Academic literature on the topic 'AMg6 aluminum alloy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'AMg6 aluminum alloy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "AMg6 aluminum alloy"

1

Luts, A. R., Yu V. Sherina, A. P. Amosov, and A. D. Kachura. "Liquid matrix SHS manufacturing and heat treatment of Al–Mg composites reinforced with fine titanium carbide." Izvestiya. Non-Ferrous Metallurgy, no. 4 (August 21, 2023): 70–86. http://dx.doi.org/10.17073/0021-3438-2023-4-70-86.

Full text
Abstract:
Aluminum matrix composites reinforced with ultra-fine refractory titanium carbide feature a unique combination of properties. They are promising structural materials. Self-propagating high-temperature synthesis (SHS) is an affordable and energy-saving composite making process. It involves the exothermic reaction between titanium and carbon (or their compounds) directly in the melt. We studied the properties of SHS composites based on the AMg2 and AMg6 commercially available alloys reinforced with 10 wt.%TiC. We investigated the macroand microstructure of the samples with XRD and EDS analysis. It was found that the β-phase is separated from α-solid solution of aluminum as early as the air cooling stage. We conducted experiments aimed at studying the effects of additional heating on the sample structure and properties and found the optimal temperature and time values. We also proposed a phenomenological model of the structural transformation sequence. We compared the physical, mechanical, and manufacturing properties and corrosion resistance of the original cold-hardened AMg2N and AMg6N alloys and the composites before and after heat treatment. It was found that additional heating reduces porosity and maintains electrical conductivity. It was also found that the compressive strength and relative strain of the composite based on the AMg2 alloy change insignificantly, while for the AMg6-based composite the reduction is more significant. Heat treatment increases the composite hardness while maintaining sufficient plastic deformation. It is confirmed by the measured values of the relative strain and the reduction ratio close to that of the original matrix alloys. It was also found that the composites retain high resistance to carbon dioxide and hydrogen sulfide corrosion.
APA, Harvard, Vancouver, ISO, and other styles
2

Rakhadilov, B., L. Zhurerova, W. Wieleba, Zh Sagdoldina, and A. K. Khassenov. "Features of the structure and properties formation of AMG6 alloy under the equal channel angular pressing." Bulletin of the Karaganda University. "Physics" Series 97, no. 1 (March 30, 2020): 42–49. http://dx.doi.org/10.31489/2020ph1/42-49.

Full text
Abstract:
The results of experimental studies of changes in the structure, microhardness, and wear resistance of the AMG6 aluminum alloy during equal channel angular pressing (ECAP) are presented in this work. The evolution of the fine structure and the formation of secondary phases in the AMG6 alloy during ECAP were studied. The dark-field image of the structure of the AMg6 alloy in the matrix reflex showed the splitting of the material into small disoriented fragments of about 0.5 μm in size with a small-angle disorientation boundary (about 2–5°). Optimal method and modes of ECAP of the AMG6 aluminum alloy were selected of the bases of experimental research, which make it possible to obtain a workpiece with enhanced tribological and mechanical characteristics. It was established that the most intensive grinding of the grain structure in the AMG6 alloy occurs at ECAP-12 at a channel angle intersection of 120°. It is shown that with a decrease in grain size, the microhardness of the alloy AMG6 after ECAP increases by 4 times, compared with the initial state.The results of the test samples for abrasive wear showed a decrease in mass loss after 12 passes of ECAP, which indicates an increase in the wear resistance of the alloy AMG6 by 13–14 %, compared with the initial state.
APA, Harvard, Vancouver, ISO, and other styles
3

Uazyrkhanova, Gulzhaz, Bauyrzhan K. Rakhadilov, Alexandr Myakinin, and Zhuldyz Uazyrkhanova. "The Change in the Thin Structure and Mechanical Properties of Aluminum Alloys at Intensive Plastic Deformation." Materials Science Forum 906 (September 2017): 114–20. http://dx.doi.org/10.4028/www.scientific.net/msf.906.114.

Full text
Abstract:
Electron microscopy and x-ray analysis and mechanical testing have been investigated the influence of severe plastic deformation on structure and mechanical properties of aluminum alloys. It is established that in the initial state in the alloy AMC has a high density of chaotically distributed dislocations with a density of 5-10*109 сm-2. It is shown that microdiffraction paintings in alloy AMC in the bulk of grains are observed uniformly distributed particles of the second phase. It is established that in the initial state in the alloy AMG6 there is a high density of chaotically distributed dislocations with a density of 2-6 *1010 сm-2. Determined that after ECAP the dislocation structure of alloys AMG6, AMC and changes: formed dislocation networks inside the fragments of the dislocation is practically not observed. Determined that after ECAP-12 increase the tensile strength and yield strength of alloys AMG6 and AMC.
APA, Harvard, Vancouver, ISO, and other styles
4

Nikitin, K. V., V. I. Nikitin, I. Yu Timoshkin, R. M. Biktimirov, and A. P. Novikov. "Hereditary influence of deformed waste on the efficiency of Al–Si–Mg and Al–Mg alloy modification." Izvestiya Vuzov. Tsvetnaya Metallurgiya (Universities' Proceedings Non-Ferrous Metallurgy), no. 3 (June 15, 2022): 38–46. http://dx.doi.org/10.17073/0022-3438-2022-3-38-46.

Full text
Abstract:
The paper provides the results of studies into the effect of the charge composition on the structure and mechanical properties of Al–Si–Mg (AK9ch) and Al–Mg (AMg6l) cast aluminum alloys. It was shown that deformed waste included in the charge composition (electrical waste of aluminum and waste of beverage cans based on the 3104 alloy – for AK9ch; AMg6 alloy plates – for AMg6l) contributes to the formation of dispersed micro- and macrostructure of working alloys in the solid state. The effect of modification (AlSr20 master alloy – for AK9ch; AlTi5 master alloy – for AMg6l) on the structure and mechanical properties of alloys obtained with various charge options was studied. Experiments on the effect of the charge composition on the AK9ch and AMg6l modifiability showed that the deformed waste structure is partially inherited by working alloys through the liquid state. With similar chemical compositions, alloys obtained with an increased proportion of deformed waste in the charge composition feature by smaller micro- and macrostructure sizes and improved mechanical properties (tensile strength and tensile elongation). It was found that when a certain amount of the modifier element (0.06 % Sr for the AK9ch alloy; 0.04 % Ti for the AMg6l alloy) is exceeded in these alloys, the over-modification effect appears. This is expressed in enlarged micro- and macrostructure parameters, as well as lowered tensile strength. The results obtained show that the optimal amount of the deformed waste proportion in the charge composition will make it possible to reduce the consumption of expensive modifying master alloys with a guaranteed effect of modification in practice.
APA, Harvard, Vancouver, ISO, and other styles
5

Прохоров, В. М., and Е. Л. Громницкая. "Зависимость от давления коэффициентов упругости алюминий-магниевого сплава AMg6 и нанокомпозитного сплава n-Mg6/C-=SUB=-60-=/SUB=-." Физика твердого тела 60, no. 4 (2018): 765. http://dx.doi.org/10.21883/ftt.2018.04.45690.300.

Full text
Abstract:
AbstractThe ultrasonic study results for dependence of the elastic wave velocities and second-order elasticity coefficients of the polycrystalline aluminum alloy AMg6 and its nanocomposite n -AMg6/C_60 on hydrostatic pressure up to 1.6 GPa have been described. The ultrasonic research has been carried out using a highpressure ultrasonic piezometer based on the piston-cylinder device. The pressure derivatives of the secondorder elastic constants of these materials established in the present study have been compared with the results of the third-order elastic constants measurements of the test alloys using the Thurston–Brugger method. Involving available literature data, we determined the relationships between the pressure derivatives of the second-order elastic constants of the AMg6 alloy and the Mg-content and nanostructuring.
APA, Harvard, Vancouver, ISO, and other styles
6

Lobanov, L. M., M. O. Pashchyn, O. M. Tymoshenko, P. V. Goncharov, O. L. Mikhodui, and K. V. Shiyan. "Increase in the life of welded joints of AMg6 aluminum alloy." Paton Welding Journal 2020, no. 4 (April 28, 2020): 2–8. http://dx.doi.org/10.37434/tpwj2020.04.01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Goncharova, O. A., D. S. Kuznetsov, N. N. Andreev, N. P. Andreeva, and Yu I. Kuznetsov. "Chamber corrosion inhibitors of aluminum alloy AMG6." Corrosion: Materials, Protection, no. 8 (August 21, 2019): 23–28. http://dx.doi.org/10.31044/1813-7016-2019-0-8-23-28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ovchinnikov, Viktor, Viktorya Berezina, and Tat'yana Skakova. "A normalized method for determining the influence on the fixed joints tightness using the technology of the sealing surface job." Science intensive technologies in mechanical engineering 2021, no. 11 (November 30, 2021): 20–29. http://dx.doi.org/10.30987/2223-4608-2021-11-20-29.

Full text
Abstract:
On the basis of metallographic analysis and test results of samples of welded junctions of aluminum alloys AMg6 and D16T, made by friction stir welding, for static stretching, it is shown that destruction occurs in the zone of thermo-mechanical action for the AMg6 alloy and in the zone of thermal influence for the D16T alloy. At the same time, the dependence of the temporary resistance value of the welded junction on the state of the seam weld face has not been revealed. Tests for low-cycle fatigue have shown that the endurance limit is clearly dependent on the amount of seam weld face roughness. The value of the roughness of the seam weld face for the studied alloys has been determined, in which the nature of the fracture during the low-cycle fatigue test changes from multi-stage to single-stage.
APA, Harvard, Vancouver, ISO, and other styles
9

Loginov, Yu N., and A. G. Illarionov. "DISCONTINUITY OF AMG6 ALUMINUM ALLOY EXTRUDED TUBE STRUCTURE." Izvestiya Vuzov. Tsvetnaya Metallurgiya (Proceedings of Higher Schools. Nonferrous Metallurgy), no. 6 (March 1, 2015): 35. http://dx.doi.org/10.17073/0021-3438-2013-6-35-40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Goncharova, O. A., D. S. Kuznetsov, N. N. Andreev, Yu I. Kuznetsov, and N. P. Andreeva. "Chamber Inhibitors of Corrosion of AMg6 Aluminum Alloy." Protection of Metals and Physical Chemistry of Surfaces 56, no. 7 (December 2020): 1293–98. http://dx.doi.org/10.1134/s2070205120070060.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "AMg6 aluminum alloy"

1

Didych, Iryna. "Estimation of structural integrity and lifetime of important structural elements." Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2021. http://www.theses.fr/2021UCFAC116.

Full text
Abstract:
Ce travail a été réalisé sous co-tutelle entre l’Université Technique Nationale de Ternopil (Ukraine) et l’Université Clermont Auvergne, CNRS, SIGMA Clermont, l’Institut Pascal à Clermont-Ferrand (France). La thèse porte sur la solution d’une tâche scientifique réelle d’évaluer la résistance et la durabilité des éléments responsables des structures. L’objectif de l’étude est d’évaluer la résistance et la durabilité résiduelle des éléments structurels par des méthodes d’apprentissage automatique. La plupart des parties des machines et des composants des structures pendant l'exploitation sont influencés par des charges de nature différente. Ces forces sont soit directement attachées à l’élément, soit transmises par des éléments adjacents qui y sont reliés. Pour le fonctionnement normal des parties responsables des structures,chaque élément doit être d’une taille et d’une forme qui lui permettent de résister aux charges. En particulier, il doit être solide, pas avoir de déformation significative sous tension, rigide et conserver sa forme d’origine. La durée de vie estimée des machines et des structures peut être prédite à l’aide des diagrammes de la croissance des fissures de fatigue des matériaux. Dans la plupart des cas, les données expérimentales présentent certaines variations dont il faut tenir compte. L’expérimentation prend souvent beaucoup de temps et de ressources humaines. Par conséquent, il est conseillé d'apprendre à calculer la durabilité par des méthodes d'apprentissage automatique, en particulier les réseaux de neurones, les arbres renforcés, les forêts aléatoires, les machines à vecteurs de support et les k-plus proches voisins
This work has been performed under co-tutelle supervision between Ternopil IvanPuluj National Technical University in Ternopil (Ukraine) and UniversityClermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal in Clermont-Ferrand (France).This thesis solves the scientific task of responsible structural elements strength andlifetime evaluation. The aim of the thesis is to evaluate the strength and residuallifetime of structural elements by machine learning methods.Most parts of machines and structural elements while being in service are under theinfluence of loads of various nature. Such forces are applied either directly to theelement or transmitted through neighbor elements connected to it. For the normaloperation of the responsible structures parts, each element must have certain sizeand shape that will withstand the loads acting on it. In particular, it must haveappropriate strength properties, not deform significantly under the action ofstresses, be rigid, and preserve its original shape.The calculated residual lifetime of machines and structures can be predicted usingfatigue crack growth (FCG) diagrams. Often, the experimental data have a certainspread, which should be taken into account in their analysis. The experimentalmethod often takes a lot of time and human resources. Therefore, it is advisable tolearn how to calculate the residual lifetime using machine learning methods,particularly, neural networks, boosted trees, random forests, support-vectormachines and the method of k–nearest neighbors
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "AMg6 aluminum alloy"

1

Markushev, M. V., and M. Yu Murashkin. "Structure and Mechanical Behavior of the AMg6 Aluminum Alloy after Severe Plastic Deformation and Annealing." In Ultrafine Grained Materials II, 521–30. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118804537.ch59.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Saikov, Ivan Vladimirovich, Andrey Yurevich Malakhov, and Igor Vladimirovich Denisov. "Obtaining bimetallic sheets with cladding layer of aluminum alloy AMg6." In Application to Journal. Tambov University Reports. Series: Natural and Technical Sciences, 520–23. Publishing House “Derzhavinskiy”, 2018. http://dx.doi.org/10.20310/1810-0198-2018-23-123p-520-523.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "AMg6 aluminum alloy"

1

Prokhorov, V., A. Korobov, A. Kokshaiskii, S. Perfilov, and A. Volkov. "Effect of nanostructuring on the elastic properties of aluminum alloy AMg6." In RECENT DEVELOPMENTS IN NONLINEAR ACOUSTICS: 20th International Symposium on Nonlinear Acoustics including the 2nd International Sonic Boom Forum. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4934461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kozhemyakina, A. "Experimental study of the effect of increasing technological plasticity during asymmetric rolling of aluminum alloys." In Superplasticity in Advanced Materials. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902615-36.

Full text
Abstract:
Abstract. In this paper the effect of asymmetric rolling on the possibility of increasing the technological plasticity of aluminum alloys was investigated. The experimental research was carried out on a laboratory asymmetric rolling mill with an individual drive of the work rolls with the possibility of creating a speed ratio from 1.0 to 5.0. It was shown that the increase of speed ratio of the work rolls from 1.0 to 5.0 significantly reduce the rolling force in comparison with symmetric rolling. Rolling force decreased in 1.9 times for alloy AD33 (AA6061), in 2.3 times for alloy AMg6, in 3.2 times for alloy D16 (AA2024). At the same time the technological plasticity was increased. Technological plasticity characterizes the ability of a material to undergo higher thickness reductions without fracture under certain conditions of stress, temperature, and strain rate. In asymmetric rolling the thickness reduction was increased from 48 to 87% for alloy D16, from 50 to 59% for alloy AMg6, and from 40 to 75% for alloy AD33 in comparison with symmetric rolling. In all cases the samples had initially room temperature and were subjected only to deformation heating and friction heating. Extremely high thickness reduction (87%) was achieved by a single pass asymmetric rolling (at speed ratio 5.0) for alloy D16. It was found that the ductility of the alloy D16 was 12.3% after asymmetric rolling with a thickness reduction of 87% and without the use of annealing. This was approximately 2 times higher than the initial ductility (6.2%) of the same alloy in the initial annealed state and much higher than ductility (0.3%) after symmetric rolling. New technological schemes of sheet rolling of aluminum alloys with high ductility and increased technological plasticity have been developed.
APA, Harvard, Vancouver, ISO, and other styles
3

Prokhorov, Viacheslav, Alexander Korobov, Alex Kokshaiskii, Sergey Perfilov, and Ivan Evdokimov. "Comparative characterization of the nonlinear elastic properties of aluminum alloy AMg6 and nanocarbon composite 0.3wt.%C60/AMg6 from third order elastic constants and ultrasonic nonlinear parameter measurements." In 2016 IEEE International Ultrasonics Symposium (IUS). IEEE, 2016. http://dx.doi.org/10.1109/ultsym.2016.7728807.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chumaevsky, A. V., A. A. Eliseev, A. V. Filippov, V. E. Rubtsov, and S. Yu Tarasov. "Tensile strength on friction stir processed AMg5 (5083) aluminum alloy." In ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2016: Proceedings of the International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2016. Author(s), 2016. http://dx.doi.org/10.1063/1.4966320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chumaevsky, A. V., A. V. Gusarova, A. P. Zykova, A. O. Panfilov, E. S. Khoroshko, S. Yu Nikonov, L. L. Zhukov, V. A. Beloborodov, and P. S. Sokolov. "FORMATION OF DEFECTS WHEN PRODUCING BIMETALLIC COMPOSITE MATERIALS BASED ON COPPER AND AMG5 ALUMINUM ALLOY DURING ELECTRON-BEAM 3D PRINTING." In Physical Mesomechanics of Materials. Physical Principles of Multi-Layer Structure Forming and Mechanisms of Non-Linear Behavior. Novosibirsk State University, 2022. http://dx.doi.org/10.25205/978-5-4437-1353-3-310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Petrov, M. A., D. A. Romashov, and V. V. Isakov. "Application of Contactless Methods for Deformation Assessment During Erichsen Cupping Test of Aluminium Sheet Samples." In 33rd International Conference on Computer Graphics and Vision. Keldysh Institute of Applied Mathematics, 2023. http://dx.doi.org/10.20948/graphicon-2023-274-284.

Full text
Abstract:
In the present study, non-contact techniques for estimating the deformation of a sheet specimen of aluminium alloy AA5051 (AMg2) subjected to Erichsen cupping test are considered. It is shown that it is possible to get reliable information by numerical simulation, however, for the case when the coefficients of the yield and fracture equations of the material are well-known and validated. This requires the application of confirmatory techniques based on the results of real experiments, for example, through optical 3D-scanning. The realization of the techniques requires the observance of the peculiarities of working with them in terms of specimen preparation. The combined technique of speckle interferometry and digital image correlation allows estimating deformations on the outer linear surfaces, but does not indicate deformations of products with curved surfaces and inside the specimen, which requires an additional determination of deformation fields by numerical simulation.
APA, Harvard, Vancouver, ISO, and other styles
7

Pushkov, V. A., S. A. Novikov, V. A. Sinitsyn, I. N. Govorunov, and O. N. Ignatova. "Deformation of aluminum alloys AD-1, AMg-6 and D-16 at dynamic compression and temperatures of 25–250°C." In HIGH PERFORMANCE STRUCTURES AND MATERIALS 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/hpsm06033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography