Academic literature on the topic 'Alvis-Curtis duality'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Alvis-Curtis duality.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Alvis-Curtis duality"

1

Dong, Junbin. "Alvis–Curtis duality for representations of reductive groups with Frobenius maps." Forum Mathematicum 32, no. 5 (September 1, 2020): 1289–96. http://dx.doi.org/10.1515/forum-2020-0053.

Full text
Abstract:
AbstractWe generalize the Alvis–Curtis duality to the abstract representations of reductive groups with Frobenius maps. Similar to the case of representations of finite reductive groups, we show that the Alvis–Curtis duality of infinite type, which we define in this paper, also interchanges the irreducible representations in the principal representation category.
APA, Harvard, Vancouver, ISO, and other styles
2

ACKERMANN, BERND, and SIBYLLE SCHROLL. "On decomposition numbers and Alvis–Curtis duality." Mathematical Proceedings of the Cambridge Philosophical Society 143, no. 3 (November 2007): 509–20. http://dx.doi.org/10.1017/s0305004107000667.

Full text
Abstract:
AbstractWe show that for general linear groups GLn(q) as well as for q-Schur algebras the knowledge of the modular Alvis–Curtis duality over fields of characteristic ℓ, ℓ ∤ q, is equivalent to the knowledge of the decomposition numbers.
APA, Harvard, Vancouver, ISO, and other styles
3

Cabanes, Marc. "On Okuyama’s Theorems about Alvis-Curtis Duality." Nagoya Mathematical Journal 195 (2009): 1–19. http://dx.doi.org/10.1017/s0027763000009673.

Full text
Abstract:
AbstractWe report on theorems by T. Okuyama about complexes generalizing the Coxeter complex and the action of parabolic subgroups on them, both for finite BN-pairs and finite dimensional Hecke algebras. Several simplifications, using mainly the surjections of [CaRi], allow a more compact treatment than the one in [O].
APA, Harvard, Vancouver, ISO, and other styles
4

Schroll, Sibylle. "ALVIS–CURTIS DUALITY ON LOWERCASE q-SCHUR AND HECKE ALGEBRAS." Quarterly Journal of Mathematics 58, no. 2 (October 19, 2006): 255–63. http://dx.doi.org/10.1093/qmath/hal022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

LINCKELMANN, MARKUS, and SIBYLLE SCHROLL. "ON THE COXETER COMPLEX AND ALVIS–CURTIS DUALITY FOR PRINCIPAL ℓ-BLOCKS OF GLn(q)." Journal of Algebra and Its Applications 04, no. 03 (June 2005): 225–29. http://dx.doi.org/10.1142/s0219498805001198.

Full text
Abstract:
M. Cabanes and J. Rickard showed in [3] that the Alvis–Curtis character duality of a finite group of Lie type is induced in non defining characteristic ℓ by a derived equivalence given by tensoring with a bounded complex X, and they further conjecture that this derived equivalence should actually be a homotopy equivalence. Following a suggestion of R. Kessar, we show here for the special case of principal blocks of general linear groups with abelian Sylow-ℓ-subgroups that this is true, by an explicit verification relating the complex X to the Coxeter complex of the corresponding Weyl group.
APA, Harvard, Vancouver, ISO, and other styles
6

Schroll, S., and K. M. Tan. "Weight 2 Blocks of General Linear Groups and Modular Alvis-Curtis Duality." International Mathematics Research Notices, July 8, 2010. http://dx.doi.org/10.1093/imrn/rnm130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dudas, Olivier, and Nicolas Jacon. "Alvis-Curtis Duality for Finite General Linear Groups and a Generalized Mullineux Involution." Symmetry, Integrability and Geometry: Methods and Applications, January 30, 2018. http://dx.doi.org/10.3842/sigma.2018.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Alvis-Curtis duality"

1

Qin, Chuan. "Involution pour les représentations des algèbres de Hecke." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS291.

Full text
Abstract:
Dans cette thèse, nous présentons deux généralisations de la dualité d'Alvis-Curtis au cas des algèbres de Hecke : une version relative pour les algèbres de Hecke finies, basée sur le travail de Howlett-Lehrer, et une version à paramètres inégaux pour les algèbres de Hecke affines, basée sur le travail de S.-I. Kato (qui, sous certaines hypothèses, correspond à la dualité d'Aubert-Zelevinsky pour les représentations irréductibles lisses complexes de groupes p-adiques). Nous démontrons ensuite leur compatibilité avec la dualité d'Aubert-Zelevinsky lorsqu'elles sont restreintes à certains blocs de Bernstein. Enfin, motivés par le travail récent d'Aubert-Xu, nous fournissons des exemples de calculs du foncteur de dualité pour les séries principales du groupe exceptionnel G2
In this thesis, we give two generalizations of the Alvis-Curtis duality for Hecke algebras: a relative version for finite Hecke algebras, based on Howlett-Lehrer's work, and an unequal parameter version for affine Hecke algebras, based on S-I. Kato's work (which under certain assumptions, corresponds to the Aubert-Zelevinsky duality for complex smooth irreducible representations of p-adic groups). Then, we prove their compatibility with the Aubert-Zelevinsky duality when restricted to some Bernstein blocks. Finally, motivated by the recent work of Aubert-Xu, we provide examples of calculations of the duality functor for the principal series of the exceptional group G2
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography