Academic literature on the topic 'Aluminum Metallurgy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aluminum Metallurgy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Aluminum Metallurgy"
Hildeman, Gregory J., and Michael J. Koczak. "Aluminum Powder Metallurgy." JOM 38, no. 8 (August 1986): 30–32. http://dx.doi.org/10.1007/bf03257784.
Full textKustov, A. D., and O. G. Parfenov. "High-speed aluminum metallurgy." Doklady Chemistry 462, no. 2 (June 2015): 149–51. http://dx.doi.org/10.1134/s0012500815060075.
Full textTakeda, Yoshinobu, Yusuke Odani, and Tetsuya Hayashi. "Powder metallurgy of aluminum alloys." Bulletin of the Japan Institute of Metals 27, no. 10 (1988): 789–96. http://dx.doi.org/10.2320/materia1962.27.789.
Full textBolaños-Bernal, Sergio Esteban, and Irma Angarita-Moncaleano. "Graphene reinforced aluminum matrix composite obtaining by powder metallurgy." ITECKNE 16, no. 2 (December 16, 2019): 18–24. http://dx.doi.org/10.15332/iteckne.v16i2.2353.
Full textTAKEDA, Yoshinobu. "A prospect of aluminum powder metallurgy." Journal of Japan Institute of Light Metals 37, no. 10 (1987): 639–45. http://dx.doi.org/10.2464/jilm.37.639.
Full textPramanik, Dipankar. "Aluminum-Based Metallurgy for Global Interconnects." MRS Bulletin 20, no. 11 (November 1995): 57–60. http://dx.doi.org/10.1557/s0883769400045590.
Full textKulkarni, G. J., D. Banerjee, and T. R. Ramachandran. "Physical metallurgy of aluminum-lithium alloys." Bulletin of Materials Science 12, no. 3-4 (September 1989): 325–40. http://dx.doi.org/10.1007/bf02747140.
Full textDonaldson, I. W. "High Thermal Conductivity Aluminum Powder Metallurgy Materials." Materials Science Forum 783-786 (May 2014): 120–25. http://dx.doi.org/10.4028/www.scientific.net/msf.783-786.120.
Full textJiang, Z., C. Lucien Falticeanu, and I. T. H. Chang. "Warm Compression of Al Alloy PM Blends." Materials Science Forum 534-536 (January 2007): 333–36. http://dx.doi.org/10.4028/www.scientific.net/msf.534-536.333.
Full textTSUCHIDA, Shigeo. "Degassing and consolidation in aluminum powder metallurgy." Journal of Japan Institute of Light Metals 37, no. 10 (1987): 656–64. http://dx.doi.org/10.2464/jilm.37.656.
Full textDissertations / Theses on the topic "Aluminum Metallurgy"
Dimayuga, Francisco Cruz II. "Vacuum refining molten aluminum." Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=72810.
Full textKülünk, Bahadir. "Kinetics of removal of calcium and sodium by chlorination from aluminum and aluminum-1wt% magnesium alloys." Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=39752.
Full textIt was demonstrated that the removal of calcium and sodium followed first order reaction kinetics with respect to calcium and sodium concentrations. The removal of the above mentioned elements was represented well by a kinetic model in which mass transfer of sodium and calcium in melt phase was rate limiting.
In the case of the magnesium containing alloys, the MgCl$ sb2$ salt phase that was generated during chlorination was found to have a profound effect on the removal of calcium and sodium. The contribution of the salt phase to the removal of these elements was calculated to reach as high as 60%. In commercial purity aluminum, however, while the major contribution to the removal of calcium was from the chlorine containing gas bubbles, the major contribution to the removal of sodium was calculated to be evaporation of sodium through the melt surface.
Jaansalu, Kevin Michael. "Composites by directed oxidation of aluminum alloys." Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60591.
Full textAluminum-magnesium-silicon alloys were oxidized into an alumina bed of either Alcan C-70 UNG power or Struers' 400 grit. The process conditions were optimized in air at 1120$ sp circ$C with a 10% silicon, 2% magnesium alloy. The growth rate was dependent on the powder bed. The material was composed of alumina, silicon, aluminum, and trace amounts of magnesium aluminate spinel. The fracture mode was dependent on the composition of the material and the alumina bed.
Baik, Youngmin. "Carbothermal synthesis of aluminum nitride using sucrose." Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60643.
Full textTian, Chenguo. "Filtration of liquid aluminum with reticulated ceramic filters." Thesis, McGill University, 1994. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=28932.
Full textParameters affecting filtration processes during the initial period were identified, some of which could be quantified numerically using a 2-D computational domain. According to these numerical analyses, the clean filter coefficient for this type of filter was linearly dependent on the dimensionless Stokes velocity of the suspended particles, had a $-$0.96 power dependence on the Peclet number, a $-$6.93 power dependence on the effective porosity of the filter, and exhibited only a weak dependence on the Reynolds number, in the Darcy velocity regime.
The dynamic behaviour of this type of filter was analyzed theoretically and simulated numerically using newly proposed correlations relating the filter coefficient and the pressure drop to the amount of particles captured within the filter (the specific deposit), and a model describing the morphology of captured particles. The simulated results showed that the filtration efficiency and the pressure drop increased with inlet particle concentration and filtration time; these increases were however, insignificant when the inlet particle concentration was less than 1 ppm for filtration periods of two hours, however, when the inlet concentration (initial and continued) reached 10 ppm, the change became appreciable.
Experimental data, obtained from liquid aluminum filtration tests conducted by the author in both laboratory and industrial settings, compared favourably with the numerical results.
Tenekedjiev, Nedeltcho. "Strontium treatment of aluminum : 17% silicon casting alloys." Thesis, McGill University, 1989. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=61774.
Full textHernández, Paz Juan Francisco. "Heat treatment and precipitation in A356 aluminum alloy." Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=19547.
Full textMoosavi, Khoonsari Elmira. "Reinforced aluminum structure castings for powertrain automotive applications." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66990.
Full textLe renfort des pièces coulées en aluminium par l'assemblage d'insertions ferreuses (systèmes hybrides) permet de combiner la légèreté de l'aluminium avec la rigidité des alliages à base de fer. Cette technique présente donc un grand intérêt pour plusieurs applications, spécialement dans le secteur des transports. Ce projet porte sur les différents aspects technologiques de la coulée de pièces avec joint aluminium-fonte auquel est ajouté une couche intermédiaire (ou revêtement). La procédure expérimentale a consisté à préparer la surface des insertions, à appliquer le revêtement, puis immerger la pièce dans un bain d'aluminium liquide, pour finalement refroidir le système jusqu'à la température de la pièce. Les effets du traitement par flux, de la décarburisation, et des paramètres de revêtement ainsi que la durée d'immersion dans l'aluminium liquide sur la qualité du joint aluminium-fonte ont été étudiés. L'évolution de la microstructure par la formation d'une zone de réaction à l'interface de l'insertion de réaction et zone du revêtement a été déterminée en fonction de la composition du revêtement er du temps d'immersion dans le revêtement liquide, et leurs effets sur les propriétés du joint été évalués. La corrélation entre la microstructure et la microdureté du joint ont a été établie. La décarburisation, le traitement par flux, l'utilisation d'un revêtement approprié et l'optimisation des paramètres du procédé améliorent significativement les propriétés du joint. L'utilisation du revêtement "McGill 2" avec un temps d'immersion dans le bain d'aluminium d'une minute permet la formation d'un joint Al-Fe avec des caractéristiques morphologiques, d'épaisseur, de microdureté et de composition optimisées. Les résultats montrent que l'insertion de pièces formant un joint peut être utilisée pour renforcer les pièces d'aluminium et
Stephen, Gail. "Al-Fe-Si intermetallics in 1000 series aluminum alloys." Thesis, McGill University, 1994. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=26424.
Full textIn the first part of this study, the conditions at which the intermetallics form, along with the ability of strontium to modify them were investigated. The second part consisted of determining how the morphology of the Al-Fe-Si phases affects the mechanical properties of the worked product. It was found that the formation of the Chinese Script morphology is promoted with increasing cooling rates, Fe/Si ratios and additions of strontium. However, the relative amount of Chinese Script was found to decrease with increasing (Fe+Si) levels. Tensile testing and formability testing (Erichsen ball punch deformation test) revealed that the presence of a Chinese Script morphology of Al-Fe-Si intermetallics (as opposed to the plate-like morphology) imparts no significant beneficial effect on the formability of the final rolled sheet.
Zhang, Chunhui. "Controlled cooling of permanent mold castings of aluminum alloys." Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=19619.
Full textBooks on the topic "Aluminum Metallurgy"
Runge, Jude Mary. The Metallurgy of Anodizing Aluminum. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72177-4.
Full textLumley, R. N. Fundamentals of aluminium metallurgy: Production, processing and applications. Oxford: Woodhead Pub., 2011.
Find full textAluminum recycling. Boca Raton, FL: CRC/Taylor & Francis, 2007.
Find full textA, Belov N., and Glazoff Michael V, eds. Casting aluminum alloys. Amsterdam: Elsevier Science, 2007.
Find full textSorrell, Charles A. Aluminum fluxing salts: A critical review of the chemistry and structure of alkali aluminum halides. [Pittsburgh, Pa.]: U.S. Dept. of the Interior, Bureau of Mines, 1986.
Find full textĖskin, G. I. Physical metallurgy of direct chill casting of aluminum alloys. Boca Raton: Taylor & Francis, 2008.
Find full textEskin, D. G. Physical metallurgy of direct chill casting of aluminum alloys. Boca Raton: Taylor & Francis, 2008.
Find full textAltenpohl, Dietrich G. Aluminum: technology, applications, and environment: A profile of a modern metal : aluminum from within. 6th ed. Washington, D.C: The Aluminium Association, Inc., 1998.
Find full textPovarnit͡sin, Anatoliĭ Aleksandrovich. Nepreryvnoe pressovanie ali͡uminii͡a sposobom "Conform". Ekaterinburg: Avtomatizirovannai͡a laboratorii͡a konstruirovanii͡a sposobov i agregatov nepreryvnoĭ deformat͡sii rastvorov, 1997.
Find full textAbramov, V. I͡A. Fiziko-khimicheskie osnovy kompleksnoĭ pererabotki ali͡uminievogo syrʹi͡a: Shchelochnye sposoby. Moskva: "Metallurgii͡a", 1985.
Find full textBook chapters on the topic "Aluminum Metallurgy"
Hummert, K., H. Müller, and C. Spiegelhauer. "Spray forming: Aluminum alloys." In Powder Metallurgy Data, 258–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/10689123_15.
Full textRunge, Jude Mary. "Metallurgy Basics for Aluminum Surfaces." In The Metallurgy of Anodizing Aluminum, 191–248. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72177-4_4.
Full textWoo, S. H., Min Ku Lee, and Chang Kyu Rhee. "Synthesis of Aluminum Monohydroxide Nanofiber by Electrolysis of Aluminum Plates." In Progress in Powder Metallurgy, 129–32. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-419-7.129.
Full textYu, Seung Hoon, and Kwang Seon Shin. "Fabrication of Aluminum/Aluminum Nitride Composites by Reactive Mechanical Alloying." In Progress in Powder Metallurgy, 181–84. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-419-7.181.
Full textWatanabe, Ryuzo, Duk Sun Choi, and Akira Kawasaki. "Gas Chromatographic Analysis of Degassing of Aluminum and Aluminum Alloy Powders." In Progress in Powder Metallurgy, 809–12. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-419-7.809.
Full textRunge, Jude Mary. "A Brief History of Aluminum and Its Alloys." In The Metallurgy of Anodizing Aluminum, 1–63. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72177-4_1.
Full textRunge, Jude Mary. "A Brief History of Anodizing Aluminum." In The Metallurgy of Anodizing Aluminum, 65–148. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72177-4_2.
Full textRunge, Jude Mary. "Anodizing as an Industrial Process." In The Metallurgy of Anodizing Aluminum, 149–90. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72177-4_3.
Full textRunge, Jude Mary. "Anodizing as a Corrosion Process." In The Metallurgy of Anodizing Aluminum, 249–80. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72177-4_5.
Full textRunge, Jude Mary. "Anodic Aluminum Oxide Growth and Structure." In The Metallurgy of Anodizing Aluminum, 281–320. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72177-4_6.
Full textConference papers on the topic "Aluminum Metallurgy"
Suprapto, Suprapto, Yatim Lailun Ni’mah, Ita Ulfin, Harmami Harmami, Fredy Kurniawan, Djarot Sugiarso, Hendro Juwono, Kiki Cahayati Hidayatulloh, and Gayu Septiandini. "Optimization of aluminum recovery from aluminum smelting waste using the surface response methodology." In PROCEEDINGS OF THE 3RD INTERNATIONAL SEMINAR ON METALLURGY AND MATERIALS (ISMM2019): Exploring New Innovation in Metallurgy and Materials. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0002649.
Full textEKVALL, J., and D. CHELLMAN. "Ingot metallurgy aluminum - Lithium alloys for aircraft structure." In 27th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-890.
Full textDhaneswara, Donanta, Al Fauzan Jannatunnaim Yasfi, and Agy Randhiko. "Study of effect partial substitution zirconium silicate and aluminum oxide filler as refractory filler for aluminum casting." In PROCEEDINGS OF THE 3RD INTERNATIONAL SEMINAR ON METALLURGY AND MATERIALS (ISMM2019): Exploring New Innovation in Metallurgy and Materials. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0001915.
Full textKoya, Eitarou, Yoshitoshi Hagiwara, Seishi Miura, Tetsya Hayashi, Toshio Fujiwara, and Mineo Onoda. "Development of Aluminum Powder Metallurgy Composites for Cylinder Liners." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1994. http://dx.doi.org/10.4271/940847.
Full textRahman, A., N. Zakir, and I. Abu-Mahfouz. "Hybrid Aluminum Matrix Composites (HAMCs) Using Powder Metallurgy Method." In MS&T18. MS&T18, 2018. http://dx.doi.org/10.7449/2018mst/2018/mst_2018_1304_1311.
Full textRahman, A., N. Zakir, and I. Abu-Mahfouz. "Hybrid Aluminum Matrix Composites (HAMCs) Using Powder Metallurgy Method." In MS&T18. MS&T18, 2018. http://dx.doi.org/10.7449/2018/mst_2018_1304_1311.
Full text"Influence of Alumina (Al2O3) Nanosized Reinforcements on Dimensional Stability of Pure Aluminum Matrix Nanocomposite." In International Conference on Chemical, Metallurgy and Material Science Engineering. Emirates Research Publishing, 2015. http://dx.doi.org/10.17758/erpub.er815036.
Full textCouchman, Kevin, and Clem Cousino. "The Processing, Properties, and Applications for Aluminum Powder Metallurgy Materials." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1994. http://dx.doi.org/10.4271/940428.
Full textGapusan, Rontgen B., Everjoy S. Mones, and Magdaleno R. Vasquez. "Fabrication of transparent conducting aluminum thin film via anodization-etching of thermally evaporated aluminum on glass." In PROCEEDINGS OF THE 4TH INTERNATIONAL SEMINAR ON METALLURGY AND MATERIALS (ISMM2020): Accelerating Research and Innovation on Metallurgy and Materials for Inclusive and Sustainable Industry. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0059990.
Full textIslami, Lazuardi Akmal, Suryo Sembodo, and Anawati Anawati. "Anticorrosive behavior of propolis as a green corrosion inhibitor for aluminum." In PROCEEDINGS OF THE 3RD INTERNATIONAL SEMINAR ON METALLURGY AND MATERIALS (ISMM2019): Exploring New Innovation in Metallurgy and Materials. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0001481.
Full textReports on the topic "Aluminum Metallurgy"
Flumerfelt, J. F. Aluminum powder metallurgy processing. Office of Scientific and Technical Information (OSTI), February 1999. http://dx.doi.org/10.2172/348922.
Full text