To see the other types of publications on this topic, follow the link: Amino nitrones.

Journal articles on the topic 'Amino nitrones'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Amino nitrones.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Gallis, David E., James A. Warshaw, Bruce J. Acken, and DeLanson R. Crist. "Electronic Nature of α-Methoxy, Amino, Cyano, and Mercapto Nitrones." Collection of Czechoslovak Chemical Communications 58, no. 1 (1993): 125–41. http://dx.doi.org/10.1135/cccc19930125.

Full text
Abstract:
The electronic nature of various C-substituted nitrones was investigated by IR spectroscopy and 13C NMR as well as MNDO calculations. These include α-methoxy nitrones (imidate N-oxides) RC(OMe)=N(O)t-Bu with R = p-MeOC6H4 (Ia), C6H5 (Ib), p-NO2C6H4 (Ic), and H (Id) and nitrones YCH=N(O)t-Bu with Y = CN (IIIa), n-BuS (IIIb), C6H5CH2NH (IIIc). Upfield 13C shifts of C(α), the iminyl (C=N) carbon, of imidate N-oxides I versus the corresponding imidates are less than the usual upfield shifts of imine N-oxides versus imines, suggesting less buildup of electron density on C(α) in the case of alcoxy nitrones. Charge density and π bond order values from MNDO calculations for C-methoxy-C-phenyl nitrones versus model systems confirm this result and indicate a more localized C=N π bond in nitrones bearing an α-methoxy group. For N-tert-butyl nitrones with an α heteroatom (nitrogen or sulfur), phenyl, or cyano group, C(α) shifts move downfield for π-donating groups and upfield for π-accepting groups. This "reverse substituent effect" as well as C=N stretching frequencies can also be readily explained by C=N π bond containment by lone pair groups. The reported enhanced cycloaddition reactivity of α-alkoxy nitrones and their electrochemical behavior are discussed in terms of HOMO energy levels.
APA, Harvard, Vancouver, ISO, and other styles
2

Acken, Bruce J., David E. Gallis, James A. Warshaw, and DeLanson R. Crist. "Electrochemical behavior of C-methoxy, amino, cyano, and mercapto nitrones." Canadian Journal of Chemistry 70, no. 7 (July 1, 1992): 2076–80. http://dx.doi.org/10.1139/v92-263.

Full text
Abstract:
The redox behavior of various C-substituted nitrones was investigated by cyclic voltammetry in acetonitrile. These included C-methoxynitrones (MeO)CR = N(O)t-Bu with R = C6H5(1a), p-MeOC6H4 (1b), p-NO2C6H4 (1c), and H (1d) and nitrones YCH = N(O)t-Bu with Y = n-BuS (2a), CN (2b), and C6H5NH (2c). All gave anodic peaks which can be identified as oxidations of the nitrone function. Controlled potential electrolysis of 1a at 1.05 V (SCE) showed that its oxidation was a one-electron process. Reduction of 1a occurs stepwise at −2.08 and at −2.47 V, the same potential for reduction of methyl N-tert-butylbenzimidate (MeO)CPh = Nt-Bu. With electrochemical windows of ca. 3 V, all of the nitrones studied appear suitable for spin-trapping experiments.
APA, Harvard, Vancouver, ISO, and other styles
3

M¨ohrle, Hans, and Petra Arndt. "Hydroxylamin-Funktion als Nachbargruppe bei Dehydrierungen / Hydroxylamine Function as Neighboring Group with Dehydrogenations." Zeitschrift für Naturforschung B 60, no. 6 (June 1, 2005): 688–700. http://dx.doi.org/10.1515/znb-2005-0614.

Full text
Abstract:
The β -amino-hydroxylamines 5a - d are prepared of the α-amino-oximes 1a - d with boranedimethylsulfide. With mercury-EDTA, 5a - d react to (E/Z)-oxime-lactams 3a - d and benzaldoxime 7. Additionally 5b,c give the bicyclic amidine-N-oxides 8b,c, which slowly hydrolyze to the hydroxylamine-lactams 9b,c. These are easily oxidized to (E/Z)-3b,c. Postulated as intermediates in the mercury-assisted reduction of 5, the cyclic hydroxylamines 10a - d are available from the nitrones 4a - d with LiAlH4. From 10a - d with mercury-EDTA the same products are obtained as from 5a - d but without 7. Only the pyrrolidine 10a forms besides (E/Z)-3a the nitrone 4a. Thinlayer chromatography shows that the pure isomers of 3a - d in solution isomerize, contrary to the amine-oximes 1a - d. The configuration of the oxime-lactams depends on the manner of preparation. With mercury-EDTA, 1b,c yield 3b,c with retention of the configuration, while the oximation of phenacyl-lactams 13b,c give rise to (E/Z)-mixtures of 3b,c. The condensed imidazoles 12 result from the nitrones 4a - d and the dihydrooxadiazines 2a,d on treatment with hydrogen chloride.
APA, Harvard, Vancouver, ISO, and other styles
4

MacKenzie, Douglas A., Allison R. Sherratt, Mariya Chigrinova, Arnold J. Kell, and John Paul Pezacki. "Bioorthogonal labelling of living bacteria using unnatural amino acids containing nitrones and a nitrone derivative of vancomycin." Chemical Communications 51, no. 62 (2015): 12501–4. http://dx.doi.org/10.1039/c5cc04901f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Aurich, Hans Günter, Christian Gentes, and Ulrich Sievers. "Darstellung chiraler heterocyclischer β-Aminosäureester / Preparation of Chiral Heterocyclic Esters of β-Amino Acids." Zeitschrift für Naturforschung B 54, no. 4 (April 1, 1999): 519–31. http://dx.doi.org/10.1515/znb-1999-0416.

Full text
Abstract:
Chiral β-amino alcohols were successively prone to N-benzylation, O-allylation and oxidation of the resulting benzylamino group to give nitrones 3 which on hydrolysis afforded chiral hydroxylamines HO-NH-CH(R)-CH2-O-CH2-CH=CH2 ((S)-4: R = Me, Bn, iPr. (R)-4: R = Et). Swern oxidation of methyl 2,2-dimethyl-3-hydroxypropionate (16) and treatment of the resulting aldehyde 17 with hydroxylamines (S)-4b (R = Bn) or (R)-4d (R = Et) provided nitrones 18 that underwent an intramolecular 1,3-dipolar cycloaddition on heating yielding the bicyclic β-amino-acid esters 19b and ent-19d, respectively.Reductive cleavage of the N,0- bond of compounds 19 afforded the eight-membered ring compounds 20b and ent-20d, respectively.N-Benzylalaninol (22) was treated with /3-bromo-methacrylate to give the amino alcohol 23. Swern oxidation and subsequent treatment with N-ferf-butylhydroxylamine provided the bicyclic ester 26a (R = t-Bu) via the corresponding nitrone 24. Oxime 25 was prepared in an analogous way as 24 with unsubstituted hydroxylamine. It underwent an intramolecular 1.3- dipolar cycloaddition yielding 26b on heating in toluene. Reduction of 26a afforded the pyrrolidine-carboxylic ester 27a.
APA, Harvard, Vancouver, ISO, and other styles
6

Wójtowicz-Rajchel, Hanna, and Marcin Kaźmierczak. "Chemo-, regio-, and stereoselectivity in 1,3-dipolar cycloaddition of piperine with nitrones. A cycloadditive route to aminoalcohols." New Journal of Chemistry 44, no. 15 (2020): 6015–25. http://dx.doi.org/10.1039/c9nj06442g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Black, DS, DC Craig, RB Debdas, and N. Kumar. "Nitrones and Oxaziridines. XLV. Formation of Pyrrolo[1,2-a]indoles by Intramolecular Nitrone Cycloaddition." Australian Journal of Chemistry 46, no. 5 (1993): 603. http://dx.doi.org/10.1071/ch9930603.

Full text
Abstract:
The N-allylindole-2-carbaldehydes (5)-(8) and related methyl ketones (9)-(12) undergo reaction with N- methylhydroxylamine to give the cycloadducts (14)-(17) and (19)-(22), respectively. These adducts contain isoxazolidine rings fused to pyrrolo [1,2-a] indole systems. Corresponding cycloaddition of the N- propargylindole derivatives (24) and (25) could not be effected and the nitrone (26) was isolated. The adducts (14)-(17) underwent hydrogenolysis of the isoxazolidine N-O bond to give the amino alcohols (27)-(30), together with traces of the alcohols (31)-(34). X-Ray crystallographic data for the cycloadducts (15) and (16b) are presented.
APA, Harvard, Vancouver, ISO, and other styles
8

Itoh, Kennosuke, Ryo Kato, Daito Kinugawa, Hideaki Kamiya, Ryuki Kudo, Masayuki Hasegawa, Hideaki Fujii, and Hiroyuki Suga. "Photochemically-induced C–C bond formation between tertiary amines and nitrones." Organic & Biomolecular Chemistry 13, no. 33 (2015): 8919–24. http://dx.doi.org/10.1039/c5ob01277e.

Full text
Abstract:
Photoexcited nitrones serve as excellent electron acceptors as well as radical acceptors in the presence of tertiary amines to give β-amino hydroxylamines via photochemically-induced direct sp3 C–H functionalization of the tertiary amines.
APA, Harvard, Vancouver, ISO, and other styles
9

Bartlett, Samuel, Kimberly Keiter, Blane Zavesky, and Jeffrey Johnson. "Formation of Complex α-Imino Esters via Multihetero-Cope Rearrangement­ of α-Keto Ester Derived Nitrones." Synthesis 51, no. 01 (December 6, 2018): 203–12. http://dx.doi.org/10.1055/s-0037-1610391.

Full text
Abstract:
A sequential benzoylation and multihetero-Cope rearrangement of α-keto ester derived nitrones has been developed. The reaction furnishes a diverse array of complex α-imino ester derivatives. The products can be transformed into amino alcohols via LiAlH4 reduction.
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Heng-Hui, Jia-Qi Li, Xiao Zheng, and Pei-Qiang Huang. "Photoredox-Catalyzed Decarboxylative Cross-Coupling of α-Amino Acids with Nitrones." Organic Letters 23, no. 3 (January 12, 2021): 876–80. http://dx.doi.org/10.1021/acs.orglett.0c04101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Nguyen, Thanh Binh, Alice Beauseigneur, Arnaud Martel, Robert Dhal, Mathieu Laurent, and Gilles Dujardin. "Access to α-Substituted Amino Acid Derivatives via 1,3-Dipolar Cycloaddition of α-Amino Ester Derived Nitrones." Journal of Organic Chemistry 75, no. 3 (February 5, 2010): 611–20. http://dx.doi.org/10.1021/jo902107j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kobayashi, Kazuhiro, Takeshi Matoba, Susumu Irisawa, Atsushi Takanohashi, Miyuki Tanmatsu, Osamu Morikawa, and Hisatoshi Konishi. "Direct Synthesis ofN-Hydroxyβ-Amino Acid Esters from Carboxylic Esters and Nitrones." Bulletin of the Chemical Society of Japan 73, no. 12 (December 2000): 2805–9. http://dx.doi.org/10.1246/bcsj.73.2805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

ACKEN, B. J., D. E. GALLIS, J. A. WARSHAW, and D. R. CRIST. "ChemInform Abstract: Electrochemical Behavior of C-Methoxy, Amino, Cyano, and Mercapto Nitrones." ChemInform 24, no. 11 (August 20, 2010): no. http://dx.doi.org/10.1002/chin.199311081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

GALLIS, D. E., J. A. WARSHAW, B. J. ACKEN, and D. R. CRIST. "ChemInform Abstract: Electronic Nature of α-Methoxy, Amino, Cyano, and Mercapto Nitrones." ChemInform 24, no. 24 (August 20, 2010): no. http://dx.doi.org/10.1002/chin.199324051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Di Gioia, Maria Luisa, Antonella Leggio, Adolfo Le Pera, Angelo Liguori, Anna Napoli, Francesca Perri, and Carlo Siciliano. "Synthesis of Chiral Nitrones from N‐Fmoc Amino Acids and N‐Fmoc Dipeptides." Synthetic Communications 34, no. 18 (January 1, 2004): 3325–34. http://dx.doi.org/10.1081/scc-200030575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Dagoneau, Christelle, Axel Tomassini, Jean-Noël Denis, and Yannick Vallée. "A Short Synthesis of γ-Amino Acids from Nitrones; Synthesis of Vigabatrin®." Synthesis 2001, no. 01 (2001): 0150–54. http://dx.doi.org/10.1055/s-2001-9758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Dagoneau, Christelle, Jean-Noël Denis, and Yannick Vallée. "Synthesis of Z-α,β-Ethylenic N-Boc-γ-Amino Esters from Nitrones." Synlett 1999, no. 5 (May 1999): 602–4. http://dx.doi.org/10.1055/s-1999-2672.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Nguyen, Thanh Binh, Alice Beauseigneur, Arnaud Martel, Robert Dhal, Mathieu Laurent, and Gilles Dujardin. "ChemInform Abstract: Access to α-Substituted Amino Acid Derivatives via 1,3-Dipolar Cycloaddition of α-Amino Ester Derived Nitrones." ChemInform 41, no. 21 (May 25, 2010): no. http://dx.doi.org/10.1002/chin.201021054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Merino, Pedro, Santiago Franco, Francisco L. Merchan, and Tomas Tejero. "Asymmetric Addition Reactions of Lithium (Trimethylsilyl)acetylide with Chiral α-Amino Nitrones. Synthesis of Diastereomerically PureN-Hydroxy-α-amino Acids†." Journal of Organic Chemistry 63, no. 16 (August 1998): 5627–30. http://dx.doi.org/10.1021/jo9714775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Bouché, Léa, and Hans-Ulrich Reissig. "Synthesis of novel carbohydrate mimetics via 1,2-oxazines." Pure and Applied Chemistry 84, no. 1 (December 8, 2011): 23–36. http://dx.doi.org/10.1351/pac-con-11-09-20.

Full text
Abstract:
The combination of lithiated alkoxyallenes with carbohydrate-derived nitrones constitutes a flexible entry to highly functionalized enantiopure 1,2-oxazine derivatives. They can be used as precursors for acyclic and cyclic carbohydrate-like products such as amino sugar alcohols, azetidine and pyrrolidine derivatives. The Lewis acid-promoted rearrangement of 1,3-dioxolanyl-substituted 1,2-oxazines to bicyclic compounds allows an efficient route to novel amino pyran and oxepane derivatives. After subsequent transformations, new carbohydrate mimetics or “real” carbohydrates were obtained in good yield and often in a stereodivergent fashion. These compounds have already been employed for the preparation of unusual di- and trisaccharide derivatives. Several of the products prepared showed interesting biological activities, e.g., as L- and P-selectin inhibitors with IC50 values in the subnanomolar range.
APA, Harvard, Vancouver, ISO, and other styles
21

Saito, Katsuhiro, Ayako Kawamura, Takashi Kanie, Yosuke Ueda, and Satoru Kondo. "Electrochemistry of Aminoazines and Nitrones: Electrochemical Reductions of 2-Amino-1,4-pyrazine with Nitrones to Form Amide Compounds and Electrochemical Oxidations of Anilines with Nitrones to Form Imine Compounds and Benzaldehydes." HETEROCYCLES 55, no. 6 (2001): 1071. http://dx.doi.org/10.3987/com-01-9191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Möhrle, Hans, and Jürgen Lessel. "Ν,Ν-Disubstituierte Amidoxim-Nachbargruppen in Cyclodehydrierungen / Assistance of Ν,Ν-Disubstituted Amidoximes in Cyclodehydrogenation Reactions." Zeitschrift für Naturforschung B 47, no. 9 (September 1, 1992): 1333–40. http://dx.doi.org/10.1515/znb-1992-0920.

Full text
Abstract:
o-(tert-Amino)benzamidoximes 6, Ν,Ν-disubstituted at the amid-N-atom of the nucleophilic moiety, are suitable neighbouring groups in cyclodehydrogenation reactions of tertiary amines using mercury(II)-edta. The kind of the N-substituents and the amount of oxidizing agent control the nature of the products, lactams 9 and anellated nitrones 8. The configuration of the tricyclic systems is determined by NMR spectroscopic methods. During the reaction an inversion of the configuration of the oxime moiety occurs, which is explained by an electrocyclic mechanism.
APA, Harvard, Vancouver, ISO, and other styles
23

Yan, Xin, Yuna Shimadate, Atsushi Kato, Yi-Xian Li, Yue-Mei Jia, George W. J. Fleet, and Chu-Yi Yu. "Synthesis of Pyrrolidine Monocyclic Analogues of Pochonicine and Its Stereoisomers: Pursuit of Simplified Structures and Potent β-N-Acetylhexosaminidase Inhibition." Molecules 25, no. 7 (March 25, 2020): 1498. http://dx.doi.org/10.3390/molecules25071498.

Full text
Abstract:
Ten pairs of pyrrolidine analogues of pochonicine and its stereoisomers have been synthesized from four enantiomeric pairs of polyhydroxylated cyclic nitrones. Among the ten N-acetylamino pyrrolidine analogues, only compounds with 2,5-dideoxy-2,5-imino-d-mannitol (DMDP) and pochonicine (1) configurations showed potent inhibition of β-N-acetylhexosaminidases (β-HexNAcases); while 1-amino analogues lost almost all their inhibitions towards the tested enzymes. The assay results reveal the importance of the N-acetylamino group and the possible right configurations of pyrrolidine ring required for this type of inhibitors.
APA, Harvard, Vancouver, ISO, and other styles
24

A. Abramovitch, Rudolph, Dorota A. Abramovitch, and Herman Benecke. "The Side-chain Acylamination of Alicyclic Nitrones. A New Synthsis of an a-Amino Acid." HETEROCYCLES 23, no. 1 (1985): 25. http://dx.doi.org/10.3987/r-1985-01-0025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Bojin, Mihaela, and Slayton Evans. "Asymmetric Synthesis of α-Amino Phosphonic Acids Employing the Condensation of Nitrones with Phosphite Derivatives." Phosphorus, Sulfur, and Silicon and the Related Elements 111, no. 1 (April 1, 1996): 157. http://dx.doi.org/10.1080/10426509608054786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zhong, Boyu, Xingliang Lu, and Richard B. Silverman. "Syntheses of amino nitrones. Potential intramolecular traps for radical intermediates in monoamine oxidase-catalyzed reactions." Bioorganic & Medicinal Chemistry 6, no. 12 (December 1998): 2405–19. http://dx.doi.org/10.1016/s0968-0896(98)80016-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Merino, Pedro, Ignacio Delso, Vanni Mannucci, and Tomas Tejero. "High stereocontrol in the allylation of chiral non-racemic α-alkoxy and α-amino nitrones." Tetrahedron Letters 47, no. 19 (May 2006): 3311–14. http://dx.doi.org/10.1016/j.tetlet.2006.03.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Kawakami, Toru, Hiroaki Ohtake, Hiroaki Arakawa, Takahiro Okachi, Yasushi Imada, and Shun-Ichi Murahashi. "Asymmetric Synthesis ofβ-Amino Acids by Addition of Chiral Enolates to Nitrones viaN-Acyloxyiminium Ions." Bulletin of the Chemical Society of Japan 73, no. 11 (November 2000): 2423–44. http://dx.doi.org/10.1246/bcsj.73.2423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Dagoneau, Christelle, Jean-Noel Denis, and Yannick Vallee. "ChemInform Abstract: Synthesis of Z-α,β-Ethylenic N-Boc-γ-Amino Esters from Nitrones." ChemInform 30, no. 40 (June 13, 2010): no. http://dx.doi.org/10.1002/chin.199940167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ferrara, Marco, Franca M. Cordero, Andrea Goti, Alberto Brandi, Karine Estieu, Renée Paugam, Jean Ollivier, and Jacques Salaün. "Intramolecular Cycloaddition/Rearrangement of Alkylidenecyclopropane Nitrones from Palladium(0)-Catalyzed Alkylation of Amino Acid Derivatives." European Journal of Organic Chemistry 1999, no. 11 (November 1999): 2725–39. http://dx.doi.org/10.1002/(sici)1099-0690(199911)1999:11<2725::aid-ejoc2725>3.0.co;2-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Chakraborty, Bhaskar, Amalesh Samanta, Govinda Prasad Luitel, Neelam Rai, and Debmalya Mitra. "Synthesis of Some Novel Class of Peptides fromα-Amino Nitrones and Their Potential Biological Activities." Journal of Heterocyclic Chemistry 53, no. 4 (July 21, 2015): 1222–30. http://dx.doi.org/10.1002/jhet.2416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Dagoneau, Christelle, Axel Tomassini, Jean-Noel Denis, and Yannick Vallee. "ChemInform Abstract: A Short Synthesis of γ-Amino Acids from Nitrones; Synthesis of Vigabatrin®." ChemInform 32, no. 23 (May 26, 2010): no. http://dx.doi.org/10.1002/chin.200123172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

MERINO, P., S. FRANCO, F. L. MERCHAN, and T. TEJERO. "ChemInform Abstract: Asymmetric Addition Reactions of Lithium (Trimethylsilyl)acetylide with Chiral α-Amino Nitrones. Synthesis of Diastereomerically Pure N-Hydroxy-α-amino Acids." ChemInform 30, no. 1 (June 18, 2010): no. http://dx.doi.org/10.1002/chin.199901078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Blanáriková, Iva, Lubor Fišera, Zuzana Kopanicková, Piotr Salanski, Janusz Jurczak, and Christian Hametner. "Synthesis of chiral amino acid - derived nitrones and 1,3-dipolar cycloadditions with acrylic acid methyl ester." Arkivoc 2001, no. 5 (October 31, 2005): 51–59. http://dx.doi.org/10.3998/ark.5550190.0002.507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Chen, Guo-Qiang, Xue-Qin Cao, Zhan-Xiong Li, Wen-Xing Zhong, and Li-Hua Qiu. "Convenient Synthesis of Novel Nitrones: (Z)-4-Amino-5-hydroxyimino-2,5-dihydro-1H-imidazole 3-Oxides." HETEROCYCLES 78, no. 6 (2009): 1445. http://dx.doi.org/10.3987/com-08-11569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Brandi, Alberto, Armin de Meijere, and Marco Marradi. "New Oligocyclic β-Lactams and β-Amino Acid Derivatives by Intramolecular Cycloaddition of Bicyclopropylidenyl-Substituted Nitrones." Synlett 2006, no. 07 (April 24, 2006): 1125–27. http://dx.doi.org/10.1055/s-2006-939687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Pernet-Poil-Chevrier, Astrid, Frédéric Cantagrel, Karel Le Jeune, Christian Philouze, and Pierre Yves Chavant. "New chiral nitrones as precursors of α,α-disubstituted amino-acids, according to the SRS principle." Tetrahedron: Asymmetry 17, no. 13 (August 2006): 1969–74. http://dx.doi.org/10.1016/j.tetasy.2006.06.046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Merino, Pedro, Ana Lanaspa, Francisco L. Merchan, and Tomas Tejero. "Stereoselective grignard reactions to α-amino nitrones. Synthesis of optically active α-aminohydroxylamines and 1,2-diamines." Tetrahedron: Asymmetry 8, no. 14 (July 1997): 2381–401. http://dx.doi.org/10.1016/s0957-4166(97)00250-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Denis, Jean-Noẽl, Sylvie Tchertchian, Axel Tomassini, and Yannick Vallée. "The reaction of propiolate acetylides with nitrones. Synthesis of γ-amino-α,β-ethylenic acid derivatives." Tetrahedron Letters 38, no. 31 (August 1997): 5503–6. http://dx.doi.org/10.1016/s0040-4039(97)01210-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kobayashi, Kazuhiro, Takeshi Matoba, Susumu Irisawa, Atsushi Takanohashi, Miyuki Tanmatsu, Osamu Morikawa, and Hisatoshi Konishi. "ChemInform Abstract: Direct Synthesis of N-Hydroxy β-Amino Acid Esters from Carboxylic Esters and Nitrones." ChemInform 32, no. 15 (April 10, 2001): no. http://dx.doi.org/10.1002/chin.200115190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Prikhod'ko, Alexander, Olaf Walter, Thomas A. Zevaco, Jaime Garcia-Rodriguez, Omar Mouhtady, and Sandrine Py. "Synthesis of α-Amino Acids through Samarium(II) Iodide Promoted Reductive Coupling of Nitrones with CO2." European Journal of Organic Chemistry 2012, no. 20 (June 12, 2012): 3742–46. http://dx.doi.org/10.1002/ejoc.201200440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Otsuki, Teppei, Jun Kumagai, Yoshihito Kohari, Yuko Okuyama, Eunsang Kwon, Chigusa Seki, Koji Uwai, et al. "Silyloxy Amino Alcohol Organocatalyst for Enantioselective 1,3-Dipolar Cycloaddition of Nitrones to α,β-Unsaturated Aldehydes." European Journal of Organic Chemistry 2015, no. 33 (October 16, 2015): 7292–300. http://dx.doi.org/10.1002/ejoc.201500926.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ferrara, Marco, Franca M. Cordero, Andrea Goti, Alberto Brandi, Karine Estieu, Renee Paugam, Jean Ollivier, and Jacques Salauen. "ChemInform Abstract: Intramolecular Cycloaddition/Rearrangement of Alkylidenecyclopropane Nitrones from Palladium(0)-Catalyzed Alkylation of Amino Acid Derivatives." ChemInform 31, no. 6 (June 11, 2010): no. http://dx.doi.org/10.1002/chin.200006205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Dondoni, Alessandro, Santiago Franco, Federico Junquera, Francisco L. Merchán, Pedro Merino, Tomás Tejero, and Valerio Bertolasi. "Stereoselective Homologation–Amination of Aldehydes by Addition of Their Nitrones to C-2 Metalated Thiazoles—A General Entry to α-Amino Aldehydes and Amino Sugars." Chemistry - A European Journal 1, no. 8 (November 1995): 505–20. http://dx.doi.org/10.1002/chem.19950010804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Merino, Pedro, Elena Castillo, Francisco L. Merchan, and Tomas Tejero. "Stereocontrolled addition of Grignard reagents to α-alkoxy nitrones. Synthesis of syn and anti 3-amino-1,2-diols." Tetrahedron: Asymmetry 8, no. 11 (June 1997): 1725–29. http://dx.doi.org/10.1016/s0957-4166(97)00175-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Murahashi, Shun-Ichi, Yasushi Imada, and Hiroaki Ohtake. "Tungstate-Catalyzed Decarboxylative Oxidation of N-Alkyl-.alpha.-amino Acids: An Efficient Method for Regioselective Synthesis of Nitrones." Journal of Organic Chemistry 59, no. 21 (October 1994): 6170–72. http://dx.doi.org/10.1021/jo00100a016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

DENIS, J. N., S. TCHERTCHIAN, A. TOMASSINI, and Y. VALLEE. "ChemInform Abstract: The Reation of Propiolate Acetylides with Nitrones. Synthesis of . gamma.-Amino-α,β-ethylenic Acid Derivatives." ChemInform 28, no. 45 (August 3, 2010): no. http://dx.doi.org/10.1002/chin.199745080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

MERINO, P., A. LANASPA, F. L. MERCHAN, and T. TEJERO. "ChemInform Abstract: Stereoselective Grignard Reactions to α-Amino Nitrones. Synthesis of Optically Active α-Aminohydroxylamines and 1,2- Diamines." ChemInform 28, no. 52 (August 2, 2010): no. http://dx.doi.org/10.1002/chin.199752080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Merino, Pedro, Graziella Greco, Tomás Tejero, Ramon Hurtado-Guerrero, Rosa Matute, Ugo Chiacchio, Antonino Corsaro, Venerando Pistarà, and Roberto Romeo. "Stereoselective 1,3-dipolar cycloadditions of nitrones derived from amino acids. Asymmetric synthesis of N-(alkoxycarbonylmethyl)-3-hydroxypyrrolidin-2-ones." Tetrahedron 69, no. 45 (November 2013): 9381–90. http://dx.doi.org/10.1016/j.tet.2013.08.084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Merino, Pedro, Santiago Franco, Francisco L. Merchan, Julia Revuelta, and Tomas Tejero. "Efficient synthesis of (2R,3S)- and (2S,3S)-2-amino-1,3,4-butanetriols through stereodivergent hydroxymethylation of d-glyceraldehyde nitrones." Tetrahedron Letters 43, no. 3 (January 2002): 459–62. http://dx.doi.org/10.1016/s0040-4039(01)02191-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography