Academic literature on the topic 'Amorphous materials'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Amorphous materials.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Amorphous materials"

1

Ice, Gene. "Amorphous materials: Characterizing amorphous strain." Nature Materials 4, no. 1 (January 2005): 17–18. http://dx.doi.org/10.1038/nmat1302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Elliott, Stephen, and Robert Street. "Amorphous materials." Current Opinion in Solid State and Materials Science 1, no. 4 (August 1996): 555–56. http://dx.doi.org/10.1016/s1359-0286(96)80071-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Elliott, StephenR, and Robert Street. "Amorphous materials." Current Opinion in Solid State and Materials Science 2, no. 4 (August 1997): 397–98. http://dx.doi.org/10.1016/s1359-0286(97)80078-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fritzsche, H. "Amorphous materials." Current Opinion in Solid State and Materials Science 4, no. 3 (June 1999): 279–80. http://dx.doi.org/10.1016/s1359-0286(99)00041-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tsuda, Shin-ya. "Amorphous Silicon Materials." JOURNAL OF THE ILLUMINATING ENGINEERING INSTITUTE OF JAPAN 77, no. 1 (1993): 21–26. http://dx.doi.org/10.2150/jieij1980.77.1_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

WAKAMIYA, Masayuki. "Amorphous Magnetic Materials." Journal of the Society of Materials Science, Japan 42, no. 478 (1993): 771–79. http://dx.doi.org/10.2472/jsms.42.771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Popescu, M., F. Sava, A. Velea, and A. Lőrinczi. "Crystalline–amorphous and amorphous–amorphous transitions in phase-change materials." Journal of Non-Crystalline Solids 355, no. 37-42 (October 2009): 1820–23. http://dx.doi.org/10.1016/j.jnoncrysol.2009.04.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fujimori, Hiroyasu. "Amorphous soft magnetic materials." Bulletin of the Japan Institute of Metals 26, no. 7 (1987): 729–33. http://dx.doi.org/10.2320/materia1962.26.729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Charpentier, T. "NMR of Amorphous Materials." EPJ Web of Conferences 30 (2012): 04004. http://dx.doi.org/10.1051/epjconf/20123004004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Beeby, J. L. "Physics of Amorphous Materials." Physics Bulletin 36, no. 4 (April 1985): 177. http://dx.doi.org/10.1088/0031-9112/36/4/040.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Amorphous materials"

1

Harrop, J. D. "Structural properties of amorphous materials." Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.603792.

Full text
Abstract:
The traditionally distinct fields of the structure of amorphous materials and time-frequency analysis are reviewed before time-frequency analysis is applied to the study of the diffraction data of amorphous materials for the first time. Several, general-purpose development in the field of wavelet-based time-frequency analysis, including new wavelets, are presented which were found to be necessary for the application of these methods to the study of diffraction data. A new representation of the diffraction data of amorphous materials is formulated in terms of the new method of time-frequency analysis. Additional new methods for the structural analysis of amorphous materials are also presented. These methods of analysis are applied to both experimentally-measured and computationally-simulated diffraction data for four different types of amorphous structure.  A detailed discussion is presented which examines various features found in the results of these analyses. In particular, the new representation of diffraction data is shown to be able to decompose the data over the real-reciprocal space plane. This is used to elucidate the existence of extended-range order in the amorphous structures, which is found to reproduce a simple functional form accurately in all cases. Additionally, different type of amorphous structure are shown to exhibit characteristic numbers of superimposed sets of these extended-range oscillations, which form the observed damped-density fluctuations. The relevance of existing mean-field theories is examined as a possible explanation for the functional form which we have observed empirically. Finally, conclusions are drawn based upon these results and suggestions are made for further work.
APA, Harvard, Vancouver, ISO, and other styles
2

Grazier, Jeffery N. "Characterisation of amorphous pharmaceutical materials." Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/12986.

Full text
Abstract:
Small quantities of amorphous content can have a profound influence on the properties of a material, however their instability means that quantifying amorphous content over time is important for proving the stability of a drug. Quantifying amorphous content in α-lactose monohydrate by solid state 13C CP MAS NMR, has been carried out by use of proton saturation recovery relaxation and differentiating between spectra by partial least squares (PLS), however these techniques have not proved sensitive on their own, this work investigates their sensitivity in combination. Crystalline α-lactose monohydrate and a rapidly quenched melt were combined to create a set of calibration mixes, whose spectra were recorded using proton saturation recovery relaxations ranging from 2 to 60 seconds. This technique showed a limit of detection of 0.17% (LOD = intercept + 3xSy/x), with a relaxation delay of 15 s and was able to recognise amorphous materials generated by spray and freeze drying. The atmospheric effects on the proton saturation recovery relaxation times of different amorphous lactose preparations were investigated. This found that an oxygen atmosphere reduced the relaxation times, of amorphous lactose that was prepared from a rapidly quenched melt. The loss of moisture from spray dried and freeze dried samples to less than 1% removed the significance of this effect. Lactose is an important excipient in pharmaceuticals and a key ingredient of confectionary, very little research has been carried out in to the quantification of the isomers of different preparations of amorphous lactose. This work quantifies the isomer content by Gas Chromatography with Flame Ionisation Detection (GC-FID) using a DB-17 15m 0.53mm 1.00 μm column and derivatisation with N- (trimethylsilyl)imidazole.
APA, Harvard, Vancouver, ISO, and other styles
3

Chou, Yu-Jen. "Structural studies of amorphous materials." Thesis, University of Oxford, 2018. http://ora.ox.ac.uk/objects/uuid:0f4885fe-fcaa-4275-a3e8-53881112ae73.

Full text
Abstract:
Amorphous materials have attracted interest due to their unique properties as many common objects and industrially important components are made of amorphous materials. To understand their properties, building structure-property correlations is an important step. Typically, amorphous materials are investigated by X-ray or neutron diffraction, but due to the relatively large interaction volumes for both probes, these techniques are not suitable for studying materials with nanovolumes. In contrast, electron probes can be focused on specifically chosen nanoscale areas and data from electron diffraction patterns can be transformed into a reduced density function (RDF) which describes the distribution of nearest-neighbour distances at high precision. In this thesis, using electron diffraction based RDF techniques I have studied the effects of various factors on the RDF. In addition, Density Functional Theory (DFT) simulations and Reverse Monte Carlo (RMC) refinements were performed to support the interpretation of the experimental RDF results. Finally, two industrial important materials, bioactive glass and metallic glass, were examined. A possible structure-property correlation in bioactive glasses is proposed while an analytical RDF technique was developed for the construction of metallic glass models.
APA, Harvard, Vancouver, ISO, and other styles
4

Chakraborty, Arnab. "Magnetism of Nanocrystallized Amorphous Fe75B10Si15." Thesis, KTH, Materialvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-107191.

Full text
Abstract:
Amorphous ribbons of alloy composition Fe75B10Si15 are cast by melt spinning and annealed to partially nanocrystalline states. The magnetic properties are investigated by VSM and MTGA. Structure is examined using XRD and SEM. Results obtained show nanostructured material with excellent soft magnetism in samples annealed at temperatures below the crystallization temperature as well as enhancement of magnetic hardness for annealing at high temperatures. This validates Herzer’s Random Anisotropy model of magnetism in nanostructured materials and provides basis for further inquiry into tweaking alloy compositions and/or manipulating annealing parameters. Also, increase of Curie temperature is noted with respect to increasing annealing temperatures arising from stress relaxation, validating a study on the relationship between the two.
APA, Harvard, Vancouver, ISO, and other styles
5

Brunier, Thierry Marcel. "Neutron scattering studies of amorphous materials." Thesis, University of Reading, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.254171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Melin, Pontus. "Atomistic Modeling of Amorphous Energetic Materials." Thesis, Uppsala universitet, Molekyl- och kondenserade materiens fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-359778.

Full text
Abstract:
A majority of research within the field of energetic materials have been centered around the stable crystalline phase, whilst there has been less about the amorphous phase and the implications of these types of material. In this study, Molecular Dynamics simulations with the General Amber Force Field (GAFF) is used to predict fundamental properties of the nitramine explosives HMX and CL-20 in the amorphous phase. Amorphous structures are obtained by compressing a molecular gas to 4 GPa followed by relaxation and equilibration. The simulations indicate that the amorphous phases of HMX and CL-20 have lower densities than the corresponding crystal phases, 12.7% and 7.3% respectively. Both HMX and CL-20 was found to compress more easily when subject to external pressure, the difference was most significant for HMX.As a second part of this study an amorphous composition of CL-20/HMX/Polyvinylacetate(PVAc) (50/45/5 -wt%) was studied. This was obtained by compressing a molecular gas to varying pressures followed by relaxation and equilibration. Results indicate that the simulated density around 1.64 [g/cm3 ] fall close to experimental observations of 1.7 [g/cm3 ]. The density was observed to not vary significantly for pressures higher than 0.4 [GP a] in accordance to experimental data.
APA, Harvard, Vancouver, ISO, and other styles
7

Pandey, Anup. "Modeling and Simulation of Amorphous Materials." Ohio University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1479377563495893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jacques, Jeannette. "Boron diffusion within amorphous silicon materials." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0012805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dinda, Guru Prasad. "Nonequilibrium processing of amorphous and nanostructured materials." Karlsruhe FZKA, 2006. http://nbn-resolving.de/urn:nbn:de:0005-072055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Luckas, Jennifer. "Electronic transport in amorphous phase-change materials." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00743474.

Full text
Abstract:
Les matériaux à changement de phase montrent la combinaison exceptionnelle d'un contraste énorme dans leurs propriétés physiques entre la phase amorphe et cristalline allié à une cinétique de changement de phase extrêmement rapide. La grande différence en résistivité permet leur application dans les mémoires numériques. De plus, cette classe de matériaux montre dans leur état vitreux des phénomènes de transport électronique caractéristiques. Le seuil de commutation dénote la chute de la résistivité dans l'état amorphe au delà d'un champ électrique critique. Le phénomène de seuil de commutation permet la transition de phase en appliquant des tensions relativement faibles. Au-dessous de cette valeur critique l'état désordonné montre une conductivité d'obscurité activée en température ainsi qu'une résistance - dans les cellules mémoires et les couches minces également - qui augmente avec le temps. Cette évolution de la résistivité amorphe entrave le stockage à plusieurs niveaux, qui offrirait la possibilité d'accroître la capacité ou la densité de stockage considérablement. Comprendre les origines physiques de ces deux phénomènes est crucial pour développer de meilleures mémoires à changement de phase. Bien que ces deux phénomènes soient généralement attribués aux défauts localisés, la connaissance de la distribution de défauts dans les matériaux amorphes à changement de phase est assez limitée. Cette thèse se concentre sur la densité des défauts mesurée dans différents verres chalcogénures présentant l'effet de seuil de commutation. Sur la base d'expériences de photo courant modulé (MPC) et de spectroscopie par déviation photothermique, un modèle sophistiqué des défauts a été développé pour GeTe amorphe (a-GeTe) mettant en évidence les états de la bande de valence et plusieurs défauts. Cette étude sur a-GeTe montre que l'analyse des données MPC peut être grandement améliorée en prenant en compte la variation de la bande de l'énergie interdite avec la température. Afin de mieux appréhender l'évolution de la résistivité amorphe, la présente étude porte sur l'évolution avec les recuits et le vieillissement de la résistivité, de l'énergie d'activation du courant d'obscurité, de la densité des défauts, du stress mécanique, de l'environnement atomique et de l'énergie de la bande interdite mesurée par des méthodes optiques sur les couches minces de a-GeTe. Le recuit d'un échantillon entraîne un élargissement de la bande interdite et de l'énergie d'activation du courant d'obscurité. De plus, la technique MPC a révélé une diminution des défauts profonds dans les couches minces de a-GeTe vieillies. Ces résultats illustrent l'impact de l'annihilation des défauts et de l'élargissement de la bande interdite sur l'évolution de la résistivité des matériaux à changement de phase amorphe. Cette thèse présente également une étude sur les alliages à changement de phase GeSnTe. En augmentant la concentration d'étain, on observe une décroissance systématique de la résistivité amorphe, de l'énergie d'activation du courant d'obscurité, de la largeur de bande interdite et de la densité des défauts, qui conduisent à une résistivité amorphe plus stables dans les compositions riches en étain comme a-Ge2Sn2Te4. L'étude sur les alliages GeSnTe montre que les matériaux à changement de phase ayant une résistivité amorphe plus stable présentent une faible énergie d'activation du courant d'obscurité. À l'exemple du Ge2Sn2Te4 et GeTe la présente étude montre un lien étroit entre l'évolution de la résistivité et la relaxation du stress mécanique. L'étude sur les verres chalcogénures montrent que les matériaux ayant un grand champ d'électrique de seuil, bien connu d'après la littérature, présentent aussi une grande densité de défauts. Ce résultat implique que l'origine du phénomène de seuil de commutation se trouve dans un mécanisme de génération à travers la bande interdite et de recombinaison dans les défauts profonds comme proposé par D. Adler.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Amorphous materials"

1

1935-1987, Adler David, Schwartz Brian B. 1938-, and Steele Martin C. 1919-, eds. Physical properties of amorphous materials. New York: Plenum Press, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lüscher, E., G. Fritsch, and G. Jacucci, eds. Amorphous and Liquid Materials. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3505-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Inoue, Akihisa, and Koji Hashimoto, eds. Amorphous and Nanocrystalline Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04426-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Elliott, S. R. Physics of amorphous materials. 2nd ed. Burnt Mill, Harlow, Essex, England: Longman Scientific & Technical, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Elliott, S. R. Physics of amorphous materials. 2nd ed. Harlow, Essex, England: Longman Scientific & Technical, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Elliott, S. R. Physics of amorphous materials. Burnt Mill, Harlow, Essex, England: Longman Scientific & Technical, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Edgar, Lüscher, Fritsch Gerhard, Jacucci Gianni, North Atlantic Treaty Organization. Scientific Affairs Division., and NATO Advanced Study Institute on "Amorphous and Liquid Materials" (1985 : Mendola, Italy), eds. Amorphous and liquid materials. Dordrecht: Nijhoff, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lüscher, E. Amorphous and Liquid Materials. Dordrecht: Springer Netherlands, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Adler, David, Brian B. Schwartz, and Martin C. Steele, eds. Physical Properties of Amorphous Materials. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4899-2260-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hellmut, Fritzsche, ed. Amorphous silicon and related materials. Singapore: World Scientific, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Amorphous materials"

1

Adler, David, and Stanford R. Ovshinsky. "Amorphous Photovoltaics." In Disordered Materials, 218–26. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-8745-9_45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mizoguchi, Tadashi. "Amorphous Magnetic Materials." In Springer Series in Solid-State Sciences, 178–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84158-3_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ovshinsky, Stanford R., and Arun Madan. "Amorphous Photovoltaic Cells." In Disordered Materials, 206–10. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-8745-9_42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mørup, S., and S. Linderoth. "Amorphous Magnetic Particles." In Nanophase Materials, 595–611. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1076-1_61.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Birley, A. W., R. J. Heath, and M. J. Scott. "Other amorphous thermoplastics." In Plastics Materials, 60–71. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4615-3664-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Birley, A. W., R. J. Heath, and M. J. Scott. "Other amorphous thermoplastics." In Plastic Materials, 60–71. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-011-7614-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Coey, J. M. D. "Amorphous Antiferromagnetism." In Physics of Disordered Materials, 729–38. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2513-0_59.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mehta, Neeraj. "Amorphous Semiconductors." In Functional and Smart Materials, 37–63. First edition. | Boca Raton, FL : CRC Press, 2020. |: CRC Press, 2020. http://dx.doi.org/10.1201/9780429298035-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Caputo, Roberto, Luciano De Sio, Ugo Cataldi, and Cesare Umeton. "Active Plasmonics in Self-organized Soft Materials." In Amorphous Nanophotonics, 307–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32475-8_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ovshinsky, Stanford R. "Fundamentals of Amorphous Materials." In Disordered Materials, 307–23. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-8745-9_58.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Amorphous materials"

1

Plättner, R., E. Günzel, G. Scheinbacher, and B. Schröder. "Light stability of amorphous germanium." In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

LeComber, P. G. "Stability of a-Si:H materials and solar cells-closing remarks." In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tzou, Da Yu, and Yunsheng Xu. "Thermal Lagging in Amorphous Materials." In ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-1343.

Full text
Abstract:
Abstract Thermal lagging in amorphous materials is studied in this work. Anomalous diffusion resulting from fracton vibrations on the fractal network are described in terms of the delayed response in time due to the percolating structure in such materials. In correspondence with the effects of fracton and fractal dimensions in percolating structures, slowing down of heat transport is found to be characterized by the ratio of two phase lags. The dual-phase-lag model fully describes the intrinsic transition from the stage of “close-to” diffusion at extremely short times, anomalous diffusion at intermediate times, and exact diffusion at relatively long times.
APA, Harvard, Vancouver, ISO, and other styles
4

Bhat, P. K., D. S. Shen, and R. E. Hollingsworth. "Stability of amorphous silicon solar cells." In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brandt, Martin S., and Martin Stutzmann. "Investigation of the Staebler-Wronski effect in a-Si:H by spin-dependent photoconductivity." In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Redfield, David, and Richard H. Bube. "The rehybridized two-site (RTS) model for defects in a-Si:H." In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hata, N., and S. Wagner. "The application of a comprehensive defect model to the stability of a-Si:H." In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

McMahon, T. J. "Defect equilibration in device quality a-Si:H and its relation to light-induced defects." In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cohen, J. David, and Thomas M. Leen. "Investigation of defect reactions involved in metastability of hydrogenated amorphous silicon." In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Street, R. A. "Metastability and the hydrogen distribution in a-Si:H." In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41031.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Amorphous materials"

1

Schwarz, R. B., J. I. Archuleta, and K. E. Sickafus. Bulk amorphous materials. Office of Scientific and Technical Information (OSTI), December 1998. http://dx.doi.org/10.2172/296817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dunn, Bruce, and R. F. Bunshah. Synthesis and Properties of Amorphous Trichalcogenide Cathode Materials. Fort Belvoir, VA: Defense Technical Information Center, August 1988. http://dx.doi.org/10.21236/ada201082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sambasivan, Sankar, Kimberly A. Steiner, Krishnaswamy K. Rangan, Johan Abadie, and Mark Zurbuchen. New Class of High Temperature Pseudo-Amorphous Oxide Materials. Fort Belvoir, VA: Defense Technical Information Center, December 2003. http://dx.doi.org/10.21236/ada426120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Treacy, Michael M. J. Structural Studies of Amorphous Materials by Fluctuation Electron Microscopy. Office of Scientific and Technical Information (OSTI), June 2018. http://dx.doi.org/10.2172/1440910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Douglas D. Osheroff. Ulta-Low Temperature Properties of Amorphous and Glassy Materials. Office of Scientific and Technical Information (OSTI), January 2013. http://dx.doi.org/10.2172/1059515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

McHenry, Michael. Amorphous Metal Ribbon (AMR) and Metal Amorphous Nanocomposite (MANC) Materials Enabled High Power Density Vehicle Motor Applications. Office of Scientific and Technical Information (OSTI), March 2023. http://dx.doi.org/10.2172/1984067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Saw, C., T. Lian, S. Day, and J. Farmer. X-ray Diffraction Techniques for Structural Determination of Amorphous Materials. Office of Scientific and Technical Information (OSTI), October 2006. http://dx.doi.org/10.2172/900132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Brown, J. R. Literature review of the application of amorphous glassy materials in catalysis. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/304495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Whitmore, D., and P. Georgopoulos. Structural and fast ion transport properties of glassy and amorphous materials. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/5262245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rimsza, Jessica, Eric Sorte, and Todd Alam. Computational and Experimental Characterization of Intermediate Amorphous Phases in Geological Materials. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1734484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography