Academic literature on the topic 'AM material development'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'AM material development.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "AM material development"

1

Roberson, David, Corey M. Shemelya, Eric MacDonald, and Ryan Wicker. "Expanding the applicability of FDM-type technologies through materials development." Rapid Prototyping Journal 21, no. 2 (March 16, 2015): 137–43. http://dx.doi.org/10.1108/rpj-12-2014-0165.

Full text
Abstract:
Purpose – The purpose of this paper is to demonstrate the strategy for increasing the applicability of material extrusion additive manufacturing (AM) technologies, based on fused deposition modeling (FDM), through the development of materials with targeted physical properties. Here, the authors demonstrate materials specifically developed for the manufacture of electromechanical and electromagnetic applications, the use of FDM-type processes in austere environments and the application of material extrusion AM. Design/methodology/approach – Using a twin screw polymeric extrusion process, novel polymer matrix composites and blends were created where the base material was a material commonly used in FDM-type processes, namely, acrylonitrile butadiene styrene (ABS) or polycarbonate (PC). Findings – The work presented here demonstrates that, through targeted materials development, the applicability of AM platforms based on FDM technology can be increased. Here, the authors demonstrate that that the physical properties of ABS and PC can be manipulated to be used in several applications such as electromagnetic and X-ray shielding. Other instances of the development of new materials for FDM led to mitigation of problems associated with the process such as surface finish and mechanical property anisotropy based on build orientation. Originality/value – This paper is an overview of a research effort dedicated to increasing the amount of material systems available to material extrusion AM. Here materials development is shown to not only increase the number of suitable applications for FDM-type processes, but to be a pathway toward solving inherent problems associated with FDM such as surface finish and build orientation-caused mechanical property anisotropy.
APA, Harvard, Vancouver, ISO, and other styles
2

Koptioug, Andrey, Lars Erik Rännar, Mikael Bäckström, and Zhi Jian Shen. "New Metallurgy of Additive Manufacturing in Metal: Experiences from the Material and Process Development with Electron Beam Melting Technology (EBM)." Materials Science Forum 879 (November 2016): 996–1001. http://dx.doi.org/10.4028/www.scientific.net/msf.879.996.

Full text
Abstract:
Additive manufacturing (AM) is becoming one of the most discussed modern technologies. Significant achievements of the AM in metals today are mainly connected to the unprecedented freedom of component shapes this technology allows. But full potential of these methods lies in the development of new materials designed to be used specifically with AM. Proper understanding of the AM process will open up new possibilities, where material and component properties can be specifically tailored by controlling the parameters throughout the whole manufacturing process. Present paper discusses the issues related to the beam melting technologies AM and electron beam welding (EBW). We are speaking of new direction in material science that can be termed “non-stationary metallurgy”, using the examples from material and process development for EBW, electron beam melting (EBM®) and other additive manufacturing methods.
APA, Harvard, Vancouver, ISO, and other styles
3

Mohan, Denesh, Zee Khai Teong, Afifah Nabilah Bakir, Mohd Shaiful Sajab, and Hatika Kaco. "Extending Cellulose-Based Polymers Application in Additive Manufacturing Technology: A Review of Recent Approaches." Polymers 12, no. 9 (August 20, 2020): 1876. http://dx.doi.org/10.3390/polym12091876.

Full text
Abstract:
The materials for additive manufacturing (AM) technology have grown substantially over the last few years to fulfill industrial needs. Despite that, the use of bio-based composites for improved mechanical properties and biodegradation is still not fully explored. This limits the universal expansion of AM-fabricated products due to the incompatibility of the products made from petroleum-derived resources. The development of naturally-derived polymers for AM materials is promising with the increasing number of studies in recent years owing to their biodegradation and biocompatibility. Cellulose is the most abundant biopolymer that possesses many favorable properties to be incorporated into AM materials, which have been continuously focused on in recent years. This critical review discusses the development of AM technologies and materials, cellulose-based polymers, cellulose-based three-dimensional (3D) printing filaments, liquid deposition modeling of cellulose, and four-dimensional (4D) printing of cellulose-based materials. Cellulose-based AM material applications and the limitations with future developments are also reviewed.
APA, Harvard, Vancouver, ISO, and other styles
4

Gu, Dongdong, Xinyu Shi, Reinhart Poprawe, David L. Bourell, Rossitza Setchi, and Jihong Zhu. "Material-structure-performance integrated laser-metal additive manufacturing." Science 372, no. 6545 (May 27, 2021): eabg1487. http://dx.doi.org/10.1126/science.abg1487.

Full text
Abstract:
Laser-metal additive manufacturing capabilities have advanced from single-material printing to multimaterial/multifunctional design and manufacturing. Material-structure-performance integrated additive manufacturing (MSPI-AM) represents a path toward the integral manufacturing of end-use components with innovative structures and multimaterial layouts to meet the increasing demand from industries such as aviation, aerospace, automobile manufacturing, and energy production. We highlight two methodological ideas for MSPI-AM—“the right materials printed in the right positions” and “unique structures printed for unique functions”—to realize major improvements in performance and function. We establish how cross-scale mechanisms to coordinate nano/microscale material development, mesoscale process monitoring, and macroscale structure and performance control can be used proactively to achieve high performance with multifunctionality. MSPI-AM exemplifies the revolution of design and manufacturing strategies for AM and its technological enhancement and sustainable development.
APA, Harvard, Vancouver, ISO, and other styles
5

Fu, Wentao, Christoph Haberland, Eva Verena Klapdor, David Rule, and Sebastian Piegert. "Streamlined frameworks for advancing metal based additive manufacturing technologies." Journal of the Global Power and Propulsion Society 2 (January 29, 2018): QJLS4L. http://dx.doi.org/10.22261/jgpps.qjls4l.

Full text
Abstract:
Abstract Metal-based additive manufacturing (AM) technologies such as selective laser melting (SLM) have seen successful applications in the gas turbine industry over the past years. The rapidly growing demand in AM requires in-depth knowledge of the process, materials and design for additive manufacturing (DFAM). However, the material characterization and process development are highly specific to a particular AM system, even for a number of standard alloys such as IN718 that are suitable for gas turbine applications. When the AM system changes or a new material becomes available, the whole development workflow needs to start almost “from scratch,” which consumes considerable time and effort. To address these issues, Siemens Power & Gas has established cross-divisional competence centers for AM to enhance collaborative material and process development. The article describes this framework and its effectiveness in streamlining the AM process and materials development. To close the design and manufacturing process chain, it is also critical to ensure that the full AM potential is accessible in design stages. In this article, a DFAM framework is proposed to drive the design paradigm shift to AM. In the framework, a complete DFAM process is defined based on existing studies of Siemens gas turbine applications. By integrating a set of DFAM methods, tools and considerations into the current gas turbine design processes, the AM-driven product design is enabled. We use Siemens large gas turbine applications to demonstrate the development and industrialization of AM using the frameworks. The benefits in reducing cost, expediting time to market, improving component performance and enabling new design freedom will be highlighted.
APA, Harvard, Vancouver, ISO, and other styles
6

Rimkus, Arvydas, Mahmoud M. Farh, and Viktor Gribniak. "Continuously Reinforced Polymeric Composite for Additive Manufacturing—Development and Efficiency Analysis." Polymers 14, no. 17 (August 25, 2022): 3471. http://dx.doi.org/10.3390/polym14173471.

Full text
Abstract:
Additive manufacturing (AM) is a rapidly growing technology, referring to a 3D design process by which digital data builds a physical object in layers by depositing the printed material. The AM has evolved in the aviation, automotive, and medical industries. The AM development for fiber-reinforced composites is the point of current interest, with most research focused on using short fibers. However, notwithstanding particular technological complexities, continuous filaments have superior tensile properties compared to short fibers. Therefore, this manuscript develops an adaptive continuous reinforcement approach for AM based on polymeric material extrusion (ME) technology. It combines the raw material production process, including the ability to varying constituents (e.g., filament materials, reinforcement percentage, and recycled plastic replacement ratio), and the reinforcement efficiency analysis regarding the experimentally verified numerical model. The literature review has identified compatible materials for ensuring sustainable and high-performance plastic composites reinforced with continuous fibers. In addition, it identified the applicability of recycled polymers in developing ME processes. Thus, the study includes an experimental program to investigate the mechanical performance of 3D printed samples (polylactic acid, PLA, matrix reinforced with continuous aramid filament) through a tensile test. Recycled polymer replaced 40% of the virgin PLA. The test results do not demonstrate the recycled polymer’s negative effect on the mechanical performance of the printed samples. Moreover, the recycled material reduced the PLA cost by almost twice. However, together with the potential efficiency of the developed adaptive manufacturing technology, the mechanical characteristics of the printed material revealed room for printing technology improvement, including the aligned reinforcement distribution in the printed product and printing parameters’ setup.
APA, Harvard, Vancouver, ISO, and other styles
7

Arenas, Maria Alejandra Ardila, Dirk Gutkelch, Olaf Kosch, Rüdiger Brühl, Frank Wiekhorst, and Norbert Löwa. "Development of Phantoms for Multimodal Magnetic Resonance Imaging and Magnetic Particle Imaging." Polymers 14, no. 19 (September 20, 2022): 3925. http://dx.doi.org/10.3390/polym14193925.

Full text
Abstract:
Phantoms are crucial for the development of imaging techniques based on magnetic nanoparticles (MNP). They serve as test objects to simulate application scenarios but are also used for quality assurance and interlaboratory comparisons. Magnetic particle imaging (MPI) is excellent for specifically detecting magnetic nanoparticles (MNP) without any background signals. To obtain information about the surrounding soft tissue, MPI is often used in combination with magnetic resonance imaging (MRI). For such application scenarios, this poses a challenge for phantom fabrication, as they need to accommodate MNP as well as provide MR visibility. Recently, layer-by-layer fabrication of parts using Additive Manufacturing (AM) has emerged as a powerful tool for creating complex and patient-specific phantoms, but these are characterized by poor MR visibility of the AM material. We present the systematic screening of AM materials as candidates for multimodal MRI/MPI imaging. Of all investigated materials, silicone (Dreve, Biotec) exhibited the best properties with sufficient MR-signal performance and the lowest absorption of MNP at the interface of AM materials. With the help of AM and the selection of appropriate materials, we have been able to produce suitable MRI/MPI phantoms.
APA, Harvard, Vancouver, ISO, and other styles
8

Schneck, Matthias, Max Horn, Maik Schindler, and Christian Seidel. "Capability of Multi-Material Laser-Based Powder Bed Fusion—Development and Analysis of a Prototype Large Bore Engine Component." Metals 12, no. 1 (December 25, 2021): 44. http://dx.doi.org/10.3390/met12010044.

Full text
Abstract:
Additive Manufacturing (AM) allows the manufacturing of functionally graded materials (FGM). This includes compositional grading, which enables the allocation of desired materials corresponding to local product requirements. An upcoming AM process for the creation of metal-based FGMs is laser-based powder bed fusion (PBF-LB/M) utilized for multi-material manufacturing (MM). Three-dimensional multi-material approaches for PBF-LB/M are stated to have a manufacturing readiness level (MRL) of 4 to 5. In this paper, an advancement of multi-material technology is presented by realizing an industry-relevant complex part as a prototype made by PBF-LB/M. Hence, a multi-material injection nozzle consisting of tool steel and a copper alloy was manufactured in a continuous PBF-LB/M process. Single material regions showed qualities similar to the ones resulting from mono-material processes. A geometrically defined transition zone between the two materials was achieved that showed slightly higher porosity than mono-material regions. Nevertheless, defects such as porosity, cracks, and material cross-contamination were detected and must be overcome in further MM technology development.
APA, Harvard, Vancouver, ISO, and other styles
9

Junio, Raí Felipe Pereira, Pedro Henrique Poubel Mendonça da Silveira, Lucas de Mendonça Neuba, Sergio Neves Monteiro, and Lucio Fabio Cassiano Nascimento. "Development and Applications of 3D Printing-Processed Auxetic Structures for High-Velocity Impact Protection: A Review." Eng 4, no. 1 (March 8, 2023): 903–40. http://dx.doi.org/10.3390/eng4010054.

Full text
Abstract:
Auxetic structures (AXSs) are a novel class of materials with unique mechanical deformation behavior associated with negative Poisson ratio. The combination of AXS configurations with various types of materials has unveiled a wide field of applications, including military high-velocity protection against explosions and ballistic projectiles. However, the characteristic geometric re-entrant model of AXSs imposes limitations and difficulties when using conventional manufacturing methods to assemble the structure lattice. Additive manufacturing (AM) has recently been explored as a more efficient and cost-effective method to fabricate AXSs, regardless of the type of material. This review paper focuses on the development and applications of AM processed AXSs. The review highlights the significance and great potential for this class of materials that can be produced relatively fast and at a low cost. The advantages of AXS/AM are expected to extend to important industrial sectors, particularly for military ballistic armor, where the feasibility for products with improved properties is critical. The use of AM offers a viable solution to overcome the difficulties associated with the conventional manufacturing methods, and thus offers greater design flexibility, cost efficiency, and reduced material waste. This review paper aims to contribute to the understanding of the current state-of-the-art and future research prospects for the production and applications of AXS/AM.
APA, Harvard, Vancouver, ISO, and other styles
10

Watschke, Hagen, Lennart Waalkes, Christian Schumacher, and Thomas Vietor. "Development of Novel Test Specimens for Characterization of Multi-Material Parts Manufactured by Material Extrusion." Applied Sciences 8, no. 8 (July 25, 2018): 1220. http://dx.doi.org/10.3390/app8081220.

Full text
Abstract:
Multi-material additive manufacturing (AM) offers new design opportunities for functional integration and opens new possibilities in innovative part design, for example, regarding the integration of damping or conductive structures. However, there are no standardized test methods, and thus test specimens that provide information about the bonding quality of two materials printed together. As a result, a consideration of these new design potentials in conceptual design is hardly possible. As material extrusion (ME) allows easily combination of multiple polymeric materials in one part, it is chosen as an AM technique for this contribution. Based on a literature review of commonly used standards for polymer testing, novel test specimens are developed for the characterization of the bonding quality of two ME standard materials printed together. The proposed specimen geometries are manufactured without a variation of process parameters. The load types investigated in the course of this study were selected as examples and are tensile, lap-shear, and compression-shear. The conducted tests show that the proposed test specimens enable a quantification of the bonding quality in the material transition. Moreover, by analyzing the fracture pattern of the interface zone, influencing factors that probably affect the interface strength are identified, which can be further used for its optimization.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "AM material development"

1

Palmer, Andrew. "The Design and Development of an Additive Fabrication Process and Material Selection Tool." Master's thesis, University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3635.

Full text
Abstract:
In the Manufacturing Industry there is a subset of technologies referred to as Rapid Technologies which are those technologies that create the ability to compress the time to market for new products under development . Of this subset, Additive Fabrication (AF), or more commonly known as Rapid Prototyping (RP), acquires much attention due to its unique and futuristic approach to the production of physical parts directly from 3D CAD data, CT or MRI scans, or data from laser scanning systems by utilizing various techniques to consecutively generate cross-sectional layers of a given thickness upon the previous layer to form 3D objects. While Rapid Prototyping is the most common name for the production technology it is also referred to as Additive Manufacturing, Layer Based Manufacturing, Direct Digital Manufacturing, Free-Form Fabrication, and 3-Dimensional Printing. With over 35 manufacturers of Additive Fabrication equipment in 2006 , the selection of an AF process and material for a specific application can become a significant task, especially for those with little or no technical experience with the technology and to add to this challenge, many of the various processes have multiple material options to select from . This research was carried out in order to design and construct a system that would allow a person, regardless of their level of technical knowledge, to quickly and easily filter through the large number of Additive Fabrication processes and their associated materials in order to find the most appropriate processes and material options to create physical reproductions of any part. The selection methodology used in this paper is a collection of assumptions and rules taken from the author's viewpoint of how, in real world terms, the selection process generally takes place between a consumer and a service provider. The methodology uses those assumptions in conjunction with a set of expert based rules to direct the user to a best set of qualifying processes and materials suited for their application based on as many or as few input fields the user may be able to complete.
M.S.
Department of Industrial Engineering and Management Systems
Engineering and Computer Science
Industrial Engineering MS
APA, Harvard, Vancouver, ISO, and other styles
2

Schunemann, Esteban. "Paste deposition modelling : deconstructing the additive manufacturing process : development of novel multi-material tools and techniques for craft practitioners." Thesis, Brunel University, 2015. http://bura.brunel.ac.uk/handle/2438/13803.

Full text
Abstract:
A novel paste deposition process was developed to widen the range of possible materials and applications. This experimental process developed an increasingly complex series of additive manufacturing machines, resulting in new combinations of novel materials and deposition paths without sacrificing many of the design freedoms inherit in the craft process. The investigation made use of open-source software together with an approach to programming user originated infill geometries to form structural parts, differing from the somewhat automated processing by 'closed' commercial RP systems. A series of experimental trials were conducted to test a range of candidate materials and machines which might be suitable for the PDM process. The combination of process and materials were trailed and validated using a series of themed case studies including medical, food industry and jewellery. Some of the object created great interest and even, in the case of the jewellery items, won awards. Further evidence of the commercial validity was evidenced through a collaborative partnership resulting in the development of a commercial version of the experimental system called Newton3D. A number of exciting potential future directions having been opened up by this project including silicone fabrics, bio material deposition and inclusive software development for user originated infills and structures.
APA, Harvard, Vancouver, ISO, and other styles
3

GROPPO, RICCARDO. "Sviluppo e Industrializzazione di una macchina LPF e validazione attraverso l'ottimizzazione dei parametri di processo di Ottone CuZn42 e Acciaio Armonico C67." Doctoral thesis, Università degli studi di Modena e Reggio Emilia, 2021. http://hdl.handle.net/11380/1245517.

Full text
Abstract:
Le tecnologie di costruzione additiva, dalla loro nascita alle prime applicazioni industriali, hanno fatto un grande salto in termini di sviluppo di hardware e materiali. La continua ricerca di nuovi mercati e la crescente domanda hanno reso più accessibili i costi di tali tecnologie. Dall'uso dei polimeri per fare prototipi alle polveri metalliche per fare parti meccaniche reali i concetti sono sempre gli stessi, costruendo la parte strato per strato. In termini di denaro dagli anni Ottanta ad oggi il processo di stampa 3D mantiene un trend positivo con molti più aumenti per il futuro. In termini di flussi monetari ed energetici durante la produzione di parti complesse, le tecnologie di costruzione additiva possono avere incrementi positivi. Con le tecnologie di costruzione additiva viene anche preso in considerazione l’aspetto legato alla misurazione del consumo energetico di produzione per le valutazioni dell'inventario del ciclo di vita. [2] In molte catene di produzione tradizionali, dove stime affidabili del consumo energetico potrebbero non essere disponibili, l'adozione della tecnologia per costruzione additiva consente ai produttori di fornire ai propri clienti dati affidabili sull'energia incorporata nei prodotti o nei componenti durante la fase di produzione. [2] È stato dimostrato che la selezione della configurazione dei costi minimi in Additive Manufacturing potrebbe portare all'effetto secondario della riduzione al minimo del consumo energetico di processo. [2] La mia tesi di dottorato discuterà una specifica tecnologia di produzione additiva, basata sul processo di fusione del letto in polvere utilizzando un LASER come fonte di fusione. Verranno analizzate le principali componenti costruttive presenti nella macchina prototipo, cercandone le principali criticità (sistema di filtraggio e recupero delle polveri, abbattimento polvere nera, flusso del gas in camera, misura delle perdite di carico nei tratti caratteristici dell’impianto, sistema di raccolta delle polveri, sistema di distribuzione e di deposizione delle polveri sul piatto di stampa) e, nel caso queste causino un arresto anomalo oppure un’irregolarità nella qualità nel componente stampato, se ne svilupperà una modifica oppure una sostituzione radicale del componente in esame. Verificata la stabilità meccanica dell’intera macchina verranno analizzate le proprietà meccaniche dei campioni ottenuti con acciaio inossidabile X2CrNiMo17-12-2 - AISI316L, polvere di ottone CuZn42 e acciaio C67 - Acciaio Temperato. Le principali proprietà meccaniche richieste per un componente costruito per costruzione additiva sono in termini di resistenza meccanica porosità, densità, durezza Brinell, carico a rottura e tensione di snervamento. In particolare, verranno effettuati dei rilevamenti della densità del provino mediante misurazione della densità volumetrica relativa con metodo di Archimede. Successivamente verrà stabilita la bontà della rugosità superficiale attraverso acquisizione di mappe per mezzo di un microscopio ottico e attraverso un software per l’analisi d’immagine ne verrà poi misurata la rugosità superficiale media. Lo stesso campione verrà poi utilizzato per misurare la durezza media del materiale per mezzo di un durometro. Per testare il carico a rottura e il limite di snervamento verranno prodotti dei campioni con geometria ad osso di cane a sezione circolare a cui verrà montato un estensimetro analogico. Il software di elaborazione dei dati elabora la curva sforzo – deformazione.
The additive manufacturing technologies, from their birth to the first industrial applications, made a big jump in terms of hardware and material development. The continuing research for new markets along with a growing demand have made sure that the costs of such technologies have become more accessible. From the using of polymers to do prototypes to metal powders to do real mechanical parts the concepts are always the same, building the part layer by layer. In terms of money from the eighties to present days the 3D printing process maintain a positive trend with much more increases for the future. In terms of monetary and energy flows during the production of complex parts, the additive manufacturing technologies can have positive increments. Thus the adoption of Additive Manufacturing also simplifies measurement of the manufacturing energy consumption for life cycle inventory assessments. In many traditional supply chains, where reliable estimates of cumulative energy consumption may be unavailable, the adoption of AM allows producers to provide their customers with reliable data on the energy embedded into products or component during the manufacturing stage. It has been shown that selecting the minimum cost configuration in Additive Manufacturing is likely to lead to the secondary effect of minimizing process energy consumption. My PhD thesis will discuss a specific additive manufacturing technology, based on the powder bed fusion process using a LASER as a melting source. The main construction components present in the prototype machine will be analyzed, looking for the main critical issues (filtering and powder recovery system, black powder abatement system, in-chamber gas flow, measurement of load losses in the characteristic sections of the plant, powder collection system, distribution and powder deposition system on the printing plate) and, if these cause a crash or an irregularity in the quality in the printed component, a radical modification or replacement of this component will develop. Once the mechanical stability of the entire machine has been verified, the mechanical properties of the samples obtained with stainless steel X2CrNiMo17-12-2 - AISI316L, CuZn42 brass powder and C67 steel - Tempered steel will be analyzed. The main mechanical properties required for a component built for additive manufacturing are in terms of mechanical strength porosity, density, hardness, ultimate tensile strength, and yield tension. Measurements of the density of the specimen will be carried out by measuring the relative volumetric density by Archimedes method. Subsequently, the quality of surface roughness will be measured through the acquisition of maps by means of an optical microscope and through an image analysis software the average surface roughness will then be measured. The same sample will then be used to measure the average hardness of the material by means of a durometer. To test the ultimate tensile strength and the yield strength, samples with circular section will be produced to which an analog extensometer will be mounted. Data processing software processes the strain -strain curve.
APA, Harvard, Vancouver, ISO, and other styles
4

Fenollosa, Artés Felip. "Contribució a l'estudi de la impressió 3D per a la fabricació de models per facilitar l'assaig d'operacions quirúrgiques de tumors." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/667421.

Full text
Abstract:
La present tesi doctoral s’ha centrat en el repte d’aconseguir, mitjançant Fabricació Additiva (FA), models per a assaig quirúrgic, sota la premissa que els equips per fer-los haurien de ser accessibles a l’àmbit hospitalari. L’objectiu és facilitar l’extensió de l’ús dels prototips com a eina de preparació d’operacions quirúrgiques, transformant la pràctica mèdica actual de la mateixa manera que en el seu moment ho van fer tecnologies com les que van facilitar l’ús de radiografies. El motiu d’utilitzar FA, en lloc de tecnologies més tradicionals, és la seva capacitat de materialitzar de forma directa les dades digitals obtingudes de l’anatomia del pacient mitjançant sistemes d’escanejat tridimensional, fent possible l’obtenció de models personalitzats. Els resultats es centren en la generació de nou coneixement sobre com aconseguir equipaments d’impressió 3D multimaterials accessibles que permetin l’obtenció de models mimètics respecte als teixits vius. Per facilitar aquesta buscada extensió de la tecnologia, s’ha focalitzat en les tecnologies de codi obert com la Fabricació per Filament Fos (FFF) i similars basades en líquids catalitzables. La recerca s’alinea dins l’activitat de desenvolupament de la FA al CIM UPC, i en aquest àmbit concret amb la col·laboració amb l’Hospital Sant Joan de Déu de Barcelona (HSJD). El primer bloc de la tesi inclou la descripció de l’estat de l’art, detallant les tecnologies existents i la seva aplicació a l’entorn mèdic. S’han establert per primer cop unes bases de caracterització dels teixits vius -sobretot tous- per donar suport a la selecció de materials que els puguin mimetitzar en un procés de FA, a efectes de millorar l’experiència d’assaig dels cirurgians. El caràcter rígid dels materials majoritàriament usats en impressió 3D els fa poc útils per simular tumors i altres referències anatòmiques. De forma successiva, es tracten paràmetres com la densitat, la viscoelasticitat, la caracterització dels materials tous a la indústria, l’estudi del mòdul elàstic de teixits tous i vasos, la duresa d’aquests, i requeriments com l’esterilització dels models. El segon bloc comença explorant la impressió 3D mitjançant FFF. Es classifiquen les variants del procés des del punt de vista de la multimaterialitat, essencial per fer models d’assaig quirúrgic, diferenciant entre solucions multibroquet i de barreja al capçal. S’ha inclòs l’estudi de materials (filaments i líquids) que serien més útils per mimetitzar teixits tous. Es constata com en els líquids, en comparació amb els filaments, la complexitat del treball en processos de FA és més elevada, i es determinen formes d’imprimir materials molt tous. Per acabar, s’exposen sis casos reals de col·laboració amb l’HJSD, una selecció d’aquells en els que el doctorand ha intervingut en els darrers anys. L’origen es troba en la dificultat de l’abordatge d’operacions de resecció de tumors infantils com el neuroblastoma, i a la iniciativa del Dr. Lucas Krauel. Finalment, el Bloc 3 té per objecte explorar nombrosos conceptes (fins a 8), activitat completada al llarg dels darrers cinc anys amb el suport dels mitjans del CIM UPC i de l’activitat associada a treballs finals d’estudis d’estudiants de la UPC, arribant-se a materialitzar equipaments experimentals per validar-los. La recerca ampla i sistemàtica al respecte fa que s’estigui més a prop de disposar d’una solució d’impressió 3D multimaterial de sobretaula. Es determina que la millor via de progrés és la de disposar d’una pluralitat de capçals independents a fi de capacitar la impressora 3D per integrar diversos conceptes estudiats, materialitzant-se una possible solució. Cloent la tesi, es planteja com seria un equipament d’impressió 3D per a models d’assaig quirúrgic, a fi de servir de base per a futurs desenvolupaments.
La presente tesis doctoral se ha centrado en el reto de conseguir, mediante Fabricación Aditiva (FA), modelos para ensayo quirúrgico, bajo la premisa que los equipos para obtenerlos tendrían que ser accesibles al ámbito hospitalario. El objetivo es facilitar la extensión del uso de modelos como herramienta de preparación de operaciones quirúrgicas, transformando la práctica médica actual de la misma manera que, en su momento, lo hicieron tecnologías como las que facilitaron el uso de radiografías. El motivo de utilizar FA, en lugar de tecnologías más tradicionales, es su capacidad de materializar de forma directa los datos digitales obtenidos de la anatomía del paciente mediante sistemas de escaneado tridimensional, haciendo posible la obtención de modelos personalizados. Los resultados se centran en la generación de nuevo conocimiento para conseguir equipamientos de impresión 3D multimateriales accesibles que permitan la obtención de modelos miméticos respecto a los tejidos vivos. Para facilitar la buscada extensión de la tecnología, se ha focalizado en las tecnologías de código abierto como la Fabricación por Hilo Fundido (FFF) y similares basadas en líquidos catalizables. Esta investigación se alinea dentro de la actividad de desarrollo de la FA en el CIM UPC, y en este ámbito concreto con la colaboración con el Hospital Sant Joan de Déu de Barcelona (HSJD). El primer bloque de la tesis incluye la descripción del estado del arte, detallando las tecnologías existentes y su aplicación al entorno médico. Se han establecido por primera vez unas bases de caracterización de los tejidos vivos – principalmente blandos – para dar apoyo a la selección de materiales que los puedan mimetizar en un proceso de FA, a efectos de mejorar la experiencia de ensayo de los cirujanos. El carácter rígido de los materiales mayoritariamente usados en impresión 3D los hace poco útiles para simular tumores y otras referencias anatómicas. De forma sucesiva, se tratan parámetros como la densidad, la viscoelasticidad, la caracterización de materiales blandos en la industria, el estudio del módulo elástico de tejidos blandos y vasos, la dureza de los mismos, y requerimientos como la esterilización de los modelos. El segundo bloque empieza explorando la impresión 3D mediante FFF. Se clasifican las variantes del proceso desde el punto de vista de la multimaterialidad, esencial para hacer modelos de ensayo quirúrgico, diferenciando entre soluciones multiboquilla y de mezcla en el cabezal. Se ha incluido el estudio de materiales (filamentos y líquidos) que serían más útiles para mimetizar tejidos blandos. Se constata como en los líquidos, en comparación con los filamentos, la complejidad del trabajo en procesos de FA es más elevada, y se determinan formas de imprimir materiales muy blandos. Para acabar, se exponen seis casos reales de colaboración con el HJSD, una selección de aquellos en los que el doctorando ha intervenido en los últimos años. El origen se encuentra en la dificultad del abordaje de operaciones de resección de tumores infantiles como el neuroblastoma, y en la iniciativa del Dr. Lucas Krauel. Finalmente, el Bloque 3 desarrolla numerosos conceptos (hasta 8), actividad completada a lo largo de los últimos cinco años con el apoyo de los medios del CIM UPC y de la actividad asociada a trabajos finales de estudios de estudiantes de la UPC, llegándose a materializar equipamientos experimentales para validarlos. La investigación amplia y sistemática al respecto hace que se esté más cerca de disponer de una solución de impresión 3D multimaterial de sobremesa. Se determina que la mejor vía de progreso es la de disponer de una pluralidad de cabezales independientes, a fin de capacitar la impresora 3D para integrar diversos conceptos estudiados, materializándose una posible solución. Para cerrar la tesis, se plantea cómo sería un equipamiento de impresión 3D para modelos de ensayo quirúrgico, a fin de servir de base para futuros desarrollos.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "AM material development"

1

Michel, Bierlaire. Optimization: Principles and Algorithms. EPFL Press, 2015. http://dx.doi.org/10.55430/6116v1mb.

Full text
Abstract:
Every engineer and decision scientist must have a good mastery of optimization, an essential element in their toolkit. Thus, this articulate introductory textbook will certainly be welcomed by students and practicing professionals alike. Drawing from his vast teaching experience, the author skillfully leads the reader through a rich choice of topics in a coherent, fluid and tasteful blend of models and methods anchored on the underlying mathematical notions (only prerequisites: first year calculus and linear algebra). Topics range from the classics to some of the most recent developments in smooth unconstrained and constrained optimization, like descent methods, conjugate gradients, Newton and quasi-Newton methods, linear programming and the simplex method, trust region and interior point methods. Furthermore elements of discrete and combinatorial optimization like network optimization, integer programming and heuristic local search methods are also presented. This book presents optimization as a modeling tool that beyond supporting problem formulation plus design and implementation of efficient algorithms, also is a language suited for interdisciplinary human interaction. Readers further become aware that while the roots of mathematical optimization go back to the work of giants like Newton, Lagrange, Cauchy, Euler or Gauss, it did not become a discipline on its own until World War Two. Also that its present momentum really resulted from its symbiosis with modern computers, which made it possible to routinely solve problems with millions of variables and constraints. With his witty, entertaining, yet precise style, Michel Bierlaire captivates his readers and awakens their desire to try out the presented material in a creative mode. One of the outstanding assets of this book is the unified, clear and concise rendering of the various algorithms, which makes them easily readable and translatable into any high level programming language. ''This is an addictive book that I am very pleased to recommend.'' Prof. Thomas M. Liebling
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "AM material development"

1

Ureña, Julia, J. R. Blasco, Olga Jordá, Mario Martínez, Luis Portolés, Joamin Gonzalez-Gutierrez, and Stephan Schuschnigg. "Development of Material and Processing Parameters for AM." In A Guide to Additive Manufacturing, 231–306. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05863-9_7.

Full text
Abstract:
AbstractThe development of parameters for a certain additive technology is the key to increase the number of materials that are processed as well as the applications. This chapter shows the details to take into account for the development of parameters for various technologies.
APA, Harvard, Vancouver, ISO, and other styles
2

Abdulrahman, Kamardeen Olajide, Rasheedat Modupe Mahamood, and Esther T. Akinlabi. "Additive Manufacturing (AM)." In Handbook of Research on Advancements in the Processing, Characterization, and Application of Lightweight Materials, 27–48. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-7864-3.ch002.

Full text
Abstract:
The need for less weight and high-performance materials in manufacturing industries has continuously led to the development of lightweight materials through the use of advanced additive manufacturing (AM). The race of lightweight and high-performance metals continue to evolve as this continuously provides better understanding about connection existing between material processing, microstructural development, and material properties. AM technique is an interesting manufacturing process that is employed in production of engineering components with improved properties. The choice of titanium and its alloys in structural applications are attributed to their superior strength-to-weight ratio and high corrosion resistance. This chapter looked at different additive manufacturing (AM) techniques developed for the processing of lightweight metals, their strengths, and limitations. The chapter also looked at the role and contribution of AM to the 4th industrial revolution, processing, and application of titanium aluminide for high temperature applications.
APA, Harvard, Vancouver, ISO, and other styles
3

Pusateri, Valentina, Constantinos Goulas, and Stig Irving Olsen. "Technical Challenges and Future Environmentally Sustainable Applications for Multi-Material Additive Manufacturing for Metals." In Advances in 3D Printing [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.109788.

Full text
Abstract:
Through additive manufacturing (AM), it is now possible to produce functionally gradient materials (FGM) by depositing different metal alloys at a specific location to locally improve mechanical properties and enhance product performance. Despite recent developments, however, there are still some important trade-offs to consider and inherent challenges that must be addressed. These include limitations to the volume, size, and range of materials used and a data-driven strategy to drive decision-making and automation. Additionally, many potential advantages exist in environmentally sustainable terms of multi-material additive manufacturing (MM-AM). In particular, for products that require a complex design, high value, and low production volume, material and energy use can be reduced significantly. However, there are significant uncertainties in terms of environmental impact and applications of MM-AM that need to be addressed during the initial stage of the technology development to understand its potential future environmental performance improvements.
APA, Harvard, Vancouver, ISO, and other styles
4

Nomura, Naoyuki, and Weiwei Zhou. "Development of Alloy Powders for Biomedical Additive Manufacturing." In Additive Manufacturing in Biomedical Applications, 160–63. ASM International, 2022. http://dx.doi.org/10.31399/asm.hb.v23a.a0006907.

Full text
Abstract:
Abstract Additive manufacturing (AM) techniques include powder-bed fusion (PBF), directed-energy deposition, binder jetting (BJ), extrusion-based desktop, vat photopolymerization, material jetting, and sheet lamination. The development of suitable powders for AM is a challenging task because of critical design parameters including chemical composition, flowability of powders, and melt surface tension. This article explains the fabrication methods of metal and novel alloy powders for medical applications. The development of zirconium alloy powder for laser-PBF is introduced as a case study.
APA, Harvard, Vancouver, ISO, and other styles
5

Berg, Christopher. "What Next?" In The Classical Guitar Companion, 213–14. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780190051105.003.0011.

Full text
Abstract:
The final chapter poses questions to readers who have successfully navigated material in the book in the interests of determining the steps best suited for their long-term artistic development: Do I have the foundational background to study successfully my next repertoire piece? Do I have the experience to make artistic and nuanced decisions, or will my ear be compromised by a struggling, exercise-like reading of a work? Am I only drawn to the type of music that comes easily to me, or am I willing to strike out in new directions? The answers may highlight differences between unexamined received wisdom and critical thinking. It is in these differences that a student’s development as an artist can begin to take flight.
APA, Harvard, Vancouver, ISO, and other styles
6

Randermann, Marcel, Timo Hinrichs, and Roland Jochem. "Development of a Quality Gate Reference Model for FDM Processes." In Quality Control [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.104176.

Full text
Abstract:
Additive manufacturing (AM) enables industries to accomplish mass customization by creating complex products in small batches. For this purpose, fused deposition modeling (FDM) is widely used in 3D printing where the material is applied layer-by-layer from a digital model to form a three-dimensional object. There still exist problems in FDM processes regarding the failure rate of printed parts. Failures vary from deformed geometry, clogged nozzles, and dimensional inaccuracies to small parts not being printed that may be attributed to various process steps (e.g., poor quality CAD models, converting issues, overheating, poor quality filament, etc.). The majority of these defects are preventable and are caused by imprudent try-and-error print processes and troubleshooting quality control. The aim of this chapter is to propose a quality gate reference process with defined requirement criteria to prevent the occurrence of defects. The framework shall be applied in quality control and in-situ process monitoring to enhance overall manufacturing quality.
APA, Harvard, Vancouver, ISO, and other styles
7

Isanaka, Sriram Praneeth, Sreekar Karnati, and Frank Liou. "Additive Manufacturing of Aluminum Alloys." In Encyclopedia of Aluminum and Its Alloys. Boca Raton: CRC Press, 2019. http://dx.doi.org/10.1201/9781351045636-140000290.

Full text
Abstract:
Successful additive manufacturing (AM) of aluminum alloys has been demonstrated using a number of processes, which is the focus of this article. Utilization of some aluminum alloys with relatively low reflectivity coupled with process optimization to achieve high retained energy densities enabled the successful deposition of aluminum–silicon alloys that were previously manufactured exclusively using casting processes. The design flexibility of AM processes coupled to the ability to direct energy and material to specific spatial locations has also been used to demonstrate the ability to join dissimilar aluminum alloys, with applicability toward functional grading and repair. Researchers have shown that the additively manufactured alloys exhibit comparable and, in cases, improved mechanical properties to their conventional counterparts with highly refined grain structures. Elaborate investigations into their microstructures to determine the causality of the mechanical properties are also discussed in detail. Understanding the relationship between these desired high retained energy densities and the factors favoring them, including the alloy composition, input energy, and the deposition speed and volume, plays a pivotal role toward successful additive manufacture. With further process parameter optimization and the development of raw material supply chains that can create and tailor alloys based on need, the applicability of these AM processes can be adapted to many more aluminum alloys and can be tailored to serve a wide range of industries.
APA, Harvard, Vancouver, ISO, and other styles
8

Hang Bob Yung, Ching, Lung Fung Tse, Wing Fung Edmond Yau, and Sze Yi Mak. "Additive Manufacturing in Customized Medical Device." In Advanced Additive Manufacturing [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.101139.

Full text
Abstract:
The long-established application of rapid prototyping in additive manufacturing (AM) has inspired a revolution in the medical industry into a new era, in which the clinical-driven development of the customized medical device is enabled. This transformation could only be sustainable if clinical concerns could be well addressed. In this work, we propose a workflow that addresses critical clinical concerns such as translation from medical needs to product innovation, anatomical conformation and execution, and validation. This method has demonstrated outstanding advantages over the traditional manufacturing approach in terms of form, function, precision, and clinical flexibility. We further propose a protocol for the validation of biocompatibility, material, and mechanical properties. Finally, we lay out a roadmap for AM-driven customized medical device innovation based on our experiences in Hong Kong, addressing problems of certification, qualification, characterization of three dimensional (3D) printed implants according to medical demands.
APA, Harvard, Vancouver, ISO, and other styles
9

Dong, Guoying, Yunlong Tang, and Yaoyao Fiona Zhao. "Mesoscale Lattice Structure Design and Simulation with the Support of a Property Database." In Advances in Computers and Information in Engineering Research, Volume 2, 247–73. ASME, 2021. http://dx.doi.org/10.1115/1.862025_ch8.

Full text
Abstract:
The lattice structure is a type of cellular materials [1] that has truss-like structures with interconnected struts and nodes in a three-dimensional (3D) space. Compared to other cellular materials such as random foams and honeycombs, the lattice structures exhibit better mechanical performance [2]. Some examples of lattice structures are shown in Figure 8.1. The first one is a randomized lattice structure. Due to the disordered lattice cells, the properties of this type of lattice structures are stochastic and difficult to control. But it can be used as implants in orthopedic surgeries. The second and the third are lattice structures with periodic unit cells. The difference is that the strut thickness of the second one is uniform, which is called homogeneous lattice structures. However, the third one has non-uniform strut thickness for specific loading conditions, which is called heterogeneous lattice structures. By properly adjusting the material in vital parts of the lattice structure, the heterogeneous periodic lattice structure can have a better mechanical performance than the homogeneous one with the same weight. Plenty of design and optimization methods [3-5] have been proposed for lattice structures to pursue better performance in different engineering applications. For example, the lattice structure is applied to achieve lightweight [3, 4], energy absorption [6], and thermal management [7]. Due to the complexity of the geometry, the fabrication of lattice structures had been the most critical issue. However, with the development of Additive Manufacturing (AM) processes, the difficulty in the fabrication was largely relieved.
APA, Harvard, Vancouver, ISO, and other styles
10

de Agustín, Jose María. "Smart Splint Development." In Technological Adoption and Trends in Health Sciences Teaching, Learning, and Practice, 94–125. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-8871-0.ch005.

Full text
Abstract:
After suffering a fracture in an upper or lower limb, a plaster cast is placed on the affected limb. It is a very old and efficient technique for recovery from an injury that has not had significant changes since its origin. This project aims to develop a new, low-cost smart 3D-printed splint concept by using new sensing techniques. Two rapidly evolving advanced manufacturing (AM) technologies will be used: 3D scanning and 3D printing. This is possible thanks to the application of engineering on additive manufacturing techniques and the use of biocompatible materials available in the market. This study proposes the use of these materials and techniques, including sensor integration inside the splints. The main parameters considered to be studied are pressure, humidity, skin colour, and temperature. These aspects are combined and analyzed to determine any kind of unexpected evolution of the treatment. The goal of this study is to generate a smart splint by using biomaterials and engineering techniques based on the advanced manufacturing and sensor system for clinical purposes.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "AM material development"

1

Kemerling, Brandon, and Daniel Ryan. "Development of Production Eddy Current Inspection Process for Additively Manufactured Industrial Gas Turbine Engine Components." In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-90971.

Full text
Abstract:
Abstract While metal additive manufacturing (AM) promises substantial efficiency gains to the gas turbine manufacturing sector, uncertainty about the quality of parts produced via AM has been a significant hindrance to widespread implementation. Although high fidelity inspection techniques involving computed tomography (CT) and destructive testing have been effective for low volume development activities, new quality assurance solutions are needed that enable rapid, low-cost inspection of serial production AM components. Solar Turbines Incorporated is actively engaged in the development of inspection processes for high production volume AM part acceptance capability of combustion and turbine hot section components. Eddy current inspection (ECI) was identified as a potential non-destructive evaluation (NDE) solution. Based on the principles of electromagnetism, ECI has been successful on conventional materials for surface and near-surface crack detection. However, limited industry data is available regarding the effectiveness of ECI on AM material. The nature of AM-induced discontinuities, specifically for metal laser powder bed fusion (L-PBF) processing, demands high measurement resolution to detect fine features such as bulk porosity, lack of fusion and interlayer discontinuities. Development activities were thus executed to determine the suitability of ECI for detection of AM discontinuities. NDE training sets were printed with intentional variations in key L-PBF processing parameters to simulate the conditions which produce relevant AM material discontinuities. The training sets were then evaluated with a custom ECI system to determine the inspection capability and sensitivity. Inspections were conducted as a function of multiple input frequencies to determine the optimal tradeoff between measurement resolution and depth of penetration. Additional characterization of the training sets was conducted via metallographic analysis to establish correlations between the ECI results and AM material quality. An optimized multi-frequency inspection setting was identified to provide suitable measurement resolution for near surface AM material inspection. Correlations developed between ECI scan data and materials characterization results have enabled the ability to rapidly discriminate between varying discontinuity levels in AM components. Based on these efforts, ECI is considered a suitable inspection technique for materials produced via the L-PBF AM process.
APA, Harvard, Vancouver, ISO, and other styles
2

Kim, Jung Sub, Young Chang Kim, Sang Won Lee, Jeonghan Ko, and Haseung Chung. "Development of a New Laser-Assisted Additive Manufacturing Technology for Hybrid Functionally Graded Material Composites." In ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/msec2017-3048.

Full text
Abstract:
This paper investigates a new technology to create functionally graded material (FGM) by additive manufacturing (AM). In particular, this paper focuses on creating graphene-polymer composite FGM by laser-based sintering processes. Graphene-polymer composites have received high attention in AM due to their excellent electrical conductivity, thermal stability and mechanical strength. However, AM of the graphene-polymer composites has a huge challenge to overcome. The heterogeneous materials should be mixed properly, and it is not easy to achieve the desired composite characteristics solely by changing the mass ratio of graphene. This paper shows a newly developed laser-assisted AM system for the graphene-polymer composite FGM by laser-based sintering processes. The paper also describes two methods of material integration: mixing graphene and polyethylene powders before sintering, and depositing the different material powders separately and sintering them. This study identified that the two methods led to different mechanical and electrical properties of the created parts. Thus this paper demonstrates the possibility to create quite useful hybrid (mechanically and electrically) FGM composites.
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Wei, Alexandre Cachinhasky, Chad Yates, Mikhail Anisimov, John Speights, James Overstreet, and Aaron Avagliano. "A Case Study for Graded Material Development." In Offshore Technology Conference. OTC, 2021. http://dx.doi.org/10.4043/31065-ms.

Full text
Abstract:
Abstract Tungsten carbide hardfacing offers superior wear resistance in a wide range of oil and gas applications. However, for designs of complex geometries, trade-offs often need to be made between manufacturing robustness and service lifecycle based on limited choices of conventional deposition processes. An additive manufacturing (AM) functionally graded tungsten carbide using laser directed energy deposition (L-DED) is developed in an integrated numerically controlled multi-axis machining center with multi-material feeding capability. Essential process parameters are optimized using design of experiment (DOE). Graded structure is shown to reduce crack density. Erosion performance of the L-DED tungsten carbide is on par with commercial high velocity air fueled (HVAF) tungsten carbide coating. The study demonstrates that L-DED-based graded material strategy can significantly improve the robustness of the fabrication process and the expected service reliability. It opens up opportunities involving other hard materials, transition materials, grading strategy by thickness and/or by location.
APA, Harvard, Vancouver, ISO, and other styles
4

Chadha, Charul, Gabriel Olaivar, Albert E. Patterson, and Iwona M. Jasiuk. "Design for Multi-Material Manufacturing Using Polyjet Printing Process: A Review." In ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/detc2022-91187.

Full text
Abstract:
Abstract Additive manufacturing (AM) of thermosetting polymer materials has been a topic of interest since the early days of technology development but has not gotten the attention of the common thermoplastic processes. AM’s general capability to produce intricate geometries along with a wide range of material properties has made it one of the primary manufacturing options for multi-material manufacturing, a major niche for thermosetting resins and similar materials. These multi-material structures are formed by strategically placing materials with different mechanical properties to enhance material performance significantly. As a result, interest in multi-material additive manufacturing (MM-AM) has increased dramatically in the last decade. While on the one hand, MM-AM has introduced new opportunities for design engineers, on the other hand, it has also increased the design considerations required to manufacture the part successfully. This paper reviews the major literature on the topic from the perspective of product and material system design, focusing on the material jetting approach, most commonly known as the PolyJet process. Specific topics include design advancements, materials, and challenges while printing MM-AM components with PolyJet. Findings on four broad topics are discussed, including the effect of interface on material properties, testing standards, established material and material combinations, and design guidelines for MM-AM. Additional design criteria needed for MM-AM are summarized for design engineers to help create reliable components with predictable mechanical behavior.
APA, Harvard, Vancouver, ISO, and other styles
5

Tam, Walter, Kamil Wlodarczyk, and Joseph Hudak. "Additive Manufactured Pressure Vessel Development: An Update." In ASME 2019 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/pvp2019-94033.

Full text
Abstract:
Abstract Researchers at Northrop Grumman Innovation Systems (NGIS) have been pursuing the application of additive manufacturing (AM) technology in pressure vessel manufacture for several years. We gained significant insight after the design, analysis, fabrication, and qualification of a 1.8 liter propellant tank with additive manufactured shell in 2017. A Space Propulsion 2018 summary paper titled Additive Manufactured Pressure Vessel Shell included a description of the research and its development progress as of May 2018. Importantly, the authors discussed several items for further examination, including developing a material data base, developing fracture inspection techniques, developing fracture data to facilitate fracture analyses, assessing consistency in material properties, and examining material shedding. In this summary paper, we review the continuing AM research and development (R&D) activities within NGIS and provide a progress update. The summary paper has three sections. Section 1 contains program background and a description of the evolving NGIS R&D program. In Section 2, we present a progress update. In Section 3, we conclude with a review of our vision towards the implementation of AM technology in space borne pressure vessel manufacture.
APA, Harvard, Vancouver, ISO, and other styles
6

Yamada, Takeshi. "Latest Development of Soluble-OLED Material and its Application to Mid- to large-sized Panel Production." In 2019 26th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD). IEEE, 2019. http://dx.doi.org/10.23919/am-fpd.2019.8830610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Joyee, Erina Baynojir, and Yayue Pan. "Investigation of a Magnetic-Field-Assisted Stereolithography Process for Printing Functional Part With Graded Materials." In 2020 International Symposium on Flexible Automation. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/isfa2020-9650.

Full text
Abstract:
Abstract Additive manufacturing (AM) has many advantages over traditional fabrication techniques, especially for manufacturing sophisticated structures with intricate architecture. Most AM techniques however are often limited to single material with homogeneous properties. To incorporate multi-functionality in AM fabricated parts, researchers have recently paid much attention to multi-material AM techniques which allow locally programmed material properties. Challenges still remain to manipulate material during AM process for getting desired functionalities in fabricated parts. In this study, we present a novel magnetic-field-assisted stereolithography (M-SL) AM technique capable of printing particle-polymer composites with graded material distributions. This study characterizes process parameters for particle trace development and establishes the relationship between the process and printed properties.
APA, Harvard, Vancouver, ISO, and other styles
8

Lu, Yan, Paul Witherell, Felipe Lopez, and Ibrahim Assouroko. "Digital Solutions for Integrated and Collaborative Additive Manufacturing." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-60392.

Full text
Abstract:
Software tools, knowledge of materials and processes, and data provide three pillars on which Additive Manufacturing (AM) lifecycles and value chains can be supported. These pillars leverage efforts dedicated to the development of AM databases, high-fidelity models, and design and planning support tools. However, as of today, it remains a challenge to integrate distributed AM data and heterogeneous predictive models in software tools to drive a more collaborative AM development environment. In this paper, we describe the development of an analytical framework for integrated and collaborative AM development. Information correlating material, product design, process planning and manufacturing operations are captured and managed in the analytical framework. A layered structure is adopted to support the composability of data, models and knowledge bases. The key technologies to enable composability are discussed along with a suite of tools that assist designers in the management of data, models and knowledge components. A proof-of-concept case study demonstrates the potential of the AM analytical framework.
APA, Harvard, Vancouver, ISO, and other styles
9

Ben Amor, Sabrine, Floriane Zongo, Borhen Louhichi, Antoine Tahan, and Vladimir Brailovski. "Dimensional Deviation Prediction Model Based on Scale and Material Concentration Effects for LPBF Process." In 2022 International Additive Manufacturing Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/iam2022-93969.

Full text
Abstract:
Abstract Additive Manufacturing (AM) processes generate parts layer-by-layer without using formative tools. The resulting advantages highlight the capability of AM to become an inherent part of product development. However, process-specific challenges such as high surface roughness, the stair-stepping effect, or dimensional deviations inhibit the establishment of AM at the industrial scale. Thus, AM parts often need to be post-processed using established manufacturing processes. Many process parameters and geometrical factors influence the dimensional accuracy in AM. Published results relating to these deviations are also difficult to compare because they are based on several geometries that are manufactured using different processes, materials, and machine settings. Laser Powder Bed Fusion (LPBF) is gaining in popularity, but one of the obstacles facing its larger industrial use is the limited knowledge of its dimensional and geometrical performances. Therefore, using it requires studying the process and improving the accuracy of the parts involved. This paper represents a new attempt to predict dimensional deviations of LPBF parts. During the project, the scale- and material concentration-related phenomena were implemented in a new image analysis model and applied to the as-built part. We carried out a comparison between the results of the proposed model with those obtained from numerical analyses and experiments. The model does not use finite element analysis, takes less time to compute, and provides reasonable prediction accuracy.
APA, Harvard, Vancouver, ISO, and other styles
10

Lu, Yan, Zhuo Yang, Douglas Eddy, and Sundar Krishnamurty. "Self-Improving Additive Manufacturing Knowledge Management." In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85996.

Full text
Abstract:
The current additive manufacturing (AM) product development environment is far from being mature. Both software applications and workflow management tools are very limited due to the lack of knowledge supporting engineering decision making. AM knowledge includes design rules, operation guidance, and predictive models, etc., which play a critical role in the development of AM products, from the selection of a process and material, lattice and support structure design, process parameter optimization to in-situ process control, part qualification and even material development. At the same time, massive AM simulation and experimental data sets are being accumulated, stored, and processed by the AM community. This paper proposes a four-tier framework for self-improving additive manufacturing knowledge management, which defines two processes: bottom-up data-driven knowledge engineering and top-down goal-oriented active data generation. The processes are running in parallel and connected by users, therefore forming a closed loop, through which AM knowledge can evolve continuously and in an automated way.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "AM material development"

1

MURPH, SIMONA. MATERIAL DEVELOPMENTS FOR 3D/4D ADDITIVE MANUFACTURING (AM) TECHNOLOGIES. Office of Scientific and Technical Information (OSTI), October 2020. http://dx.doi.org/10.2172/1676417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

SESSIONS, HENRY. MATERIAL DEVELOPMENTS FOR 3D/4D ADDITIVE MANUFACTURING (AM) TECHNOLOGIES. Office of Scientific and Technical Information (OSTI), October 2021. http://dx.doi.org/10.2172/1838344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kennedy, Alan, Andrew McQueen, Mark Ballentine, Brianna Fernando, Lauren May, Jonna Boyda, Christopher Williams, and Michael Bortner. Sustainable harmful algal bloom mitigation by 3D printed photocatalytic oxidation devices (3D-PODs). Engineer Research and Development Center (U.S.), April 2022. http://dx.doi.org/10.21079/11681/43980.

Full text
Abstract:
The impacts of Harmful Algal Blooms (HAB), often caused by cyanobacteria (Figure 1), on water resources are increasing. Innovative solutions for treatment of HABs and their associated toxins are needed to mitigate these impacts and decrease risks without introducing persistent legacy contaminants that cause collateral ecosystem impacts. This technical note (TN) identifies novel opportunities enabled by Additive Manufacturing (AM), or 3D printing, to produce high surface area advanced material composites to rapidly prototype sustainable environmental solutions for aquatic nuisance species control. This innovative research explores deployment of 3D-printable polymer composite structures containing nano-scale photocatalysts for targeted open water treatment of HABs that are customizable to the site-of-concern and also retrievable, reusable, and sustainable. The approach developed to control cyanobacteria HAB events has the potential to augment or replace broadcast, non-specific chemical controls that otherwise put non-target species and ecological resources at long-term risk. It can also augment existing UV-treatment HAB treatment control measures. The expected research outcome is a novel, effective, and sustainable HAB management tool for the US Army Corps of Engineers (USACE) and resource managers to deploy in their HAB rapid response programs. The research will provide a framework for scale-up into other manufacturing methods (e.g., injection molding) to produce the devices in bulk (quickly and efficiently). Research for this project title “Mitigation of Harmful Algal Bloom Toxins using 3D Printed Photocatalytic Materials (FY21-23)” was sponsored by the US Army Engineer Research Development Center’s (ERDC) Aquatic Nuisance Species Research Program (ANSRP).
APA, Harvard, Vancouver, ISO, and other styles
4

Bernardin, John. E-1 Additive Manufacturing (AM) Existing Infrastructure and Recent Developments in Materials, Processes, and Capabilities. Office of Scientific and Technical Information (OSTI), January 2022. http://dx.doi.org/10.2172/1839346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography