs sont alors proposés : le premier est basé sur le calcul de la dérivée de la phase du signal Doppler. Sa principale vocation consiste à initialiser une deuxième méthode d'estimation basée sur la recherche du maximum de vraisemblance. Le filtrage de Kalman étendu constitue la troisième méthode explorée. Enfin, les formes analytiques, approchées mais précises, des bornes de Cramer-Rao montrent l'influence des paramètres du problème sur la qualité des estimations. Par la suite, des simulations statistiques de Monte-Carlo permettent d'évaluer la qualité des trois méthodes. Une estimation sommaire des complexités algorithmiques des estimateurs complète également cette phase d'évaluation.
Enfin, la validation expérimentale des techniques d'estimation s'articule autour de deux expériences. Dans un premier temps, la mesure de la vitesse de déplacement sinusoïdale d'une pointe d'aiguille montée dans un pot vibrant permet de confronter les résultats obtenus par ALD à ceux que donne un vibromètre laser. Dans un second temps, la mesure de vitesses particulaires acoustiques rayonnées par un haut-parleur électrodynamique, est proposée. Les valeurs issues de la mesure en champ libre par ALD sont alors comparées à celles des vitesses de référence obtenues à l'aide de la méthode du doublet microphonique.
Çiftçi, Canan Kamacı Züheyr. "Açılıma bağlı reflektivite analizi /." Isparta : SDÜ Fen Bilimleri Enstitüsü, 2008. http://tez.sdu.edu.tr/Tezler/TF01227.pdf.
Full textBooks on the topic "Amplitude variation"
Seismic inverse Q filtering. Malden, MA: Blackwell Pub., 2008.
Find full text1947-, McCormack M. D., Neitzel E. B, and Winterstein D. F, eds. Multicomponent seismology in petroleum exploration. Tulsa, OK: Society of Exploration Geophysicists, 1991.
Find full textBurgos Gil, José I. (José Ignacio), 1962- editor, ed. Feynman amplitudes, periods, and motives: International research conference on periods and motives : a modern perspective on renormalization : July 2-6, 2012, Institute de Ciencias Matematicas, Madris, Spain. Providence, Rhode Island: American Mathematical Society, 2015.
Find full textSimm, Rob, and Mike Bacon. Seismic Amplitude: An Interpreter's Handbook. Cambridge University Press, 2014.
Find full textAllen, James L., and Carolyn P. Peddy. Amplitude Variation With Offset: Gulf Coast Case Studies (Geophysical Development, Vol 4). Society of Exploration Geophysicists, 1993.
Find full textWassermann, Eric M. Inter- and intra-individual variation in the response to TMS. Edited by Charles M. Epstein, Eric M. Wassermann, and Ulf Ziemann. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780198568926.013.0026.
Full textSeismic Amplitude Inversion in Reflection Tomography (Handbook of Geophysical Exploration: Seismic Exploration). Pergamon, 2003.
Find full textRamsay, James. Curve registration. Edited by Frédéric Ferraty and Yves Romain. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199568444.013.9.
Full textWang, Yanghua. Seismic Inverse Q Filtering. Wiley & Sons, Incorporated, John, 2009.
Find full textWang, Bin. Intraseasonal Modulation of the Indian Summer Monsoon. Oxford University Press, 2018. http://dx.doi.org/10.1093/acrefore/9780190228620.013.616.
Full textBook chapters on the topic "Amplitude variation"
Maurya, S. P., N. P. Singh, and K. H. Singh. "Amplitude Variation with Offset (AVO) Inversion." In Seismic Inversion Methods: A Practical Approach, 107–43. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45662-7_5.
Full textPararó, M., J. Pena, R. Peniche, C. Ibanoglu, Z. Tunca, and S. Evren. "Short-Term Amplitude Variation of FM COM (=HR 4684)." In Nonlinear Phenomena in Stellar Variability, 185–87. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1062-4_27.
Full textDróżdż, Artur, and Witold Elsner. "Convection Velocity Variation as a Result of Amplitude Modulation Phenomena." In Springer Proceedings in Physics, 33–38. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57934-4_5.
Full textGiron, S. M., S. H. Hwang, T. Song, K. Rhee, and G. Khang. "Perception Caused by Current Amplitude Variation in Electro-Tactile Stimulation." In IFMBE Proceedings, 1190–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23508-5_308.
Full textDing, Haiyan, and Datian Ye. "Tracking the Amplitude Variation of Evoked Potential by ICA and WT." In Lecture Notes in Computer Science, 459–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-28648-6_73.
Full textCarriou, Vincent, Mariam Al Harrach, Jeremy Laforet, and Sofiane Boudaoud. "Sensitivity Analysis of HD-sEMG Amplitude Descriptors Relative to Grid Parameter Variation." In XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016, 119–23. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32703-7_25.
Full textKantesaria, Naman, and Ajanta Sachan. "Cyclic Shear Behaviour of High Plasticity Cohesive Soil Subjected to Variation of Frequency and Amplitude." In Challenges and Innovations in Geomechanics, 236–43. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64514-4_18.
Full textRoy, Anik, and Santanu Phadikar. "Automatic Segmentation of Spoken Word Signals into Letters Based on Amplitude Variation for Speech to Text Transcription." In Advances in Intelligent Systems and Computing, 621–28. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2247-7_63.
Full textBuchler, J. Robert, Marie-Jo Goupil, and Thierry Serre. "Amplitude Variations in Rotationally Split Multiplets." In Pulsation, Rotation and Mass Loss in Early-Type Stars, 87–88. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1030-3_26.
Full textBarrett, P., and E. Schlegel. "Variations of the Soft X-Ray Spin Amplitude in TV Col." In Cataclysmic Variables, 470. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0335-0_126.
Full textConference papers on the topic "Amplitude variation"
Yu, G. J. "Controlled Amplitude Processing and Offset Amplitude Variation." In Offshore Technology Conference. Offshore Technology Conference, 1985. http://dx.doi.org/10.4043/4932-ms.
Full textYu, Gary. "Offset amplitude variation and controlled amplitude processing." In 1985 SEG Technical Program Expanded Abstracts. SEG, 1985. http://dx.doi.org/10.1190/1.1892802.
Full textPfitzinger, Hartmut R., and Christian Kaernbach. "Amplitude and amplitude variation of emotional speech." In Interspeech 2008. ISCA: ISCA, 2008. http://dx.doi.org/10.21437/interspeech.2008-322.
Full textAl-Shuhail, A. A., and A. K. Popoola. "Transmission Amplitude Variation with Offset (TAVO)." In Borehole Geophysics Workshop II. Netherlands: EAGE Publications BV, 2013. http://dx.doi.org/10.3997/2214-4609.20142593.
Full textSarkar, Debashish, and Bob Baumel. "Velocity analysis in the presence of amplitude variation." In SEG Technical Program Expanded Abstracts 2000. Society of Exploration Geophysicists, 2000. http://dx.doi.org/10.1190/1.1815937.
Full textWang, Bo, Yang Liu, Cai Liu, and Dian Wang. "Velocity analysis for amplitude variation using Duffing chaotic system." In SEG Technical Program Expanded Abstracts 2016. Society of Exploration Geophysicists, 2016. http://dx.doi.org/10.1190/segam2016-13853191.1.
Full textMeneses-Fabian, Cruz, and Uriel Rivera-Ortega. "Three beams phase-shifting interferometry by their amplitude variation." In Eighth Symposium Optics in Industry, edited by Eric Rosas, Norberto Arzate, Ismael Torres, and Juan Sumaya. SPIE, 2011. http://dx.doi.org/10.1117/12.913313.
Full textSayidmarie, K. H., and Mohammed N. Saghurchy. "Array beam scanning by variation of elements amplitude-only excitations." In 2011 IEEE 4th International Symposium on Microwave, Antenna, Propagation, and EMC Technologies for Wireless Communications (MAPE). IEEE, 2011. http://dx.doi.org/10.1109/mape.2011.6156133.
Full textLeier, Mairo, Gert Jervan, and Wilhelm Stork. "Respiration signal extraction from photoplethysmogram using pulse wave amplitude variation." In ICC 2014 - 2014 IEEE International Conference on Communications. IEEE, 2014. http://dx.doi.org/10.1109/icc.2014.6883869.
Full textLuo, C., X. Li, G. Huang, and H. Dai. "Amplitude Variation with Angle Inversion Based on Propagator Matrix Modelling." In 80th EAGE Conference and Exhibition 2018. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201800669.
Full textReports on the topic "Amplitude variation"
Freeman, III, Thomas D. Analysis of Background Gamma-Radiation Amplitude Variation at U.S. Ports of Entry. Office of Scientific and Technical Information (OSTI), July 2014. http://dx.doi.org/10.2172/1171450.
Full textFarrell, B. F. Role of baroclinic wave amplitude and transport variation in climate change. Final report. Office of Scientific and Technical Information (OSTI), April 1998. http://dx.doi.org/10.2172/582181.
Full textSiekhaus, W. J., and W. McLean. Tables of Exponentially Averaged Temperature 'NT0' to Represent Reactions Bexp[-A/(R{T0+T1*sin[month*2π/12]})] with Sinosoidal Temperature Variations of Amplitude T1 around T0 as Bexp[-A/(R'NT0')]. Office of Scientific and Technical Information (OSTI), November 2014. http://dx.doi.org/10.2172/1178381.
Full text