Academic literature on the topic 'Aluminum pin'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aluminum pin.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Aluminum pin"
Ravendra, Jujavarapu Sai, and Palukuri Veerendra. "Studies on Effect of Tool Pin Profiles and Welding Parameters on the Friction Stir Welding of Dissimilar Aluminium Alloys AA5052 & AA6063." International Journal for Research in Applied Science and Engineering Technology 10, no. 4 (April 30, 2022): 3077–89. http://dx.doi.org/10.22214/ijraset.2022.41986.
Full textSyahrullail, Samion, Ahmad Mohd Azmi, Norzahir Sapawe, and Amir Khalid. "Wear Characterization of Aluminum Lubricated with Palm Olein at Different Normal Load." Applied Mechanics and Materials 554 (June 2014): 401–5. http://dx.doi.org/10.4028/www.scientific.net/amm.554.401.
Full textMahmoud, Essam R. I., Sohaib Z. Khan, Abdulrahman Aljabri, Hamad Almohamadi, Mohamed Abdelghany Elkotb, Mohamed A. Gepreel, and Saad Ebied. "Free Intermetallic Cladding Interface between Aluminum and Steel through Friction Stir Processing." Crystals 12, no. 10 (October 6, 2022): 1413. http://dx.doi.org/10.3390/cryst12101413.
Full textSukmana, Irza. "The Effect of Pin Shape on the Friction Stir Welding Quality of Aluminum AA1100 Series." Journal of Engineering and Scientific Research 4, no. 1 (June 28, 2022): 45–49. http://dx.doi.org/10.23960/jesr.v4i1.109.
Full textTAKAHASHI, Keita, Yoshihiko HANGAI, Ryohei NAGAHIRO, Kenji AMAGAI, Takao UTSUNOMIYA, and Nobuhiro YOSHIKAWA. "Shaping of porous aluminum by pin screen." Proceedings of the Materials and processing conference 2018.26 (2018): 203. http://dx.doi.org/10.1299/jsmemp.2018.26.203.
Full textZhang, Yunhe, Sian Wang, Xiwang Zhao, Fanming Wang, and Gaohui Wu. "In Situ Study on Fracture Behavior of Z-Pinned Carbon Fiber-Reinforced Aluminum Matrix Composite via Scanning Electron Microscope (SEM)." Materials 12, no. 12 (June 17, 2019): 1941. http://dx.doi.org/10.3390/ma12121941.
Full textVerduzco Juárez, J. C., G. M. Dominguez Almaraz, R. García Hernández, and J. J. Villalón López. "Effect of Modified Pin Profile and Process Parameters on the Friction Stir Welding of Aluminum Alloy 6061-T6." Advances in Materials Science and Engineering 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/4567940.
Full textWang, Sian, Yunhe Zhang, Pibo Sun, Yanhong Cui, and Gaohui Wu. "Microstructure and Flexural Properties of Z-Pinned Carbon Fiber-Reinforced Aluminum Matrix Composites." Materials 12, no. 1 (January 7, 2019): 174. http://dx.doi.org/10.3390/ma12010174.
Full textBerber, Adnan, Kazım Bagirsakci, and Mehmet Gurdal. "Investigation of effects on heat transfer and flow characteristics of Cr-Ni alloy and aluminum pins placed in AISI 304 tube." Thermal Science 24, no. 3 Part B (2020): 1999–2011. http://dx.doi.org/10.2298/tsci180421306b.
Full textShojaeefard, Mohammad Hasan, Mostafa Akbari, Abolfazl Khalkhali, and Parviz Asadi. "Effect of tool pin profile on distribution of reinforcement particles during friction stir processing of B4C/aluminum composites." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 232, no. 8 (April 1, 2016): 637–51. http://dx.doi.org/10.1177/1464420716642471.
Full textDissertations / Theses on the topic "Aluminum pin"
Georgeou, Zacharias. "Analysis of material flow around a retractable pin in a friction stir weld." Thesis, Port Elizabeth Technikon, 2003. http://hdl.handle.net/10948/196.
Full textFarjam, Aslan. "Influence of Alumina Addition to Aluminum Fins for Compact Heat Exchangers Produced by Cold Spray Additive Manufacturing." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/33383.
Full textLee, Trevor J. "Investigation of ASTM E 238 Bearing Pin Properties for Various Aerospace Alloys." DigitalCommons@CalPoly, 2013. https://digitalcommons.calpoly.edu/theses/1074.
Full textAmara, Holm. "Influence de l'aluminium et des sols acides sur la croissance du sapin de Douglas (Pseudotsuga menziesii, Mirb.) : rôle de la paroi dans les réponses au stress aluminique." Thesis, Limoges, 2020. http://aurore.unilim.fr/theses/nxfile/default/a59ed152-5cd0-4283-8056-5b8950a5f8d5/blobholder:0/2020LIMO0054.pdf.
Full textIn Europe, softwood forests are very abundant and are characterized by an acidic soil profile. In these conditions, when the soil pH drops below 5.5, aluminum is present in soils in a soluble and bioavailable form Al3+. This work was carried out on Douglas fir (Pseudotsuga menziesii), a coniferous tree, widely distributed in France and particularly in the Limousin region. In this study we used different cultivation methods (in vitro cultures with controlled conditions, and semi-controlled conditions in greenhouse on naturally acidic forest soils rich in Al). Plants were analyzed at different stages of development (seedling stage and young tree stage) and for different exposure periods (2 and 11 months). The results have shown that the growth of Douglas fir and its mineral nutrition were disturbed when exposed to high Al concentrations (500 μM AlCl3 in vitro, and about 1 mg Al.g-1 at pH 5 on forest soils). We showed that the roots exhibited severe symptoms of toxicity and accumulated the majority of the Al within the cell wall. It has been shown that, to cope with aluminum toxicity, Douglas fir developed different strategies. On one hand, the chemical characterization of the cell wall revealed quantitative and qualitative modifications in the polysaccharidic composition of the wall, in particular pectins (harboring a higher galacturonic acid content with less ramification) following regulation of pectin methylesterase activity, and hemicelluloses (richer in glucomannans), suggesting a trapping process of Al in the cell wall structures. On the other hand, at the intracellular level, the results showed a stimulation of a key enzyme activity involved in the reduction of oxidative stress induced under aluminum stress, as well as an accumulation of proline, potentially capable of chelating Al inside the cell. Therefore, Douglas fir plantlets showed a relative high tolerance level to Al equivalent to other coniferous species which can be explained at the cellular level by an exclusion process involving retention by the cell wall but also a complexation process in the intracellular compartment
Truog, Adam G. "Bond Improvement of Al/Cu Joints Created by Very High Power Ultrasonic Additive Manufacturing." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1337885605.
Full textGomez, Ana Carolina. "Estudo do desgaste de nanocompósitos de alumina-zircônia usando variação de parâmetros no ensaio pino-no-disco." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/74/74133/tde-23022018-084836/.
Full textWear is responsible for a large number of material failures, causing them to be replaced early and consequently shortening their life-time. Therefore, studies are conducted to characterize the limits of use of these materials, thus avoiding catastrophic situations. From the variables and parameters involved in the wear test, it is possible to construct maps that aim to direct the correct choice of material according to the desired application, as well as to identify its behavior against certain conditions of use. In this context, the objective of this work was to know the wear behavior of alumina nanocomposites containing 5% nanometric zirconia inclusions in order to construct a simplified wear transition diagram between the sliding speed and applied load combination limits. For this, test pieces shaped like pins with semi-spherical tips were characterized in terms of hardness and fracture toughness, took to the wear test of the pin-on-disk with ambient temperatures and humidity, varying the speed and load parameters. Slip velocities ranged from 1.2 m/s to 0.1 m/s and loads ranged from 2 N to 100 N. The values of hardness and fracture toughness obtained were 14.08 ± 1.22 GPa and 3.99 ± 0.14 MPa.m1/2, respectively. The results of wear showed that from the characterization and construction of the wear regime transition diagram, with combinations of extrinsic load parameters and slip speed, it was possible to define and reach the boundary conditions between the moderate wear regime and the transition for the severe regime. This diagram helps in the selection and comparison of the transition between the wear limits of the studied material with other types used in engineering.
Majzlan, Juraj. "Thermodynamics of iron and aluminum oxides /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2002. http://uclibs.org/PID/11984.
Full textWouters, Onne. "Plasticity in aluminum alloys at various length scales." [S.l. : [Groningen : s.n.] ; University Library Groningen] [Host], 2006. http://irs.ub.rug.nl/ppn/292535821.
Full textNewlands, Katrina. "The early stage dissolution characteristics of aluminosilicate glasses." Thesis, University of Aberdeen, 2015. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=227976.
Full textGong, Yuze. "Wear Studies on Silicon Carbide Whisker Reinforced Alumina." Thesis, KTH, Materialvetenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-35923.
Full textBooks on the topic "Aluminum pin"
Sullivan, Samantha Nicole. Pin-on-flat sliding friction of aluminum on polytetrafluoroethylene coated aluminum. [Downsview, Ont.]: University of Toronto, Institute for Aerospace Studies, 2003.
Find full textMann, J. Y. Influence of hole surface finish, cyclic frequency and spectrum severity on the fatigue behaviour of thick section aluminium alloy pin joints (U). Melbourne, Victoria: Aeronautical Research Laboratory, 1987.
Find full textLü, Shengli. Lü he jin jie gou fu shi sun shang yan jiu yu ping jia. Xian: Xi bei gong ye ta xue chu ban she, 2009.
Find full textBozic, Leah E. The effects of aluminum on jack pine (Pinus banksiana Lamb.) seedlings and its localization withing the root tissue. Ottawa: National Library of Canada, 1990.
Find full textZnO bao mo zhi bei ji qi guang, dian xing neng yan jiu. Shanghai Shi: Shanghai da xue chu ban she, 2010.
Find full textApple: Watch Series 6 Guide GPS + Cellular, 40mm Gold Aluminum Case with Pink Sand Sport Band. Independently Published, 2022.
Find full textAmerican Society for Testing and Materials. Annual Book of Astm Standards, 1989: Die-Cast Metals; Aluminum and Magnesium Alloys/Vol 02.02/Pcn 01-020289-04. Amer Society for Testing &, 1989.
Find full textVoinescu, Alexandra, Nadia Wasi Iqbal, and Kevin J. Martin. Management of chronic kidney disease-mineral and bone disorder. Edited by David J. Goldsmith. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199592548.003.0118_update_001.
Full textAmerican Society for Testing and Materials. Annual Book of Astm Standards, 1988: Nonferrous Metal Products: Die-Cast Metal, Aluminum and Magnesium Alloys/Section 2, Vol 02.02/Pcn 01-020288-04. Amer Society for Testing &, 1988.
Find full text1992 Annual Book of Astm Standards: Section 2 : Nonferrous Metal Products : Volume 02.02 : Aluminum and Magnesium Alloys/Pcn 01-020292-04 (Annual Book of a S T M Standards Volume 0202). American Society for Testing & Materials, 1992.
Find full textBook chapters on the topic "Aluminum pin"
Wittwer, Lukas, Nasrin Jank, Almedin Bećirović, Andreas Waldhör, and Norbert Enzinger. "Influences on Arc Stability in Welding of Aluminum Pin-Structures." In ICAA13: 13th International Conference on Aluminum Alloys, 795–800. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118495292.ch117.
Full textWittwer, Lukas, Nasrin Jank, Almedin Bećirović, Andreas Waldhör, and Norbert Enzinger. "Influences on ARC Stability in Welding of Aluminum Pin-Structures." In ICAA13 Pittsburgh, 795–800. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-319-48761-8_117.
Full textZhuo, Yue, Riming Tan, Zhidong Guan, and Hu Dan. "An Investigation on the Pin-Bearing Behavior of Glass-Reinforced Aluminum Laminate." In Lecture Notes in Electrical Engineering, 2706–18. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3305-7_218.
Full textKatundi, D., A. B. Irez, E. Bayraktar, and I. Miskioglu. "Alternative Composite Design from Recycled Aluminum Chips for Mechanical Pin-Joint (Knuckle) Applications." In Mechanics of Composite, Hybrid and Multifunctional Materials, Volume 5, 127–35. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95510-0_15.
Full textBalamurugan, S., and K. Subbaiah. "Tool Pin Profile Studies on Friction Stir Welded Joints of AA5052-H32 and AA6061-T6 Aluminum Alloys." In Lecture Notes in Mechanical Engineering, 663–70. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1724-8_61.
Full textGiridharan, K., V. Jaiganesh, and S. Padmanabhan. "Influences of Tool Pin Profiles on Mechanical Properties of Friction Stir Welding Process of AA8011 Aluminum Alloy." In Lecture Notes in Mechanical Engineering, 47–54. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2718-6_6.
Full textLader, Surendra Kumar, Mayuri Baruah, and Raj Ballav. "Experimental Investigation of Al 2024 Aluminum Alloy Joints by Underwater Friction Stir Welding for Different Tool Pin Profile." In Springer Proceedings in Materials, 81–97. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0182-8_7.
Full textArya, Pradyumn K., Bhavesh Chaudhary, Neelesh Kumar Jain, and M. Jayaprakash. "Effect of Tool Pin Profile on Mechanical and Wear Properties of Friction Stir Welding of Dissimilar AA6061 and AA5052 Aluminum Alloys." In Modern Manufacturing Systems, 245–59. New York: Apple Academic Press, 2022. http://dx.doi.org/10.1201/9781003284024-21.
Full textBaldwin, Charles A. "Thermal Imaging of Enameled Aluminum Pan Supports." In 63rd Porcelain Enamel Institute Technical Forum: Ceramic Engineering and Science Proceedings, Volume 22, Issue 5, 97–105. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470294710.ch10.
Full textMukhlis, Reiza, John Grandfield, and M. Akbar Rhamdhani. "Control Pin Refractory Reaction in High Magnesium–Aluminium Melts." In Light Metals 2022, 594–603. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92529-1_78.
Full textConference papers on the topic "Aluminum pin"
Urdaneta, Mario, Alfonso Ortega, and Russel V. Westphal. "Experiments and Modeling of the Hydraulic Resistance of In-Line Square Pin Fin Heat Sinks With Top By-Pass Flow." In ASME 2003 International Electronic Packaging Technical Conference and Exhibition. ASMEDC, 2003. http://dx.doi.org/10.1115/ipack2003-35268.
Full textShyu, Jin-Cherng, and Shu-Kai Jheng. "Heat Transfer of Pico Projector Using a Piezoelectric Fan With an Aluminum Blade." In ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69570.
Full textRohatgi, Pradeep K., Pradeep L. Menezes, Tatiana Mazzei, and Michael R. Lovell. "Tribological Performance of Aluminum Micro and Nano Composites." In ASME/STLE 2011 International Joint Tribology Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ijtc2011-61222.
Full textRana, H. "Influence of distinct tool pin geometries on aluminum 8090 FSW joint properties." In Sheet Metal 2023. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902417-25.
Full textLi, Guoli, Nicolas Andre, Olivier Poncelet, Pierre Gerard, Syed Zeeshan Ali, Florin Udrea, Laurent A. Francis, Yun Zeng, and Denis Flandre. "Operation of suspended lateral SOI PIN photodiode with aluminum back gate." In 2016 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS). IEEE, 2016. http://dx.doi.org/10.1109/ulis.2016.7440076.
Full textIssa, Johnny S., and Alfonso Ortega. "Experimental Measurements of the Flow and Heat Transfer of a Square Jet Impinging on an Array of Square Pin Fins." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39244.
Full textVictor Christy, John, Abdel-Hamid I. Mourad, and Jaber Abu Qudeiri. "Tribological Analysis of Squeeze Stir Cast Recycled Aluminum MMC’s." In ASME 2021 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/pvp2021-62819.
Full textHussain, Arsalan, Ali Usman, Farhan Ausaf, Samad Ali Taj, and Abdel Hamid Ismail Mourad. "Parametric Optimization of Friction Stir Welding (FSW) of Dissimilar Aluminum Alloys with Newly Developed Tool." In International Conference on Mechanical, Automotive and Mechatronics Engineering. Aksaray: ECER, 2023. http://dx.doi.org/10.53375/icmame.2023.368.
Full textSakano, Y., T. Iwai, and Y. Shoukaku. "Friction and Wear Properties of PTFE Composites Against 6061-T6 Aluminum Alloy Under Hydrogen Atmosphere." In ASME/STLE 2011 International Joint Tribology Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ijtc2011-61258.
Full textRajab, Husam, Da Yin, and Hongbin Ma. "Effects of Al2O3-Water Nanofluid and Angular Orientation on Entropy Generation and Convective Heat Transfer of an Elliptical Micro-Pin-Fin Heat Sink." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-40335.
Full textReports on the topic "Aluminum pin"
Roldan, S. 17-Inch Single Pin Aluminum Track Development Program for Future U.S. Marine Corps Tracked Vehicles. Fort Belvoir, VA: Defense Technical Information Center, November 1986. http://dx.doi.org/10.21236/ada204818.
Full textDunn, C. E., and N. L. Hastings. Biogeochemical survey of the Fraser Lake area using outer bark of Lodgepole pine (NTS 93K02/03): alkali metals, alkaline earths, manganese and aluminum, central British Columbia. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1999. http://dx.doi.org/10.4095/210376.
Full textBryant, C. A., S. A. Wilks, and C. W. Keevil. Survival of SARS-CoV-2 on the surfaces of food and food packaging materials. Food Standards Agency, November 2022. http://dx.doi.org/10.46756/sci.fsa.kww583.
Full textDunn, C. E., and N. L. Hastings. Biogeochemical survey of the Ootsa-François lakes area using outer bark of Lodgepole Pine (NTS 93F/13, 14, and part of 12), alkaline earths, manganese and aluminum, north central British Columbia. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1998. http://dx.doi.org/10.4095/209915.
Full textShenker, Moshe, Paul R. Bloom, Abraham Shaviv, Adina Paytan, Barbara J. Cade-Menun, Yona Chen, and Jorge Tarchitzky. Fate of Phosphorus Originated from Treated Wastewater and Biosolids in Soils: Speciation, Transport, and Accumulation. United States Department of Agriculture, June 2011. http://dx.doi.org/10.32747/2011.7697103.bard.
Full textDunn, C. D., and N. L. Hastings. Biogeochemical survey of the Nechako River area using outer back of Lodgepole pine (NTS 93 F/9, 93 F/10, 93 F/15, 93 F/16 and parts of 93 F/11, 93 F/14, 93 K/1 and 93 K/2), alkali metals, alkaline earths, manganese and aluminum, central British Columbia. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2000. http://dx.doi.org/10.4095/211477.
Full text