Journal articles on the topic 'Amides'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Amides.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Soong, Chee-Leong, Jun Ogawa, and Sakayu Shimizu. "A Novel Amidase (Half-Amidase) for Half-Amide Hydrolysis Involved in the Bacterial Metabolism of Cyclic Imides." Applied and Environmental Microbiology 66, no. 5 (May 1, 2000): 1947–52. http://dx.doi.org/10.1128/aem.66.5.1947-1952.2000.
Full textBarham, Joshua P., and Jaspreet Kaur. "Site-Selective C(sp3)–H Functionalizations Mediated by Hydrogen Atom Transfer Reactions via α-Amino/α-Amido Radicals." Synthesis 54, no. 06 (October 25, 2021): 1461–77. http://dx.doi.org/10.1055/a-1677-6619.
Full textZhou, Yongyun, Ruhima Khan, Baomin Fan, and Lijin Xu. "Ruthenium-Catalyzed Selective Reduction of Carboxylic Esters and Carboxamides." Synthesis 51, no. 12 (April 30, 2019): 2491–505. http://dx.doi.org/10.1055/s-0037-1611524.
Full textZarecki, Adam P., Jacek L. Kolanowski, and Wojciech T. Markiewicz. "Microwave-Assisted Catalytic Method for a Green Synthesis of Amides Directly from Amines and Carboxylic Acids." Molecules 25, no. 8 (April 11, 2020): 1761. http://dx.doi.org/10.3390/molecules25081761.
Full textOrsy, György, Sayeh Shahmohammadi, and Enikő Forró. "A Sustainable Green Enzymatic Method for Amide Bond Formation." Molecules 28, no. 15 (July 28, 2023): 5706. http://dx.doi.org/10.3390/molecules28155706.
Full textMartinez-Rodríguez, Sergio, Rafael Contreras-Montoya, Jesús M. Torres, Luis Álvarez de Cienfuegos, and Jose Antonio Gavira. "A New L-Proline Amide Hydrolase with Potential Application within the Amidase Process." Crystals 12, no. 1 (December 23, 2021): 18. http://dx.doi.org/10.3390/cryst12010018.
Full textKhalimon, Andrey, Kristina Gudun, and Davit Hayrapetyan. "Base Metal Catalysts for Deoxygenative Reduction of Amides to Amines." Catalysts 9, no. 6 (May 28, 2019): 490. http://dx.doi.org/10.3390/catal9060490.
Full textFournand, David, Frederic Bigey, and Alain Arnaud. "Acyl Transfer Activity of an Amidase from Rhodococcussp. Strain R312: Formation of a Wide Range of Hydroxamic Acids." Applied and Environmental Microbiology 64, no. 8 (August 1, 1998): 2844–52. http://dx.doi.org/10.1128/aem.64.8.2844-2852.1998.
Full textDing, Wen, Shaoyu Mai, and Qiuling Song. "Molecular-oxygen-promoted Cu-catalyzed oxidative direct amidation of nonactivated carboxylic acids with azoles." Beilstein Journal of Organic Chemistry 11 (November 11, 2015): 2158–65. http://dx.doi.org/10.3762/bjoc.11.233.
Full textKrieck, Sven, Philipp Schüler, Jan Peschel, and Matthias Westerhausen. "Straightforward One-Pot Syntheses of Silylamides of Magnesium and Calcium via an In Situ Grignard Metalation Method." Synthesis 51, no. 05 (December 13, 2018): 1115–22. http://dx.doi.org/10.1055/s-0037-1610407.
Full textMeerakrishna, Ramakrishnan Suseela, and Ponnusamy Shanmugam. "Synthesis of blue-red emissive amido-substituted di(het)aryl and tri(het)aryl amine derivatives via chemoselective N-mono and N,N-diarylation of (het) aryl amino amides using benzyne/arynes." New Journal of Chemistry 43, no. 6 (2019): 2550–58. http://dx.doi.org/10.1039/c8nj05823g.
Full textSelvakumar, Kumaravel, Kesamreddy Rangareddy, and John F. Harrod. "The titanocene-catalyzed reduction of acetamides to tertiary amines by PhMeSiH2." Canadian Journal of Chemistry 82, no. 8 (August 1, 2004): 1244–48. http://dx.doi.org/10.1139/v04-063.
Full textYao, Lei, Ming-Yi Wang, Xin-Ke Wang, Yi-Jun Liu, Hang-Fei Chen, Jun Zheng, Wei Nie, et al. "Detection of atmospheric gaseous amines and amides by a high-resolution time-of-flight chemical ionization mass spectrometer with protonated ethanol reagent ions." Atmospheric Chemistry and Physics 16, no. 22 (November 23, 2016): 14527–43. http://dx.doi.org/10.5194/acp-16-14527-2016.
Full textKhaldoun, Khadidja, Abdelmounaim Safer, Salima Saidi-Besbes, Bertrand Carboni, Rémy Le Guével, and François Carreaux. "An Efficient Solvent-Free Microwave-Assisted Synthesis of Cinnamamides by Amidation Reaction Using Phenylboronic Acid/Lewis Base Co-catalytic System." Synthesis 51, no. 20 (July 29, 2019): 3891–900. http://dx.doi.org/10.1055/s-0039-1690132.
Full textTrott, Sandra, Sibylle Bürger, Carsten Calaminus, and Andreas Stolz. "Cloning and Heterologous Expression of an Enantioselective Amidase from Rhodococcus erythropolis Strain MP50." Applied and Environmental Microbiology 68, no. 7 (July 2002): 3279–86. http://dx.doi.org/10.1128/aem.68.7.3279-3286.2002.
Full textŠilhánková, Alexandra, Karel Šindelář, Karel Dobrovský, Ivan Krejčí, Jarmila Hodková, and Zdeněk Polívka. "Synthesis of New L-Proline Amides with Anticonvulsive Effect." Collection of Czechoslovak Chemical Communications 61, no. 7 (1996): 1085–92. http://dx.doi.org/10.1135/cccc19961085.
Full textHaake, Paul, and Donald A. Tyssee. "Estimation of Charge Density on Nitrogen in Amides by Measurement of One-Bond Carbon-Hydrogen Nuclear Coupling Constants in N-CH3 Group." Zeitschrift für Naturforschung A 48, no. 1-2 (February 1, 1993): 58–62. http://dx.doi.org/10.1515/zna-1993-1-216.
Full textQu, Jing, Shishan Yu, Wenzhao Tang, Yunbao Liu, Yue Liu, and Jing Liu. "Progress on Cassaine-Type Diterpenoid Ester Amines and Amides (Erythrophleum Alkaloids)." Natural Product Communications 1, no. 10 (October 2006): 1934578X0600101. http://dx.doi.org/10.1177/1934578x0600101005.
Full textZahardis, J., S. Geddes, and G. A. Petrucci. "The ozonolysis of primary aliphatic amines in single and multicomponent fine particles." Atmospheric Chemistry and Physics Discussions 7, no. 5 (October 15, 2007): 14603–38. http://dx.doi.org/10.5194/acpd-7-14603-2007.
Full textZahardis, J., S. Geddes, and G. A. Petrucci. "The ozonolysis of primary aliphatic amines in fine particles." Atmospheric Chemistry and Physics 8, no. 5 (February 29, 2008): 1181–94. http://dx.doi.org/10.5194/acp-8-1181-2008.
Full textWaseem Abbasi, Sana, Naveed Zafar Ali, Martin Etter, Muhammad Shabbir, Zareen Akhter, Stacey J. Smith, Hammad Ismail, and Bushra Mirza. "Synthesis, Characterization and Biological Studies of Ether–Based Ferrocenyl Amides and their Organic Analogues." Crystals 10, no. 6 (June 4, 2020): 480. http://dx.doi.org/10.3390/cryst10060480.
Full textSonke, Theo, Sandra Ernste, Renate F. Tandler, Bernard Kaptein, Wilco P. H. Peeters, Friso B. J. van Assema, Marcel G. Wubbolts, and Hans E. Schoemaker. "l-Selective Amidase with Extremely Broad Substrate Specificity from Ochrobactrum anthropi NCIMB 40321." Applied and Environmental Microbiology 71, no. 12 (December 2005): 7961–73. http://dx.doi.org/10.1128/aem.71.12.7961-7973.2005.
Full textDunn, P., E. A. Parkes, and J. B. Polya. "Amides IX: Acylation of amides and amines." Recueil des Travaux Chimiques des Pays-Bas 71, no. 7 (September 2, 2010): 676–83. http://dx.doi.org/10.1002/recl.19520710708.
Full textXu, Qing, Huamei Xie, Er-Lei Zhang, Xiantao Ma, Jianhui Chen, Xiao-Chun Yu, and Huan Li. "Selective catalytic Hofmann N-alkylation of poor nucleophilic amines and amides with catalytic amounts of alkyl halides." Green Chemistry 18, no. 14 (2016): 3940–44. http://dx.doi.org/10.1039/c6gc00938g.
Full textNorth, Michael. "Amines and amides." Journal of the Chemical Society, Perkin Transactions 1, no. 16 (1999): 2209–29. http://dx.doi.org/10.1039/a903369f.
Full textNorth, Michael. "Amines and amides." Contemporary Organic Synthesis 1, no. 6 (1994): 475. http://dx.doi.org/10.1039/co9940100475.
Full textNorth, Michael. "Amines and amides." Contemporary Organic Synthesis 2, no. 4 (1995): 269. http://dx.doi.org/10.1039/co9950200269.
Full textNorth, Michael. "Amines and amides." Contemporary Organic Synthesis 3, no. 4 (1996): 323. http://dx.doi.org/10.1039/co9960300323.
Full textNorth, Michael. "Amines and amides." Contemporary Organic Synthesis 4, no. 4 (1997): 326. http://dx.doi.org/10.1039/co9970400326.
Full textNorth, Michael. "Amines and amides." Journal of the Chemical Society, Perkin Transactions 1, no. 17 (1998): 2959–72. http://dx.doi.org/10.1039/a802125b.
Full textKumagai, Naoya, and Masakatsu Shibasaki. "7-Azaindoline Auxiliary: A Versatile Attachment Facilitating Enantioselective C–C Bond-Forming Catalysis." Synthesis 51, no. 01 (November 30, 2018): 185–93. http://dx.doi.org/10.1055/s-0037-1610412.
Full textCheng, Hua, Cheng Chen, Rui Zhang, Jun-Chao Zhang, Wei-Yi Zhang, Yu-Qing He, and Yu-Cheng Gu. "A Practical Approach for the Transamidation of N,N-Dimethyl Amides with Primary Amines Promoted by Sodium tert-Butoxide under Solvent-Free Conditions." Synthesis 52, no. 21 (September 8, 2020): 3286–94. http://dx.doi.org/10.1055/s-0040-1705892.
Full textOcampo Gutiérrez de Velasco, Diego, Aoze Su, Luhan Zhai, Satowa Kinoshita, Yuko Otani, and Tomohiko Ohwada. "Unexpected Resistance to Base-Catalyzed Hydrolysis of Nitrogen Pyramidal Amides Based on the 7-Azabicyclic[2.2.1]heptane Scaffold." Molecules 23, no. 9 (September 15, 2018): 2363. http://dx.doi.org/10.3390/molecules23092363.
Full textYang, Guo-Ping, Ke Li, Wei Liu, Kai Zeng, and Yu-Feng Liu. "Copper-catalyzed aerobic oxidative C–C bond cleavage of simple ketones for the synthesis of amides." Organic & Biomolecular Chemistry 18, no. 35 (2020): 6958–64. http://dx.doi.org/10.1039/d0ob01601b.
Full textBittner, Nataly, Andy Boon, Evert H. Delbanco, Christof Walter, and Angela Mally. "Assessment of aromatic amides in printed food contact materials: analysis of potential cleavage to primary aromatic amines during simulated passage through the gastrointestinal tract." Archives of Toxicology 96, no. 5 (March 5, 2022): 1423–35. http://dx.doi.org/10.1007/s00204-022-03254-w.
Full textBox, Vernon G. S. "Biocidal Amidic Natural Products." Natural Product Communications 3, no. 11 (November 2008): 1934578X0800301. http://dx.doi.org/10.1177/1934578x0800301111.
Full textXia, Ji-Bao, Yan-Lin Li, and Zheng-Yang Gu. "Transition-Metal-Catalyzed Intermolecular C–H Carbonylation toward Amides." Synlett 32, no. 01 (August 17, 2020): 07–13. http://dx.doi.org/10.1055/s-0040-1706416.
Full textLaclef, Sylvain, Maria Kolympadi Marković, and Dean Marković. "Amide Synthesis by Transamidation of Primary Carboxamides." Synthesis 52, no. 21 (June 4, 2020): 3231–42. http://dx.doi.org/10.1055/s-0040-1707133.
Full textDas, Hari S., Shyamal Das, Kartick Dey, Bhagat Singh, Rahul K. Haridasan, Arpan Das, Jasimuddin Ahmed, and Swadhin K. Mandal. "Primary amides to amines or nitriles: a dual role by a single catalyst." Chemical Communications 55, no. 79 (2019): 11868–71. http://dx.doi.org/10.1039/c9cc05856g.
Full textBlondiaux, Enguerrand, and Thibault Cantat. "Efficient metal-free hydrosilylation of tertiary, secondary and primary amides to amines." Chem. Commun. 50, no. 66 (2014): 9349–52. http://dx.doi.org/10.1039/c4cc02894e.
Full textHao, Hong-Yan, Shao-Jie Lou, Shuang Wang, Kun Zhou, Qiu-Zi Wu, Yang-Jie Mao, Zhen-Yuan Xu, and Dan-Qian Xu. "Pd-catalysed β-selective C(sp3)–H arylation of simple amides." Chemical Communications 57, no. 65 (2021): 8055–58. http://dx.doi.org/10.1039/d1cc02261j.
Full textBhalla, Tek Chand, and Harish Kumar. "Nocardia globerula NHB-2: a versatile nitrile-degrading organism." Canadian Journal of Microbiology 51, no. 8 (August 1, 2005): 705–8. http://dx.doi.org/10.1139/w05-046.
Full textRadenović, Čedomir, Danica Bajuk-Bogdanović, Milica Radosavljević, Nenad Delić, Aleksandar Popović, Mile Sečanski, and Miloš Crevar. "Assaying of structural parts of hybrid ZP677 grain by IC method disordered Total reflection." Selekcija i semenarstvo 28, no. 1 (2022): 9–22. http://dx.doi.org/10.5937/selsem2201009r.
Full textWeaver-Guevara, Holly M., Ryan W. Fitzgerald, and Arthur Greenberg. "Rotational barriers in five related amides." Canadian Journal of Chemistry 95, no. 3 (March 2017): 271–77. http://dx.doi.org/10.1139/cjc-2016-0344.
Full textGarg, Jai Anand, Subrata Chakraborty, Yehoshoa Ben-David, and David Milstein. "Unprecedented iron-catalyzed selective hydrogenation of activated amides to amines and alcohols." Chemical Communications 52, no. 30 (2016): 5285–88. http://dx.doi.org/10.1039/c6cc01505k.
Full textBock, Hans, and Erik Heigel. "Wechselwirkungen in Molekülkristallen, 162 [1, 2]. Di(arylsulfonyl)amine – geeignete Liganden für lipophil umhüllte Polyionen-Aggregate mit Cs⊕ -Schichten variabler Dicke / Interaction in Molecular Crystals, 162 [1, 2]. Di(arylsulfonyl)amines – Ligands for Lipophilically Wrapped Polyion Aggregates with Cs⊕ -Layers of Variable Thickness." Zeitschrift für Naturforschung B 55, no. 11 (November 1, 2000): 1053–66. http://dx.doi.org/10.1515/znb-2000-1111.
Full textSaha, Sayantani, and Moris S. Eisen. "Mild catalytic deoxygenation of amides promoted by thorium metallocene." Dalton Transactions 49, no. 36 (2020): 12835–41. http://dx.doi.org/10.1039/d0dt02770g.
Full textGlover, Stephen A., Arvi Rauk, Jeanne M. Buccigross, John J. Campbell, Gerard P. Hammond, Guoning Mo, Luke E. Andrews, and Ashley-Mae E. Gillson. "The HERON reaction Origin, theoretical background, and prevalence." Canadian Journal of Chemistry 83, no. 9 (September 1, 2005): 1492–509. http://dx.doi.org/10.1139/v05-150.
Full textSchuhmacher, Anne, Tomoya Shiro, Sarah J. Ryan, and Jeffrey W. Bode. "Synthesis of secondary and tertiary amides without coupling agents from amines and potassium acyltrifluoroborates (KATs)." Chemical Science 11, no. 29 (2020): 7609–14. http://dx.doi.org/10.1039/d0sc01330g.
Full textYanev, Pavel, and Plamen Angelov. "Synthesis of functionalised β-keto amides by aminoacylation/domino fragmentation of β-enamino amides." Beilstein Journal of Organic Chemistry 14 (October 10, 2018): 2602–6. http://dx.doi.org/10.3762/bjoc.14.238.
Full text