Academic literature on the topic 'Amortized complexity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Amortized complexity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Amortized complexity"
Tarjan, Robert Endre. "Amortized Computational Complexity." SIAM Journal on Algebraic Discrete Methods 6, no. 2 (April 1985): 306–18. http://dx.doi.org/10.1137/0606031.
Full textFeder, Tomás, Eyal Kushilevitz, Moni Naor, and Noam Nisan. "Amortized Communication Complexity." SIAM Journal on Computing 24, no. 4 (August 1995): 736–50. http://dx.doi.org/10.1137/s0097539792235864.
Full textNipkow, Tobias, and Hauke Brinkop. "Amortized Complexity Verified." Journal of Automated Reasoning 62, no. 3 (March 13, 2018): 367–91. http://dx.doi.org/10.1007/s10817-018-9459-3.
Full textKingston, Jeffrey H. "The amortized complexity of Henriksen's algorithm." BIT 26, no. 2 (June 1986): 156–63. http://dx.doi.org/10.1007/bf01933741.
Full textBahendwar, Isha Ashish, Ruchit Purshottam Bhardwaj, and Prof S. G. Mundada. "Amortized Complexity Analysis for Red-Black Trees and Splay Trees." International Journal of Innovative Research in Computer Science & Technology 6, no. 6 (November 2018): 121–28. http://dx.doi.org/10.21276/ijircst.2018.6.6.2.
Full textCramer, Ronald, Ivan Damgård, and Marcel Keller. "On the Amortized Complexity of Zero-Knowledge Protocols." Journal of Cryptology 27, no. 2 (January 31, 2013): 284–316. http://dx.doi.org/10.1007/s00145-013-9145-x.
Full textNAVARRO, GONZALO, RODRIGO PAREDES, PATRICIO V. POBLETE, and PETER SANDERS. "STRONGER QUICKHEAPS." International Journal of Foundations of Computer Science 22, no. 04 (June 2011): 945–69. http://dx.doi.org/10.1142/s0129054111008507.
Full textHiary, Ghaith A. "An amortized-complexity method to compute the Riemann zeta function." Mathematics of Computation 80, no. 275 (January 25, 2011): 1785–96. http://dx.doi.org/10.1090/s0025-5718-2011-02452-x.
Full textHoogerwoord, Rob R. "Functional Pearls A symmetric set of efficient list operations." Journal of Functional Programming 2, no. 4 (October 1992): 505–13. http://dx.doi.org/10.1017/s0956796800000526.
Full textDumitrescu, Adrian. "A Selectable Sloppy Heap." Algorithms 12, no. 3 (March 6, 2019): 58. http://dx.doi.org/10.3390/a12030058.
Full textBooks on the topic "Amortized complexity"
Sundar, R. Amortized complexity of data structures. New York: Courant Institute of Mathematical Sciences, New York University, 1991.
Find full textBook chapters on the topic "Amortized complexity"
Nipkow, Tobias. "Amortized Complexity Verified." In Interactive Theorem Proving, 310–24. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22102-1_21.
Full textRoland, Jérémie, and Mario Szegedy. "Amortized Communication Complexity of Distributions." In Automata, Languages and Programming, 738–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02927-1_61.
Full textFiedor, Tomáš, Lukáš Holík, Adam Rogalewicz, Moritz Sinn, Tomáš Vojnar, and Florian Zuleger. "From Shapes to Amortized Complexity." In Lecture Notes in Computer Science, 205–25. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-73721-8_10.
Full textNikishkin, Vladimir. "Amortized Communication Complexity of an Equality Predicate." In Computer Science – Theory and Applications, 212–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38536-0_19.
Full textCascudo, Ignacio, Ronald Cramer, Chaoping Xing, and Chen Yuan. "Amortized Complexity of Information-Theoretically Secure MPC Revisited." In Lecture Notes in Computer Science, 395–426. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96878-0_14.
Full textSoisalon-Soininen, Eljas, and Peter Widmayer. "Amortized Complexity of Bulk Updates in AVL-Trees." In Algorithm Theory — SWAT 2002, 439–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45471-3_45.
Full textCramer, Ronald, and Ivan Damgård. "On the Amortized Complexity of Zero-Knowledge Protocols." In Advances in Cryptology - CRYPTO 2009, 177–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03356-8_11.
Full textGolowich, Noah, and Madhu Sudan. "Round Complexity of Common Randomness Generation: The Amortized Setting." In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 1076–95. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2020. http://dx.doi.org/10.1137/1.9781611975994.66.
Full textCramer, Ronald, Ivan Damgård, and Valerio Pastro. "On the Amortized Complexity of Zero Knowledge Protocols for Multiplicative Relations." In Lecture Notes in Computer Science, 62–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32284-6_4.
Full textCramer, Ronald, Ivan Damgård, Chaoping Xing, and Chen Yuan. "Amortized Complexity of Zero-Knowledge Proofs Revisited: Achieving Linear Soundness Slack." In Lecture Notes in Computer Science, 479–500. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56620-7_17.
Full textConference papers on the topic "Amortized complexity"
Baig, Mirza Ahad, Danny Hendler, Alessia Milani, and Corentin Travers. "Long-Lived Snapshots with Polylogarithmic Amortized Step Complexity." In PODC '20: ACM Symposium on Principles of Distributed Computing. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3382734.3406005.
Full textEllen, Faith, Panagiota Fatourou, Joanna Helga, and Eric Ruppert. "The amortized complexity of non-blocking binary search trees." In the 2014 ACM symposium. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2611462.2611486.
Full textSamorodnitsky, Alex, and Luca Trevisan. "A PCP characterization of NP with optimal amortized query complexity." In the thirty-second annual ACM symposium. New York, New York, USA: ACM Press, 2000. http://dx.doi.org/10.1145/335305.335329.
Full textGiakkoupis, George, and Philipp Woelfel. "Randomized Mutual Exclusion with Constant Amortized RMR Complexity on the DSM." In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2014. http://dx.doi.org/10.1109/focs.2014.60.
Full textChan, David Yu Cheng, and Philipp Woelfel. "Recoverable Mutual Exclusion with Constant Amortized RMR Complexity from Standard Primitives." In PODC '20: ACM Symposium on Principles of Distributed Computing. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3382734.3405736.
Full textGiakkoupis, George, and Philipp Woelfel. "Randomized Abortable Mutual Exclusion with Constant Amortized RMR Complexity on the CC Model." In PODC '17: ACM Symposium on Principles of Distributed Computing. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3087801.3087837.
Full text