Dissertations / Theses on the topic 'Amorphous Silicon (a-Si:H)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 20 dissertations / theses for your research on the topic 'Amorphous Silicon (a-Si:H).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Tam, Wai Keung. "Effect of thermal annealing on Si-H bonds and dangling bonds in amorphous silicon." HKBU Institutional Repository, 2006. http://repository.hkbu.edu.hk/etd_ra/717.
Full textRéaux, David. "Cellules photovoltaïques à hétérojonctions de silicium (a-Si˸H/c-Si) : modélisation des défauts et de la recombinaison à l'interface." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS174/document.
Full textSilicon heterojunction (Si- HET) solar cells are based on an n-doped (p-doped) crystalline silicon (c-Si) substrate, a very thin (a few nanometers) passivation layer of undoped hydrogenated amorphous silicon (a-Si:H) and a layer of p-doped (n-doped) a-Si:H, approximately 10 nanometer- thick. These cells currently lead the performance of silicon solar cells with conversion efficiencies in the order of 26% (with a record of 26.6% being achieved by the Kaneka company in 2017). One of the major focal points of research in Si- HET cells is the study of the c-Si/a-Si:H interface, which is a key factor in the cells' efficiency. In particular, this efficiency is strongly dependent on the recombination states at the interface between c-Si and a-Si:H. We therefore focused on developing a model of recombination through interface defects, which were evaluated based on the Defect-Pool Model (DPM) in a-Si:H. We calculated the effective lifetime vs excess carrier density curves and their dependence on the undoped a-Si:H passivation layer thickness and compared them to experimental results.In order to determine the characteristics of the c-Si/a-Si:H interface, we proceeded as follows: (1) Calculation of the volumic density of states (DOS) in a-Si:H layers (doped and undoped) using the DPM. In this model, the DOS varies as a function of the position of the Fermi level in relation to the band edge. The band bending at the a-Si:H/c-Si interface thus implies a spatial variation of the DOS in a-Si:H. (2) Calculation of the surface DOS at the interface by projection from the volumic states present in a-Si:H at the interface. (3) Calculation of the recombination rates and of the effective lifetime curves for symmetrical a-Si:H/c-Si/a-Si:H structures and comparison with experimental results. Thus we were able to study the impact of material parameters of a-Si:H on the effective lifetime curves. The change in lifetime as a function of a-Si:H parameters is sometimes counter-intuitive because two passivation mechanisms, namely passivation by field-effect or by the reduction of the DOS at the a-Si:H/c-Si interface, have opposed behavior in relation to the position of the Fermi level at the interface. A simple calculation of the DOS at the interface is not, therefore, sufficient to explain variations in lifetime, and a complete calculation of effective lifetime under illumination is required and has been performed. We demonstrate that the impact of certain DPM parameters may have a significant effect on the DOS but only a minor effect on the effective lifetime due to the compensation by the field-effect passivation. Moreover we have studied both types of silicon heterojunctions, (p)a-Si:H/(i)a-Si:H/(n)c-Si(PIn), and (n)a-Si:H/(i)a-Si:H/(n)c-Si(NIn) that are used as front emitter and back surface field junctions, respectively, in double-side contacted silicon Si-HET solar cells. Our simulations allowed us to emphasize that NIn interfaces are less critical in terms of recombination than PIn interfaces. We demonstrate that recombination at PIn interfaces is dominated by the capture of electrons by positively charged silicon dangling bonds. We further show that the Urbach energy is the major a-Si:H parameter that determines the effective lifetime in Si-HET solar cells and that the use of fixed values for this Urbach energy in the passivation layer whatever the layer thickness does not permit the experimental trends of PIn interfaces to be reproduced. Instead, we propose a model featuring that the Urbach energy decreases with the thickness of the passivation layer, which does allow experimental trends to be reproduced for very thin passivation layers (< 10 nm), but which requires further elaboration for larger thicknesses, for instance with a combined bandgap variation
Martin, de Nicolas Silvia. "a-Si : H/c-Si heterojunction solar cells : back side assessment and improvement." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112253/document.
Full textAmongst available silicon-based photovoltaic technologies, a-Si:H/c-Si heterojunctions (HJ) have raised growing attention because of their potential for further efficiency improvement and cost reduction. In this thesis, research on n-type a-Si:H/c-Si heterojunction solar cells developed at the Institute National de l’Énergie Solaire is presented. Technological and physical aspects of HJ devices are reviewed, with the focus on the comprehension of the back side role. Then, an extensive work to optimise amorphous layers used at the rear side of our devices as well as back contact films is addressed. Through the development and implementation of high-quality intrinsic and n-doped a-Si:H films on HJ solar cells, the needed requirements at the back side of devices are established. A comparison between different back surface fields (BSF) with and without the inclusion of a buffer layer is presented and resulting solar cell output characteristics are discussed. A discussion on the back contact of HJ solar cells is also presented. A new back TCO approach based on boron-doped zinc oxide (ZnO:B) layers is studied. With the aim of developing high-quality ZnO:B layers well-adapted to their use in HJ devices, different deposition parameters as well as post-deposition treatments such as post-hydrogen plasma or excimer laser annealing are studied, and their influence on solar cells is assessed. Throughout this work it is evidenced that the back side of HJ solar cells plays an important role on the achievement of high efficiencies. However, the enhancement of the overall device performance due to the back side optimisation is always dependent on phenomena taking place at the front side of devices. The use of the optimised back side layers developed in this thesis, together with improved front side layers and a novel metallisation approach have permitted a record conversion efficiency over 22%, thus demonstrating the great potential of this technology
Favre, Wilfried. "Silicium de type n pour cellules à hétérojonctions : caractérisations et modélisations." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00635222.
Full textLarbi, Fadila. "Traitement de couches minces et de dispositifs à base de a-Si : H par un plasma d'hydrogène : Etude in situ par ellipsométrie spectroscopique." Thesis, Reims, 2014. http://www.theses.fr/2014REIMS010/document.
Full textThis work is a contribution to the study of the interaction between hydrogenated amorphous silicon (a-Si:H) thin films and hydrogen plasma in a PECVD (Plasma Enhanced Chemical Vapor Deposition) reactor. The kinetics of silicon etching by atomic hydrogen is monitored in situ by UV - visble ellipsometry .Several plasma parameters (temperature, RF power, H2 gas pressure, the doping of the material) that may impact the kinetics were probed. An analysis of the spectroscopic ellipsometry spectra, thanks to an appropriate optical model, allowed evidencing their effects on the time constant, the thickness and the hydrogen excess of the H-modified layer.The same hydrogen plasma treatment repeated on i/p and i/n H base junctions revealed a particular behavior of the etching kinetics in the junction zone. This effect is interpreted in the frame of a simple of hydrogen diffusion model under an electric field
Pepenene, Refuoe Donald. "Macroscopic and Microscopic surface features of Hydrogenated silicon thin films." University of the Western Cape, 2018. http://hdl.handle.net/11394/6414.
Full textAn increasing energy demand and growing environmental concerns regarding the use of fossil fuels in South Africa has led to the challenge to explore cheap, alternative sources of energy. The generation of electricity from Photovoltaic (PV) devices such as solar cells is currently seen as a viable alternative source of clean energy. As such, crystalline, amorphous and nanocrystalline silicon thin films are expected to play increasingly important roles as economically viable materials for PV development. Despite the growing interest shown in these materials, challenges such as the partial understanding of standardized measurement protocols, and the relationship between the structure and optoelectronic properties still need to be overcome.
Bosco, Giácomo Bizinoto Ferreira 1987. "Photoluminescence of Tb3+ in a-Si3N4:H prepared by reactive RF-Sputtering and ECR PECVD = Fotoluminescência de Tb3+ em a-Si3N4:H preparado por RF-Sputtering reativo e ECR PECVD." [s.n.], 2017. http://repositorio.unicamp.br/jspui/handle/REPOSIP/322722.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin
Made available in DSpace on 2018-09-01T20:54:28Z (GMT). No. of bitstreams: 1 Bosco_GiacomoBizinotoFerreira_D.pdf: 9507140 bytes, checksum: 4980b29f48f98f8ff97e8a0a37b7577e (MD5) Previous issue date: 2017
Resumo: Este trabalho fornece caracterização ótica e estrutural de filmes finos compostos por nitreto de silício amorfo hidrogenado dopado com térbio (a-SiNx:H) ¿ crescidos por deposição química a vapor assistida por plasma gerado através de ressonância ciclotrônica de elétrons (ECR PECVD) e por pulverização catódica reativa em radiofrequência (reactive RF-Sputtering) ¿ com o propósito de avançar a investigação em fabricação de novos materiais e dos mecanismos da emissão de luz de íons de Tb quando diluídos em materiais baseados em silício. A fotoluminescência (PL) atribuída aos filmes de a-SiNx:H foi investigada em termos das condições de deposição e correlacionadas com suas propriedades estruturais e de recozimento pós-deposição. Entre as propriedades caracterizadas estão: estequiometria, taxa de deposição, índice de refração, coeficiente de extinção, bandgap ótico E04, concentração de térbio e vizinhança química presente ao redor de íons Tb3+. Concentrações de Tb da ordem de 1.8 at.% ou 1.4×?10?^21 at/cm^3 foram obtidas em amostras crescidas por Sputtering enquanto que concentrações de 14.0 at.%, ou da ordem ?10?^22 at/cm^3, puderam ser obtidas em amostras crescidas por ECR PECVD. Em Sputtering, a incorporação de Tb varia linearmente com a área recoberta por pastilhas de Tb4O7 em pó, enquanto que em PECVD, a incorporação de Tb é inversamente proporcional e pode ser ajustada sensivelmente pelo fluxo de gás SiH4. Forte emissão de luz, atribuída às transições eletrônicas em Tb3+ (PL do Tb), foi obtida em filmes não-recozidos que possuíam bandgap estequiométrico (E04 = 4.7 ± 0.4 eV and x = 1.5 ± 0.2). Espectros de PL do Tb não mostraram mudanças significativas no formato e na posição dos picos de emissão devido a alterações na temperatura de recozimento, nas condições de deposição ou entre amostras crescidas por diferentes técnicas de deposição. Entretanto, esses parâmetros influenciaram fortemente a intensidade da PL do Tb. Estudos da estrutura fina de absorção de raios-X (XAFS) em filmes crescidos por sputtering mostraram a estabilidade da vizinhança química ao redor dos íons Tb3+ mesmo em altas temperaturas (1100ºC). Investigações por sonda atômica tomográfica (APT) não encontraram formação de nanoclusters envolvendo ou não Tb, mesmo após recozimentos em altas temperaturas. Isso sugere que a excitação de Tb3+ deve ocorrer através da própria matriz hospedeira amorfa e não por mudanças no campo cristalino e, portanto, na força de oscilador das transições eletrônicas do Tb3+. Caracterização da densidade de ligações Si-H por espectroscopia infravermelha a transformada de Fourier (FTIR) em filmes recozidos em diferentes temperaturas foi relacionada com a intensidade da PL do Tb. Ela mostra que um decréscimo na densidade das ligações Si-H, que está relacionada a um aumento na concentração de ligações pendentes de Si (Si-dbs), resulta em filmes com maior intensidade na PL do Tb. Portanto, isso sugere que a excitação de Tb3+ parece acontecer através de transições envolvendo Si-dbs e estados estendidos, o que é consistente com o modelo de excitação Auger por defeitos (DRAE)
Abstract: This work offers optical and structural characterization of terbium (Tb) doped hydrogenated amorphous silicon nitrides thin films (a-SiNx:H) grown by electron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR PECVD) and reactive RF-Sputtering with the purpose of advancing the investigation in fabrication of novel materials and the mechanisms of light emission of Tb ions when embedded in Si-based materials. Photoluminescence (PL) of a-SiNx:H films were investigated and correlated with the deposition conditions, structural properties, and post-deposition thermal treatments (isochronal annealing under flow of N2). Among the characterized properties are: film stoichiometry, deposition rate, refractive index, extinction coefficient, optical bandgap, terbium concentration, and the chemical neighborhood around Tb ions. Tb concentrations of about 1.8 at.% or 1.4×?10?^21 at/cm^3 have been achieved in Sputtering system while concentrations of 14.0 at.%, or about ?10?^22 at/cm^3, could be achieved in ECR PECVD samples. In Sputtering, Tb incorporation varies linearly with the covered area of the Si target by Tb4O7 powder pellets, while in PECVD, Tb incorporation is inversely proportional to and can be sensitively adjusted through SiH4 gas flow. Bright PL attributed to Tb3+ electronic transitions (Tb PL) were obtained in as-deposited films with stoichiometric bandgaps (E04 = 4.7 ± 0.4 eV and x = 1.5 ± 0.2). The Tb PL spectra did not show any significant change in shape and in PL peak positions due to alterations in annealing temperature, deposition conditions or due to the used deposition method. However, these parameters strongly affected Tb PL intensity. Studies of X-ray absorption fine structure (XAFS) in Sputtering grown films show the stability of the chemical neighborhood around Tb3+ under annealing conditions even after thermal treatments at temperatures as high as 1100ºC. Atom probe tomography (APT) investigation also found no formation of nanoclusters of any type (involving Tb ions or not) after high temperature annealing treatments suggesting that Tb3+ excitation should come from the amorphous host matrix itself and not by changes in crystal field and thus in oscillator strength of Tb3+ electronic transitions. Fourier transform infrared spectroscopy (FTIR) characterization of Si-H bond density in films treated atin different annealing temperatures were crossed correlated with Tb PL intensity. It shows that a decrease in Si-H bond density, related to increase in Si dangling bonds (Si-dbs) concentration, results in greater Tb PL intensity. Thus, it suggests that excitation of Tb3+ happens through transitions involving silicon dangling bonds and extended states, consistent with the defect related Auger excitation model (DRAE)
Doutorado
Física
Doutor em Ciências
142174/2012-2
010308/2014-08
CNPQ
CAPES
Vergnat, Michel. "Hydrogénation d'alliages semi-conducteurs amorphes : Structure et propriétés électroniques des alliages amorphes hydrogènes SI::(1-X)SN::(X):H." Nancy 1, 1988. http://www.theses.fr/1988NAN10322.
Full textAKA, BOKO. "Photodecomposition sensibilisee au mercure du monosilane (hg-photo-cvd) : application au depot en couches minces de silicium amorphe hydrogene (a-si : h)." Université Louis Pasteur (Strasbourg) (1971-2008), 1989. http://www.theses.fr/1989STR13026.
Full textPehlivan, Ozlem. "Growth And Morphological Characterization Of Intrinsic Hydrogenated Amorphous Silicon Thin Film For A-si:h/c-si Heterojunction Solar Cells." Phd thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615488/index.pdf.
Full textChytyk-Praznik, Krista. "Dosimetric verification of radiation therapy including intensity modulated treatments, using an amorphous-silicon electronic portal imaging device." American Institute of Physics Publishing, 2006. http://hdl.handle.net/1993/5287.
Full textNobis, Frank. "Charakterisierung von a-Si:H/c-Si-Heterokontakten und dünnen Schichten aus hydrogenisiertem amorphem Silizium, hergestellt mittels gepulstem DC-Magnetronsputtern." Doctoral thesis, Universitätsbibliothek Chemnitz, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-127840.
Full textQuiroga, Jean-Manuel. "Étude des propriétés optiques de multicouches a-Si:H/a-SiO2." Grenoble 1, 1998. http://www.theses.fr/1998GRE10124.
Full textWu, Chien-Han, and 吳建翰. "Development of OPAMP and its Applications in Amorphous-Silicon (a-Si) TFT Technologies." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/81166388760660914999.
Full text國立臺灣大學
電子工程學研究所
97
With the advances in the fabrication technology, the liquid-crystal display (LCD) with amorphous-silicon (a-Si) active-matrix thin-film transistors (TFTs) is the most popular one due to its unparallel advantages in fabrication cost and productivity. In order to provide the control and driving signals for the display, a CMOS chipset is generally required. Recently, the concept of a system on glass (SOG) has been proposed. As the peripheral circuits are integrated with the pixel array on the same glass substrate, a compact system with low cost and high reliability can be realized. However, limited by the characteristics of the TFT devices, it is still a challenging task for designers to implement the integrated circuits in an a-Si TFT technology, especially for analog and mixed-signal building blocks. In this thesis, to alleviate the device limitations imposed on a-Si technologies, novel circuit topologies are developed. In Chapter 3, a gain-enhancement technique is introduced to the operational amplifier (OPAMP) while the small-signal gain can be boosted, facilitating circuit implementation in a-Si technologies. In Chapter 4, a differential-difference amplifier (DDA) and a low-pass filter (LPF) based on the proposed OPAMP are developed. In Chapter 5, a touch panel system modified by the conventional charge amplifier is presented for demonstration.
Tarn, Yi-Chuan, and 譚亦荃. "Design and Implementation of Analog Integrated Circuits in Amorphous-Silicon (a-Si) TFT Technologies." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/63933107911142674926.
Full text國立臺灣大學
電子工程學研究所
97
Conventionally, the amorphous-silicon (a-Si) thin-film-transistor (TFT) technology is primarily employed to realize the display panel excluding the driving circuits of LCDs. Recently, the concept of the system on glass (SOG) is introduced, and some analog circuits are integrated on the glass substrate. In this thesis, to demonstration the potential of the a-Si process for analog integrated circuits (ICs), novel design strategies are proposed to alleviate the intrinsic limitations imposed on this semiconductor. In Chapter 3, a novel operational amplifier (OPAMP) with a gain- enhancement technique is presented while the low-frequency gain can be effectively boosted, facilitating the realization of advanced analog circuits with a-Si TFTs. In Chapter 4, based on the OPAMP provided in Chapter 3, a prototype of the resistor-string digital-to-analog converter (DAC) is implemented in the a-Si technology while this DAC can be further applied in the source driver of the TFT-LCD. In Chapter 5, in cooperation of the fully differential amplifier in Chapter 3, a fully integrated touch panel on the glass substrate is developed, making the system inexpensive in cost and compact in layout area.
Huang, Shao-Chang, and 黃紹璋. "A study of Amorphous Silicon Germanium High Speed IR Photodetector fabricated on crystal Si Substrate." Thesis, 1996. http://ndltd.ncl.edu.tw/handle/70649342380411960816.
Full text國立成功大學
電機工程研究所
84
In this thesis , the amorphous silicon-germanium / crystal silicon heterojunction high-speed IR photodetector was studied in detail. In preparing the samples , the amorphous silicon- germanium alloys were grown on the crystal silicon subtrate by plasma enhanced chemical vapor deposition (PECVD). Both advantages of the low resistivity and high mobility characteristics of crystal silicon and the low temperature preparation processing,high optical absorption ,large area device feasibility and low cost of amorphous silicon are employed to prepare the heterojunction structure photodetector for faster response speed and lower cost. Compared with the traditoinal amorphous silicon germanium structure,the device with the structure of Al/n-a-Si:H/i-a- Si0.6 Ge0.4:H/p-c-Si has the following advantages: 1.The absorption wavelength peak moves to a higher value(865 nm ) than that 710 nm of the traditional amorphous silicon germanium structure. 2.The device has a faster response speed ( with a rise time of 195μs ) than that ( with a rise time of 465μs ) of the traditional amorphous silicon germanium structure . 3.The dark current has been decreased to a lower value (3.3μA under a reverse bias of 5V ) than that ( 50μA under the same bias)of the amorphous silicon germanium structure.
"I. Viscosity of easy glass formers and the principle of corresponding states. II. Calorimetric studies of a-Si thin film." Chinese University of Hong Kong, 1992. http://library.cuhk.edu.hk/record=b5887024.
Full textTitle also in Chinese.
Thesis (M.Phil.)--Chinese University of Hong Kong, 1992.
Includes bibliographical references.
Table of Contents
Acknowledgements
Abstract
Part I --- p.1
Chapter Chapter 1 --- Introduction --- p.2
Chapter Chapter 2 --- Viscosity of molten P40Ni40P20 --- p.6
Chapter Chapter 3 --- Viscosity of molten Pd77Cu6.5Si16.5 and the principle of corresponding state --- p.26
Chapter Chapter 4 --- Viscosity of molten Pd82Si18 and the scaling of viscosities of glass forming systems --- p.40
Part II --- p.53
Chapter Chapter 5 --- Installation of Dual Electron Gun Evaporator --- p.54
Chapter Chapter 6 --- Calorimetric studies of the Heat Capacity and Relaxation of Amorphous Si prepared by electron beam evaporation --- p.67
Chow, Melissa Jane. "Impact of Mechanical Stress on the Electrical Stability of Flexible a-Si TFTs." Thesis, 2011. http://hdl.handle.net/10012/6387.
Full textYeke, Yazdandoost Mohammad. "Photon Quantum Noise Limited Pixel and Array architectures in a-Si Technology for Large Area Digital Imaging Applications." Thesis, 2011. http://hdl.handle.net/10012/6220.
Full textΤσόλκας, Γεώργιος. "Ετήσια ενεργειακή απόδοση πλαισίων λεπτού φιλμ και ισοδύναμη μοντελοποίηση." Thesis, 2011. http://nemertes.lis.upatras.gr/jspui/handle/10889/4392.
Full textThe aim of this diploma thesis is to understand deeply the operation of thin-film (specifically amorphous silicon and CIS ) modules and through the numerical data of measurements and calculations, to make a conclusion considering how the operation in real conditions can influence their produced power. Measurements of current and voltage have been realized on the roof of the building of the department of Electrical and Computer Engineering using an amorphous silicon and a CIS photovoltaic module of 32 and 75 W peak power respectively. The measurements took place once a week during one a year (May 2009-April 2010) and our goal was to obtain measurements under various conditions of radiation and temperature and for some tilt angles so that we acquire enough knowledge on their energy behaviour. The measurements were taken by the “pve PVPM 2540C“ device, which plots the characteristic curve of current and voltage of a module (in space of two seconds) and we also noted down the radiation, the ambient temperature, as well as the tilt angle of the modules. Moreover, we have tested how a possible natural shading from an adjacent object influences the characteristic I-V curve, and as a result the efficiency of the module. The orientation of the module was always South, in order to gain more hours of sunlight, as Greece is a country of the northern hemisphere. While processing the measurements, we found the optimal tilt angle of the modules per season as well as per year for Patras area. Moreover, we tried to calculate with the maximum possible accuracy, the annual energy yield by the two different types of modules and compare the results. Finally, by using the computer modelling system “PV*sol”, we tried to simulate our photovoltaic system, in order to compare the measured results to the experimental.