Dissertations / Theses on the topic 'Aluminum coatings'

To see the other types of publications on this topic, follow the link: Aluminum coatings.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Aluminum coatings.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

ZIPPERIAN, DONALD CHARLES. "PHYSICAL AND CHEMICAL CHARACTERISTICS OF THE ZINCATE IMMERSION PROCESS FOR ALUMINUM AND ALUMINUM ALLOYS." Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/184123.

Full text
Abstract:
A detailed experimental study has been carried out to investigate the zincate immersion deposition process for 99.99%, 6061, and 356-T6 aluminum samples. In particular, the effect of iron and tartrate in the immersion bath, the aluminum surface preparation, and the relationship of the first immersion step to the second immersion step were investigated by chemical, electrochemical (polarization and rest potentials), and surface analytical scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES) techniques. Eh-pH diagrams were constructed to determine the most stable zinc, iron, and aluminum species in solution. These diagrams predict that ferrous and ferric ions, as well as aluminum should form stable complexes with tartrate at the typical immersion deposition conditions (Eh -0.9 to -1.0 and pH 14 to 15). Experimentally, tartrate was found to enhance the dissolution rate of aluminum in highly caustic solutions. The addition of ferric chloride to the immersion bath produced coatings that were more crystalline, and also decreased the amount of hydrogen gas evolved in the second immersion step. The deposition of zinc and iron during the second immersion step was considerably less than that during the first immersion step. The second immersion coating became more adherent as the initial surface roughness decreased, and as grain size was increased the second immersion coating became thicker. For increasing grain size the micrographs for the first and second immersion coatings showed that the coatings became more localized. The second immersion coating thickness and morphology were also dependent upon several first immersion variables, such as bath temperature, immersion time and bath composition. Increased dissolution rates of aluminum in the first immersion produced thinner coatings with a finer crystallite growth. Increased bath temperature and increased first immersion time enhanced the dissolution rate of aluminum. The zinc coating slowed the dissolution rate of aluminum. When zinc was absent from the first immersion bath, the aluminum dissolution was much faster and resulted in thinner coatings upon subsequent second immersion. The molar ratio of zinc deposited to aluminum dissolved was a constant value of 1.1 for both first and second immersions; the molar ratio was also constant for the different aluminum substrates examined in this investigation.
APA, Harvard, Vancouver, ISO, and other styles
2

AKUNDY, GOURI. "DEPOSITION OF POLYANILINE-POLYPYRROLE COMPOSITE COATINGS ON ALUMINUM." University of Cincinnati / OhioLINK, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=ucin990562534.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yixiao, Feng. "ZINC ALUMINUM PHOSPHATE PIGMENTED POLYURETHANE/POLYSILOXANE COATINGS FOR ANTICORROSION." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1525950059586312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cai, Hong. "Microbiologically influenced corrosion and titanate conversion coatings on aluminum alloy 2024-T3 /." View online ; access limited to URI, 2006. http://0-wwwlib.umi.com.helin.uri.edu/dissertations/dlnow/3225314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hendrick, Michelle Renee. "The effects of combustion CVD-applied alumina coatings on the high temperature oxidation of a Ni-Cr alloy." Thesis, Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/19635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Akhtar, Anisa Shera. "Surface science studies of conversion coatings on 2024-T3 aluminum alloy." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/1713.

Full text
Abstract:
The research in this thesis aims to develop new mechanistic knowledge for coating processes at 2024-Al alloy surfaces, ultimately to aid the design of new protective coatings. Coatings formed by phosphating, chromating, and permanganating were characterized especially by scanning Auger microscopy (SAM), X-ray photoelectron spectroscopy, and scanning electron microscopy . The objective was to learn about growth (nm level) as a function of time for different coating baths, as well as a function of lateral position across the different surface microstructural regions, specifically on the μm-sized Al-Cu-Mg and Al-Cu-Fe-Mn particles which are embedded in the alloy matrix . The research characterizes coating thickness, composition, and morphology. The thesis emphasizes learning about the effect of different additives in zinc phosphating baths . It was found that the Ni²⁺ additive has two main roles : first, the rate of increase in local solution pH is limited by the slower kinetics of reactions involving Ni²⁺ compared to Zn²⁺, leading to thinner zinc phosphate (ZPO) coatings when Ni²⁺ is present. Second, most Ni²⁺ deposition occurs during the later stages of the coating process in the form of nickel phosphate and a Ni-Al oxide in the coating pores on the alloy surface, increasing the corrosion resistance. Aluminum fluoride precipitates first during the initial stages of the coating process, followed by aluminum phosphate, zinc oxide, and finally ZPO. When Ni²⁺ is present in the coating solution at 2000 ppm, ZnO predominates in the coating above the A-Cu-Fe-Mn particle while ZPO dominates on the rest of the surface. The Mn²⁺ additive gives a more even coating distribution (compared with Ni²⁺) across the whole surface. The Mn²⁺ -containing ZPO coating is similar to the chromate coating in terms of evenness, while there is more coating deposition at the second-phase particles for permanganate coatings. The oxides on the Al-Cu-Fe-Mn and matrix regions are similar before coating, thereby confirming that a variety of observed differences in ZPO coating characteristics at these regions arise from the different electrochemical characteristics of the underlying metals. Upon exposure to a corrosive solution, the ZPO coating provides more protection to the second-phase particles compared to the matrix.
APA, Harvard, Vancouver, ISO, and other styles
7

Zou, Yu. "Microstructural studies of cold sprayed pure nickel, copper and aluminum coatings." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:8881/R/?func=dbin-jump-full&object_id=92381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Palomino, Ore Sheyla Bethsy. "Effect of aluminum oxyhydroxide coatings on the performance of limestone drains." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/83860.

Full text
Abstract:
Neutralization by limestone is a common treatment for acid mine drainage (AMD). The effectiveness of using limestone to treat AMD can be reduced by aluminum (Al) and iron (Fe) oxyhydroxide coatings that form on the limestone, because the coatings inhibit the transport, and thus neutralization, of hydrogen ions (H+) derived from acid mine drainage. I used mixed flow reactor experiments to investigate the effect of Al coatings on the diffusion of H+ to the surface of limestone and to quantify how those Al coatings affect the limestone dissolution rate. Experiments used acidic Al sulfate solutions with initial Al concentrations ranging from 0.002 M to 0.01 M (32 to 329 ppm) and pH values ranging from 3.7 to 4.2, which are typical of conditions found at AMD sites. Cleaved pieces of Iceland spar calcite were used as a proxy for limestone. The pH was measured in the effluent to determine the rate of H+ consumption. Effluent solutions were analyzed for Al, calcium (Ca) and sulfur (S) using inductively coupled plasma optical emission spectroscopy (ICP OES). Examination of the precipitated coatings using x-ray diffraction indicated that amorphous poorly crystalline gibbsite is the primary Al coating but scanning electron microscope analysis also suggests the possible presence of a poorly crystalline sulfur containing phase, such as hydrobasaluminite. The experimental data were used to calculate the diffusion coefficient of H+ through the Al coatings. The calculated diffusion coefficient for H+, assuming a gibbsite and/or hydrobasaluminite layer, ranged between 10-13 to 10-11 m2/sec, that are significantly lower than in pure water.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
9

Berube, Gregoire. "Development of metastable aluminum alloy coatings and parts for automotive applications." Thesis, University of Ottawa (Canada), 2009. http://hdl.handle.net/10393/28328.

Full text
Abstract:
In this study, a metastable Al-Fe-V-Si alloy powder was produced by rapid solidification using the gas atomization process. The alloy composition was chosen for its mechanical properties at elevated temperature for potential applications in internal combustion gasoline engines. The microstructural properties of the Al-Fe-V-Si powder were determined through transmission electron microscopy imaging and selected area electron diffraction indexing, energy dispersive spectroscopy, X-ray diffraction and differential scanning calorimetry. Three distinct microstructures were observed as well as two different phases, namely a Al13(Fe,V)3Si silicide phase and a metastable (Al,Si)x(Fe,V) micro-quasicrystalline icosahedral (MI) phase. The metastable MI phase was determined to be thermally stable up to 380°C, after which a phase transformation to silicide occurs. The Cold Gas Dynamic Spraying (CGDS) process was used to produce coatings of the alloy. This spray process was selected due to its relatively low operating temperature, thus preventing significant heating of the particles during spraying and as such allowing the original microstructure of the feedstock powder to be preserved within the coatings. Coatings were produced by CGDS using Helium and Nitrogen as propellant gases. The coatings microstructure was investigated using scanning electron microscopy and transmission electron microscopy analyses. The mechanical properties of the coatings were then evaluated through bond strength testing and microhardness testing.
APA, Harvard, Vancouver, ISO, and other styles
10

Guo, Xiaolei. "Corrosion inhibition of aluminum alloy 2024-T3 based on smart coatings, hybrid corrosion inhibitors, and organic conversion coatings." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461188604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kottarath, Sandeep. "Processing & properties of clay-ICP/polyimide nanocomposite coatings on aluminum alloy." Cincinnati, Ohio University of Cincinnati, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=ucin1097454077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

MacDonald, Daniel. "Restoration of Aluminum Aerospace Parts and Coatings Using Cold Gas Dynamic Spraying." Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31718.

Full text
Abstract:
The majority of the structural weight of many common commercial aircrafts is composed of high strength aluminum alloys. The properties of high performance aluminum alloys such as a high strength to weight ratio (specific strength), ease of recycling, crash energy absorption capacity, and corrosion resistance make them ideal for use in the aerospace field. As a result of the high performance nature of the parts and specific properties of the materials, manufacturing requires intricate casting, precision machining, and specific heat treatments – which results in expensive components. As a result of its excellent corrosion resistance properties, pure aluminum coatings are commonly used in the aerospace field for corrosion protection of steel, aluminum alloy components, and titanium alloy components. The common method to deposit these coatings is called ion vapour deposition (IVD). These IVD aluminum coatings provide the coating adhesion, coverage, thickness, and corrosion resistance required to protect the part. The present study was motivated by the potential use of the cold gas dynamic spray (CGDS) process to repair a) damaged aluminum alloy aerospace parts and b) damaged pure aluminum IVD coatings. The primary research objective was to successfully produce these repairs using commercially available aluminum alloy feedstock powders deposited with commercially available CGDS equipment. This work was treated as prequalification work for The Boeing Company to commercialize this process and therefore the repairs aim to meet the same standards (military and industrial) required of the original aluminum alloy parts and IVD aluminum coatings. The use of CGDS was shown in this research to be a very promising as a process for the restoration of aluminum alloy aerospace components. The adhesion strength of the repaired aluminum components was found to be well above the accepted range for thermally sprayed repairs according to industrial standards. The repairs were subjected to a highly corrosive environment and showed only minor pitting. These sites could be reduced in the future with improved machining techniques and attention to surface detail prior to exposure to the salt fog. The only requirement that the repaired components did not meet was for the wear properties of the anodized layer, measured thought Taber abrasion testing. The results of this test, at times, approached the desired values, and it is believed that, in the future, the quality and consistency of the coatings could be improved and the test would meet industrial standards. The results of this research show that the use of CGDS as a process for the restoration of damaged aluminum IVD coatings is possible and is a promising alternative to conventional methods. The CGDS coatings were scrutinized to the same level as required of IVD coatings when they replaced toxic cadmium coatings in the late 1980s. The coating adhesion, demonstrated through glass bead abrasion and strip rupture testing, was shown to meet the current industrial standards. The corrosion testing of the repairs resulted in no visible red rust of the steel components, even when the steel was exposed.
APA, Harvard, Vancouver, ISO, and other styles
13

GUO, YANG. "A Study of Trivalent Chrome Process Coatings on Aluminum Alloy 2024-T3." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1308166499.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

KOTTARATH, SANDEEP. "PROCESSING & PROPERTIES OF CLAY-ICP/POLYIMIDE NANOCOMPOSITE COATINGS ON ALUMINUM ALLOY." University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1097454077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Leblanc, Robert Samuel. "Influence of Nozzle Material and Spray Parameters on Pure Aluminum and Aluminum 7075 coatings using Cold Gas Dynamic Spray." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34202.

Full text
Abstract:
Commercial airplanes are still using aluminum alloys as their primary structural material. Even if the used carbon fiber reinforced polymers is becoming more popular due to their extremely high strength to weight ratio, the majority of the existing flying fleet is still made out of aluminum alloys. This material was primarily used due to its high strength to weight ratio, ease to machine, excellent corrosion resistance properties and its high crash energy absorption. Aircraft components made of aluminum alloys are subjected to high stresses and harsh environments during flight, potentially leading them to crack and/or corrode. Presently, there is no industrial approved method to repair these components. Recycling damaged aircraft parts by repairing them would result in large cost savings for the industry. The present study was motivated by the potential use of the cold gas dynamic spray (CGDS) process to repair damaged aluminum 7075-T6 aircraft components. Two feedstock materials were used to repair this alloy in this research: pure aluminum and aluminum 7075. Pure aluminum is used in the aircraft industry on non-bearing components due to its extremely high corrosion resistance properties. Aluminum 7075 is the material of choice for structural applications due to its high strength. The results of this study show that CGDS could be potentially used to repair aluminum components on aircrafts. However, this research demonstrated that new commercially available equipments need to be further developed to successfully produce repaired components that meet the industry standards.
APA, Harvard, Vancouver, ISO, and other styles
16

Reddy, Chandra M. "Improved corrosion protection of aluminum alloys by low temperature plasma interface engineering /." free to MU campus, to others for purchase, 1998. http://wwwlib.umi.com/cr/mo/fullcit?p9924918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Mower, D. Adam. "An Investigation of Wear-Resistant Coatings on an A390 Die-Cast Aluminum Substrate." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1765.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Mariani, Laura Leana. "Electroless coatings on titanium hydride for use in the production of aluminum foam." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=99525.

Full text
Abstract:
Aluminum foam is a porous form of solid aluminum. One method of producing aluminum foam is the powder metallurgy process. Aluminum powder is mixed with a foaming agent, generally titanium hydride (TiH2), and pressed to form a compact. In the foaming process, the compact is heated and hydrogen gas is released from the agent to form bubbles within the surrounding aluminum. However, there is a significant gap between the onset of the decomposition temperature of the TiH2 (400°C) and the melting point of aluminum (660°C). The hydrogen gas evolution begins while the aluminum is still solid, creating an accumulation of gas pressure which eventually causes microfissures inside the matrix. As a result, the final structure has interconnected pores and inferior properties.
This problem may be overcome by delaying the temperature of hydrogen evolution so that it coincides with the melting point of aluminum. Coating the titanium hydride with copper or nickel can create a kinetic barrier that retards the flow of hydrogen into the surrounding matrix.
Electroless plating is a process that can be used to deposit metallic coatings on non-conductive materials. Metallic ions in solution are reduced by a suitable agent, creating a metal deposit on the substrate. The process is autocatalytic and continues until all the metallic ions are consumed.
The objective of this work was to investigate the effect of the copper and nickel coatings on the hydrogen evolution of titanium hydride powders. It was found that the metal coatings do tend to delay the temperature of gas release and that this could potentially be used to improve the foaming process.
APA, Harvard, Vancouver, ISO, and other styles
19

Yue, Jingyi. "Corrosion Behaviors of Coated Aluminum Alloys in Simulated Corrosive Environment." TopSCHOLAR®, 2015. http://digitalcommons.wku.edu/theses/1485.

Full text
Abstract:
This study investigated the corrosion of an aluminum alloy with and without coatings under simulated corrosive environments. Coatings were selected and applied from commercial materials and techniques, consisting of microceramic, epoxy primer, and topcoat. The experiments for coated specimens were carried out under various corrosive conditions, specifically, hydrodynamic flow, immersion in salt water and DI water, varying temperatures, and simulated sun light. The hydrodynamic conditions were simulated using a rotating cylinder electrode (RCE) with rotational speeds of 200, 400, 600, 800, and 1000 rpm. The immersion in saltwater and sunlight illumination tests were applied for 8 hours, and the simulated exterior temperature variation were cycled for 7 days. Polarization techniques were used to study the corrosion mechanism and calculate the corrosion rate of coated specimens under simulated salt water. Microstructure of coated specimens were identified by using atomic force microscopy (AFM) and optical microscope (OM) analysis. Results indicated that corrosions in the simulated salt water were generally more serious than those in the distilled water. This was especially true for bare aluminum alloys, that its corrosion rates in the salt water exhibited two orders of magnitude higher than those in the DI water. The combination of an environmentally friendly electrodeposited ceramic coating with a primer and topcoat, which results in a chromium-free coating, exhibited a higher polarization resistance and a lower corrosion rate than the traditional chromate conversion coating combination. In addition, for all coated Al alloys, the corrosion rate increased with increasing rotation speed. For immersion portion, immersion in salt water accelerated the pitting corrosion process and increased the corrosion rate of the aluminum alloy five times higher as compared to the samples without immersion. For the varying temperature portion, the rates of corrosion nearly doubled for bare and ceramic coated Al alloy, under varying temperature conditions for 7 days. Besides, addition of ionic liquid inhibitors, such as BMIMBR and BEIMCl, exhibited great improvement of corrosion resistances of aluminum alloy in the salt water. The corrosion rates of aluminum in the presence of inhibitors were almost one order of magnitude lower than that in the absence of inhibitors.
APA, Harvard, Vancouver, ISO, and other styles
20

Dufek, Eric J. "Interfacial investigations of corrosion and corrosion inhibition on the aluminum alloy AA2024-T3." Laramie, Wyo. : University of Wyoming, 2007. http://proquest.umi.com/pqdweb?did=1445041831&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Hinds, Gary Stephen. "The Impact of Aluminum on the Initiation and Development of MnOx(s) Coatings for Manganese Removal." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/53516.

Full text
Abstract:
Many treatment facilities remove soluble Mn by an autocatalytic adsorption-oxidation process involving manganese oxide (MnOx(s))-coated filter media and a free chlorine residual known as the natural greensand effect (NGE). In recent years, significant amounts of aluminum (Al) have been found integrated into MnOx(s) coatings on media from drinking water treatment facilities worldwide. The primary objective of this study was to characterize MnOx(s) coatings developed in the presence and absence of Al, and to further define the role played by Al in the coatings' initiation and development. A secondary objective of the study was to examine the potential for pre-filter oxidation of Mn and formation of nano-size MnOx(s) particles, which would be destabilized by Al(OH)3(s) and captured in the filter. This material could act as a seed for coating formation and help explain the integration of Al into MnOx(s) coatings. Bench-scale column tests were conducted to examine Mn removal and backwash composition, while centrifugation and ultrafiltration were utilized to examine the potential for rapid Mn oxidation. Results indicate that the presence of Al augments the initiation and development of MnOx(s) coatings. The backwash solids of columns loaded with Al were composed of a mixture of Mn and Al, suggesting that active adsorption-oxidation sites were present in the Al(OH)3(s) floc captured by the filter. These results suggest at least a small amount of pre-filter MnOx(s) formation by contact with free chlorine; further, that Al(OH)3(s) solids present may destabilize these negatively charged solids into a form that is important to MnOx(s) coating formation.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
22

Beemat, Jaspreet S. "Processing and Properties of Hybrid Silane-Epoxy Nanocomposite Coatings." University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1352992819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Wang, Yongqing. "Aluminide coatings on Fe-9Cr-1Mo steel synthesized by pack cementation for power generation applications : a dissertation presented to the faculty of the Graduate School, Tennessee Technological University /." Click to access online version, 2006. http://proquest.umi.com/pqdweb?index=89&did=1260818241&SrchMode=1&sid=1&Fmt=6&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1255459401&clientId=28564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Rajamani, Deepika. "Processing and Properties of Environmentally-Friendly Corrosion Resistant Hybrid Nanocomposite Coatings for Aluminum Alloy AA2024." University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1138811300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

ASHIRGADE, AKSHAY A. "ENVIRONMENTALLY-COMPLIANT NOVOLAC SUPERPRIMERS FOR CORROSION PROTECTION OF ALUMINUM ALLOYS." University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1153245386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Boerstler, Joshua Trevitt. "Corrosion Degradation of Coated Aluminum Alloy Systems through Galvanic Interactions." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1524185375873158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Borisova, Dimitriya. "Feedback active coatings based on mesoporous silica containers." Phd thesis, Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2013/6350/.

Full text
Abstract:
Metalle werden oft während ihrer Anwendung korrosiven Bedingungen ausgesetzt, was ihre Alterungsbeständigkeit reduziert. Deswegen werden korrosionsanfällige Metalle, wie Aluminiumlegierungen mit Schutzbeschichtungen versehen, um den Korrosionsprozess aktiv oder passiv zu verhindern. Die klassischen Schutzbeschichtungen funktionieren als physikalische Barriere zwischen Metall und korrosiver Umgebung und bieten einen passiven Korrosionsschutz nur, wenn sie unbeschädigt sind. Im Gegensatz dazu kann die Korrosion auch im Fall einer Beschädigung mittels aktiver Schutzbeschichtungen gehemmt werden. Chromathaltige Beschichtungen bieten heutzutage den besten aktiven Korrosionsschutz für Aluminiumlegierungen. Aufgrund ihrer Giftigkeit wurden diese weltweit verboten und müssen durch neue umweltfreundliche Schutzbeschichtungen ersetzt werden. Ein potentieller Ersatz sind Schutzbeschichtungen mit integrierten Nano- und Mikrobehältern, die mit ungiftigem Inhibitor gefüllt sind. In dieser Arbeit werden die Entwicklung und Optimierung solcher aktiver Schutzbeschichtungen für die industriell wichtige Aluminiumlegierung AA2024-T3 dargestellt Mesoporöse Silika-Behälter wurden mit dem ungiftigen Inhibitor (2-Mercaptobenzothiazol) beladen und dann in die Matrix anorganischer (SiOx/ZrOx) oder organischer (wasserbasiert) Schichten dispergiert. Zwei Sorten von Silika-Behältern mit unterschiedlichen Größen (d ≈ 80 and 700 nm) wurden verwendet. Diese haben eine große spezifische Oberfläche (≈ 1000 m² g-1), eine enge Porengrößenverteilung mit mittlerer Porenweite ≈ 3 nm und ein großes Porenvolumen (≈ 1 mL g-1). Dank dieser Eigenschaften können große Inhibitormengen im Behälterinneren adsorbiert und gehalten werden. Die Inhibitormoleküle werden bei korrosionsbedingter Erhöhung des pH-Wertes gelöst und freigegeben. Die Konzentration, Position und Größe der integrierten Behälter wurden variiert um die besten Bedingungen für einen optimalen Korrosionsschutz zu bestimmen. Es wurde festgestellt, dass eine gute Korrosionsschutzleistung durch einen Kompromiss zwischen ausreichender Inhibitormenge und guten Barriereeigenschaften hervorgerufen wird. Diese Studie erweitert das Wissen über die wichtigsten Faktoren, die den Korrosionsschutz beeinflussen. Somit wurde die Entwicklung effizienter, aktiver Schutzbeschichtungen ermöglicht, die auf mit Inhibitor beladenen Behältern basieren.
Metals are often used in environments that are conducive to corrosion, which leads to a reduction in their mechanical properties and durability. Coatings are applied to corrosion-prone metals such as aluminum alloys to inhibit the destructive surface process of corrosion in a passive or active way. Standard anticorrosive coatings function as a physical barrier between the material and the corrosive environment and provide passive protection only when intact. In contrast, active protection prevents or slows down corrosion even when the main barrier is damaged. The most effective industrially used active corrosion inhibition for aluminum alloys is provided by chromate conversion coatings. However, their toxicity and worldwide restriction provoke an urgent need for finding environmentally friendly corrosion preventing systems. A promising approach to replace the toxic chromate coatings is to embed particles containing nontoxic inhibitor in a passive coating matrix. This work presents the development and optimization of effective anticorrosive coatings for the industrially important aluminum alloy, AA2024-T3 using this approach. The protective coatings were prepared by dispersing mesoporous silica containers, loaded with the nontoxic corrosion inhibitor 2-mercaptobenzothiazole, in a passive sol-gel (SiOx/ZrOx) or organic water-based layer. Two types of porous silica containers with different sizes (d ≈ 80 and 700 nm, respectively) were investigated. The studied robust containers exhibit high surface area (≈ 1000 m² g-1), narrow pore size distribution (dpore ≈ 3 nm) and large pore volume (≈ 1 mL g-1) as determined by N2 sorption measurements. These properties favored the subsequent adsorption and storage of a relatively large amount of inhibitor as well as its release in response to pH changes induced by the corrosion process. The concentration, position and size of the embedded containers were varied to ascertain the optimum conditions for overall anticorrosion performance. Attaining high anticorrosion efficiency was found to require a compromise between delivering an optimal amount of corrosion inhibitor and preserving the coating barrier properties. This study broadens the knowledge about the main factors influencing the coating anticorrosion efficiency and assists the development of optimum active anticorrosive coatings doped with inhibitor loaded containers.
APA, Harvard, Vancouver, ISO, and other styles
28

Sukumar, Ramakrishnan. "Water Based Silane Coupling Agents for Bonding Polyacrylate Rubber to Aluminum." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1116032433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Poot, Thirza. "Tuned sustainable anodic coatings for reduced ice adhesion." Thesis, Linköpings universitet, Molekylär ytfysik och nanovetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-158214.

Full text
Abstract:
Aluminum alloys are widely used materials in the aircraft industry due to their high specific strength and durability. The natural corrosion resistance of aluminum can be improved through an electrochemical anodizing process. Due to recent restrictions in the use of chromic acid with toxic hexavalent chromium as electrolyte, the industry has shifted towards the use of the functional comparable tartaric sulfuric acid (TSA). TSA anodizing provides a porous alumina layer with good corrosion resistance, yet there is a desire to tune the process to fit other purposes. For instance, ice accretion to aircraft surfaces implies a safety risk and reduced energy efficiency. Due to insufficient active anti-icing systems, aircraft manufacturers are in the search for passive anti-acing materials. The ice adhesion properties of a material are thought to be affected by wettability. In turn, the wettability is affected by the morphology of the alumina influenced by the anodizing conditions. Herein, the effects of the anodizing voltage, electrolyte temperature and anodizing time on the morphology and wettability of TSA-anodized aluminum alloy 2024-T3 were studied by scanning electron microscopy (SEM) and contact angle (CA) measurements. The morphology in relation to wettability and ice adhesion strength as well as the use of posttreatments such as hydrothermal sealing and silanization was investigated. SEM images show a clear influence by the anodizing conditions on the porosity, interpore distance and pore diameter of the porous alumina. The morphology has influence on the wettability although the relationship needs further investigation. A superhydrophobic surface obtained by silanization of a surface anodized at high voltage characterized by a rod-like morphology has potential as a passive anti-icing surface. Future work may include additional polishing pretreatments, testing of additional parameters, investigating the CA hysteresis and roll-off angle as well as measuring the adhesion strength of high-impact ice. By tuning the morphology of sustainable anodic coatings, the research area is one step closer to implementing passive anti-icing materials in aircrafts.
APA, Harvard, Vancouver, ISO, and other styles
30

Jain, Syadwad. "Corrosion and protection of heterogeneous cast Al-Si (356) and Al-Si-Cu-Fe (380) alloys by chromate and cerium inhibitors." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1145140821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Gray, David T. "Modeling and Characterization of Friction Stir Fabricated Coatings on Al6061 and Al5083 Substrates." Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/77288.

Full text
Abstract:
We have created a three-dimensional, implicit finite difference model that can accurately calculate temperatures within the bulk of a sample during a friction stir fabrication process. The model was written in Wolfram Mathematica® 7 for Students, and allows for time-efficient calculation of thermal profiles. The non-dimensionality of the model allows for accurate refinement of the temporospatial mesh, and provides portability across material types. The model provides insight as to the mechanism of heat generation by qualifying the fraction of mechanical energy converted to thermal energy for different material types and sample geometries. Finally, our model gives an understanding of the effects of the heat transfer at the boundaries of the workpiece and suggests a backside heat loss localized at the center of the tool due to a decrease in thermal contact resistance. We have explored the effects of processing parameters on the performance of the friction stir fabrication process. The process has four stages; tool insertion, warm-up, bead formation, and steady-state translation. The tool insertion phase is characterized by a rapid increase in system horsepower requirements. During the warm-up phase, the mechanical energy of the rotating tip is converted to thermal energy. Once enough thermal energy has been transferred to the workpiece, the volume between the tip and the workpiece is filled by feedstock material. Finally, the tool is translated under relatively steady-state conditions. The success or failure of the process is dependent on adequate material delivery to the system. The horsepower requirements of the process depend on the material type and the rate of material delivery. We have explored the effect of processing parameters on the microstructure of the processed samples. Optical microscopy shows that the stratification of layers within the weld and the depth of the weld are both dependent on the processing parameters. EBSD analysis coupled with Vicker's microhardness measurements of the processed pieces show that the grain size within the weld nugget is constant over the range of processing parameters available to the system. Data also show that pressure and heat inherent in friction stir processing of strain-hardened Al5083 counteract strengthening of the temper of the alloy.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
32

Grandinetti, Giulio. "A study on the deposition of crystalline alpha-alumina and mullite coatings using the combustion CVD process." Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/20236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Zhang, Wenping. "Formation and corrosion inhibition mechanisms of chromate conversion coatings on Al and AA2024-T3." Connect to this title online, 2002. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1037992955.

Full text
Abstract:
Thesis (Ph. D)--Ohio State University, 2002.
Title from first page of PDF file. Document formatted into pages; contains xv, 203 p.: ill. Includes abstract and vita. Advisor: Rudolph G. Buchheit, Dept. of Materials Science and Engineering. Includes bibliographical references (p. 192-203).
APA, Harvard, Vancouver, ISO, and other styles
34

Persson, Björn, and johanna Svensk. "Corrosion protection of powder coatings : Testing the barrier properties and adhesion of powder coating on aluminum for predicting corrosion protection by Electrochemical Impedance Spectroscopy." Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Produktutveckling, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-36772.

Full text
Abstract:
The choice of corrosion protection system depends on the environment and needed lifetime for the product. The right corrosion protection should be selected in a sustainable point of view, since a well-selected coating system can reduce the environmental and economical impact, by using less and better material. The systems used for classifying corrosion protection often give a passed/not passed result for the number of years it is expected to last in a specific corrosive environment. In the last decades, Electrochemical Impedance Spectroscopy (EIS) has become a popular method for evaluating corrosion protection for organic coatings. EIS can collect quantitative data by monitoring the coatings electrochemical behavior over time, which can be used for optimizing the coating system. The purpose of this thesis was to try to predict how different combinations of coating layers and substrates will perform as a corrosion protection, which could provide information that can optimize the coating process. In this thesis, EIS has been used as a test method to evaluate organic coating systems for corrosion protection, by looking at barrier properties and adhesion for powder coatings on aluminum substrates. The main part of the coatings were applied in the coating plant at Fagerhult AB, but an external supplier has been used as a reference. The powders used in the coating process were based on polyester resins and the substrates were different aluminum alloys. The EIS measurements were performed in the chemistry lab at the School of Engineering at Jönköping University and depending on the sample setup was each sample evaluated for two or four weeks of testing. Two groups of samples had intact coatings and a third group had samples with an applied defect in the coating. The analysis of sample setups with intact coatings showed that the topcoat absorbed water faster than the primer. The samples showed no significant degradation in corrosion protection for the evaluated period and could thereby not provide enough information to be able to conclude which setup give the best corrosion protection over time. The samples with a defect in the coating indicated that two of the substrates provided similar adhesion in the coating-substrate interface. The coating from the external supplier was also included in the test and it showed the best adhesion of the tested samples. The main conclusion is that the coating system used at Fagerhult AB provides a very good corrosion protection. Longer testing time with EIS measurements on intact coatings is needed to be able to rank the different sample setups by failure of corrosion protection.
APA, Harvard, Vancouver, ISO, and other styles
35

Gambina, Federico. "Corrosion Resistance Characterization of Coating Systems Used to Protect Aluminum Alloys Using Electrochemical Impedance Spectroscopy and Artificial Neural Networks." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1281361408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Abu, Shgair Khaleel. "New possibilities for building high-vacuum chambers using glued aluminum plates and application to sputtered nanocomposite coatings." [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=966505174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Shatat, Fayez. "The effect of resin based coatings on fluoride release of glass ionomer cement, an in vitro study." University of the Western Cape, 2018. http://hdl.handle.net/11394/6399.

Full text
Abstract:
Magister Scientiae Dentium - MSc(Dent) (Paediatric Dentistry)
The use of glass ionomer cement (GIC) restorative materials assists in the prevention of dental caries due to its long-term fluoride release. However, poor physical strength is one of the main drawbacks of GIC. A surface coating is recommended to improve the physical strength and is considered necessary during the overlapping stages of setting reactions of GIC restorative materials. The development of resin based coatings has improved the properties of the material but the effect on fluoride release needs investigation.
APA, Harvard, Vancouver, ISO, and other styles
38

Enin-Okut, Edu Owominekaje. "The effect of alumina coatings on the oxidation behavior of nickel-base alloys." Thesis, Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/20226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Daniel, Monisha Gnanachandra. "Nanolaminate coatings to improve long-term stability of plasmonic structures in physiological environments." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/78280.

Full text
Abstract:
The unprecedented ability of plasmonic metal nano-structures to concentrate light into deep-subwavelength volumes has propelled their use in a vast array of nanophotonics technologies and research endeavors. They are used in sensing, super-resolution imaging, SPP lithography, SPP assisted absorption, SPP-based antennas, light manipulation, etc. To take full advantage of the attractive capabilities of CMOS compatible low-cost plasmonic structures based on Al and Cu, nanolaminate coatings are investigated to improve their long-term stability in corrosive physiological environments. The structures are fabricated using phase-shifting PDMS masks, e-beam deposition, RIE, Atomic Layer Deposition and Rapid Thermal Annealing. An alternate approach using Nanosphere Lithography (NSL) was also investigated. Films were examined using ellipsometry, atomic force microscopy and transmission measurements. Accelerated in-situ tests of Hafnium Oxide/Aluminum Oxide nanolaminate shells in a mildly pH environment with temperatures akin to physiological environments emulated using PBS show greatly enhanced endurance, with stable structures that last for more than one year.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
40

Ghosh, Arijit. "Degradation of polymer/substrate interfaces - an attenuated total reflection Fourier transform infrared spectroscopy approach." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1291130563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Priest, Matthew. "Synthesis of reactive element-modified aluminide coatings on single-crystal Ni-based superalloys by a pack cementation process a thesis presented to the faculty of the Graduate School, Tennessee Technological University /." Click to access online, 2009. http://proquest.umi.com/pqdweb?index=26&did=1760523421&SrchMode=1&sid=1&Fmt=6&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1254926883&clientId=28564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Johnson, Brian Ivins. "Preparation and Detailed X-Ray Photoelectron Spectroscopy and Spectroscopic EllipsometryAnalysis of Ultrathin Protective Coatings." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/8119.

Full text
Abstract:
Ultra-thin films (UTFs) are important in many applications, seen in the semiconductor industry, in chromatography, in sensing, in microfluidics, in aerospace, and in robotics. They also protect materials from corrosion, change surface energies, limit water intrusion into materials, allow material self-cleaning and self-healing, provide scratch resistance, and impart other specific chemical properties. In many cases, UTFs drastically alter surface properties and therefore their applications. It is imperative that proper and consistent characterization be performed on coatings to confirm and understand their desired properties. In Chapter two, Al oxidation under MgF2 protective layers is studied using real time X-ray photoelectron spectroscopy (XPS), and spectroscopic ellipsometry (SE). These tools allowed me to monitor Al oxidation for both short (hours) and long (months) periods of time. XPS revealed the chemical changes that took place in these materials as a function of time, and these changes were verified with SE. These studies help increase an understanding of aluminum changes under MgF2 protective layers. The third chapter demonstrates ab initio calculations guided X-ray photoelectron spectroscopy (XPS) analysis of surfaces functionalized with fluorinated silanes. This study addresses deficiencies in the literature where CF2:CF3 ratios from experimental XPS data do not match theoretical CF2:CF3 ratios. In a systematic approach, I developed semi-empirical models directed both by ab initio calculations and adjustable, empirical parameters. These models were effective in describing the raw data and exceeded fitting methods used in literature. In Chapter four, SiO2 UTFs with variable thicknesses deposited on Eagle XG® glass substrates are characterized. Challenges associated with this work consisted of similar optical functions of the film and substrate as well as backside reflections from the substrate. These obstacles were met using a multi-sample analysis (MSA), a variable angle spectroscopic ellipsometric approach, and mechanical abrasion/roughening of the substrate backside. With these approaches, I developed a model that precisely fit the data collected from all the samples and gave the correct optical function of the material along with thickness values for each film. Surface characterization represents a commitment of resources. It takes time to make measurements, and it takes time to analyze and understand the results. As presented in this work, I increase understanding of ultra-thin films at interfaces using both a multi-tool approach as well as using multiple analytical methods on data collected from each tool.
APA, Harvard, Vancouver, ISO, and other styles
43

Durkin, Craig Raymond. "Low-Cost Continuous Production of Carbon Fiber-Reinforced Aluminum Composites." Thesis, Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19857.

Full text
Abstract:
The research conducted in this study was concerned with the development of low-cost continuous production of carbon fiber/aluminum composites. Two coatings, alumina and zirconia, were applied to the fibers to protect against interfacial degradation. They were applied using a sol-gel method and common metal salts. The fibers were infiltrated with molten aluminum using an ultrasound sonicator. The resultant composites were well-infiltrated and were tested in tension to determine their mechanical properties. Strengths were only 15-35% of the theoretical values predicted by the rule of mixtures. The composite microstructure revealed a sizable void fraction and that the fibers within the composites did not contain any coating on their surface. It was hypothesized that this was a result of few exposed graphite plane edges on the fiber surface, causing poor adhesion of the oxide coating to the fiber surface. To improve adhesion, an amorphous carbon coating was applied to the fiber surface, but still the oxide coatings were removed from the fibers upon infiltration. It was found, however, that the carbon coating on its own did strengthen the interface between the fiber and the aluminum.
APA, Harvard, Vancouver, ISO, and other styles
44

Xu, Nan Materials Science &amp Engineering Faculty of Science UNSW. "Corrosion behaviour of aluminised steel and conventional alloys in simulated aluminium smelting cell environments." Awarded by:University of New South Wales. School of Materials Science & Engineering, 2002. http://handle.unsw.edu.au/1959.4/18760.

Full text
Abstract:
Aluminium smelting is a high temperature electrometallurgical process, which suffers considerable inefficiencies in power utilization and equipment maintenance. Aluminium smelting cell works in the extreme environments that contain extraordinarily aggressive gases, such as HF, CO and SO2. Mild steel used as a structural material in the aluminium industry, can be catastrophically corroded or oxidized in these conditions. This project was mainly concerned with extending the lifetime of metal structures installed immediately above the aluminium smelting cells. An aluminium-rich coating was developed on low carbon steel A06 using pack cementation technique. Yttria (Y2O3) was also used to improve the corrosion resistance of coating. Kinetics of the coating formation were studied. XRD, FESEM and FIB were employed to investigate the phase constitution and the surface morphology. Together with other potentially competitive materials, aluminium-rich coating was evaluated in simulated plant environments. Results from the long time (up to 2500h) isothermal oxidation of materials at high temperature (800??C) in air showed that the oxidation resistance of coated A06 is close to that of stainless steel 304 and even better than SS304 in cyclic oxidation tests. Coated A06 was also found to have the best sulfidation resistance among the materials tested in the gas mixture contains SO2 at 800??C. Related kinetics and mechanisms were also studied. The superior corrosion resistance of the coated A06 is attributed to the slow growing alpha-Al2O3 formed. Low temperature corrosion tests were undertaken in the gas mixtures containing air, H2O, HCl and SO2 at 400??C. Together with SS304 and 253MA, coated A06 showed excellent corrosion resistance in all the conditions. The ranking of the top three materials for corrosion resistance is: 253MA, coated A06 and SS304. It is believed that aluminised A06 is an ideal and economical replacement material in the severe corrosive aluminium smelting cell environment.
APA, Harvard, Vancouver, ISO, and other styles
45

Thieme, Michael, Christa Blank, de Oliveira Aline Pereira, Hartmut Worch, Ralf Frenzel, Susanne Höhne, Frank Simon, Lewis Hilton G. Pryce, and Aleksandr J. White. "Superhydrophobic Aluminum Surfaces: Preparation Routes, Properties and Artificial Weathering Impact." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-107085.

Full text
Abstract:
Among the materials that can be treated in order to impart superhydrophobic properties are many originally hydrophilic metals. For this, they must undergo a sequential treatment, including roughening and hydrophobic coating. This contribution presents various preparation routes along with various characterization methods, such as dynamic contact angle (DCA) measurements, scanning electron microscopy (SEM) and spectroscopic techniques (FT–IRRAS, XPS, EIS). Micro-rough surfaces of pure and alloyed aluminum were generated most easily by using a modifie Sulfuric Acid Anodization under Intensifie conditions (SAAi). This produces a micro-mountain-like oxide morphology with peak-to-valley heights of 2 μm and sub-μm roughness components. Additionally, micro-embossed and micro-blasted surfaces were investigated. These micro-roughened initial states were chemically modifie with a solution of a hydrophobic compound, such as the reactive f uoroalkylsilane PFATES, the reactive alkyl group containing polymer POMA, or the polymer Teflo ® AF. Alternatively, the chemical modificatio was made by a Hot Filament Chemical Vapor Deposition (HFCVD) of a PTFE layer. The latter can form a considerably higher thickness than the wet-deposited coatings, without detrimental leveling effects being observed in comparison with the original micro-rough surface. The inherent and controllable morphology of the PTFE layers represents an important feature. The impacts of a standardized artificia weathering (WTH) on the wetting behavior and the surface-chemical properties were studied and discussed in terms of possible damage mechanisms. A very high stability of the superhydrophobicity was observed for the f uorinated wet-deposited PFATES and Teflo ® AF coatings as well as for some of the PTFE layer variants, all on SAAi-pretreated substrates. Very good results were also obtained for specimens produced by appropriate mechanical roughening and PTFE coating.
APA, Harvard, Vancouver, ISO, and other styles
46

Keshri, Anup K. "Comprehensive Process Maps for Synthesizing High Density Aluminum Oxide-Carbon Nanotube Coatings by Plasma Spraying for Improved Mechanical and Wear Properties." FIU Digital Commons, 2010. http://digitalcommons.fiu.edu/etd/242.

Full text
Abstract:
Plasma sprayed aluminum oxide ceramic coating is widely used due to its outstanding wear, corrosion, and thermal shock resistance. But porosity is the integral feature in the plasma sprayed coating which exponentially degrades its properties. In this study, process maps were developed to obtain Al2O3-CNT composite coatings with the highest density (i.e. lowest porosity) and improved mechanical and wear properties. Process map is defined as a set of relationships that correlates large number of plasma processing parameters to the coating properties. Carbon nanotubes (CNTs) were added as reinforcement to Al2O3 coating to improve the fracture toughness and wear resistance. Two novel powder processing approaches viz spray drying and chemical vapor growth were adopted to disperse CNTs in Al2O3 powder. The degree of CNT dispersion via chemical vapor deposition (CVD) was superior to spray drying but CVD could not synthesize powder in large amount. Hence optimization of plasma processing parameters and process map development was limited to spray dried Al2O3 powder containing 0, 4 and 8 wt. % CNTs. An empirical model using Pareto diagram was developed to link plasma processing parameters with the porosity of coating. Splat morphology as a function of plasma processing parameter was also studied to understand its effect on mechanical properties. Addition of a mere 1.5 wt. % CNTs via CVD technique showed ~27% and ~24% increase in the elastic modulus and fracture toughness respectively. Improved toughness was attributed to combined effect of lower porosity and uniform dispersion of CNTs which promoted the toughening by CNT bridging, crack deflection and strong CNT/Al2O3 interface. Al2O3-8 wt. % CNT coating synthesized using spray dried powder showed 73% improvement in the fracture toughness when porosity reduced from 4.7% to 3.0%. Wear resistance of all coatings at room and elevated temperatures (573 K, 873 K) showed improvement with CNT addition and decreased porosity. Such behavior was due to improved mechanical properties, protective film formation due to tribochemical reaction, and CNT bridging between the splats. Finally, process maps correlating porosity content, CNT content, mechanical properties, and wear properties were developed.
APA, Harvard, Vancouver, ISO, and other styles
47

Mertens, Jeremy. "Atmospheric plasma treatment of aluminum alloy surfaces: Oxide growth and oxygen rich organic coating deposition." Doctoral thesis, Universite Libre de Bruxelles, 2019. https://dipot.ulb.ac.be/dspace/bitstream/2013/287803/3/these.pdf.

Full text
Abstract:
L’objectif de cette thèse consiste en une étude fondamentale de différentes approches pour la modification de surfaces d’alliages d’aluminium. Elle s’inscrit dans le cadre du projet FLYCOAT, subventionné par la région Wallonne. Ce dernier avait pour objectif le développement d’alternatives au couplage classique d’un procédé d’anodisation utilisant des bains de Cr (VI) aux résines époxy pour la protection des alliages d’aluminium contre la corrosion. Dans un premier temps, la synthèse par plasma atmosphérique dans un réacteur de type décharge à barrière diélectrique (DBD) de films riches en groupements carboxyliques à partir de 8 précurseurs organiques est étudiée. Une attention particulière est portée à la compréhension fondamentale des mécanismes de polymérisation de ces précurseurs. L’influence significative de minimes variations de la structure chimique du précurseur est étudiée. Concrètement, nous démontrons l’impact de la présence et de la position de doubles liaisons ou encore le ratio C/O dans le monomère injecté sur le mécanisme de synthèse des couches déposées. Pour ce faire, une méthodologie combinant des analyses de la phase plasma et des films déposés est proposée. Les propriétés électriques de la DBD d’argon sont évaluées par oscilloscope avant et durant l’injection des différents précurseurs. La quantité d’énergie transférée de la décharge vers le précurseur est évaluée par spectroscopie d’émission optique et corrélée à sa structure. Une fragmentation réduite est mise en évidence par spectrométrie de masse pour les monomères contenant une double liaison. Ces analyses de la phase plasma sont alors corrélées avec les propriétés physiques et chimiques des films synthétisés. Les compositions chimiques de surface et de la matrice des couches minces sont étudiées par spectroscopie à photoélectrons X (XPS) et infrarouge. Le rôle essentiel de la présence et de la position de la double liaison dans la molécule injectée est démontré. Les vitesses de dépôt et la rugosité des films déposés par plasma atmosphérique avec l’injection des 8 précurseurs sont évaluées par profilométrie à stylet. Dans la seconde partie, le couplage de deux méthodes de plasma atmosphérique est proposé pour la synthèse de couches d’alumine aux propriétés adaptables. Le premier traitement consiste en un nombre varié de passages d’une torche plasma opérant dans un régime d’arc. L’effet du nombre de passages sur les propriétés physiques et chimiques du substrat est étudié par XPS, angle de contact, microscopie électronique à balayage et mesures de diffraction à rayons X. Une corrélation est suggérée entre le nombre de passages de la torche et les propriétés électrochimiques du substrat. L’influence de ce premier traitement sur les propriétés de la couche d’oxyde d’aluminium synthétisée par oxydation par plasma électrolytique est mise en évidence. Dans un troisième temps, le plasma pouvant être considéré comme un réservoir d’énergie, une étude de faisabilité est réalisée afin d’évaluer sa potentielle utilisation pour la réticulation d’une résine de type benzoxazine. L’efficacité du traitement par DBD atmosphérique d’argon ou hélium est comparée et discutée.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
48

Wang, Yingying. "Electrochemical behavior of cold sprayed coatings dedicated to corrosion protection applications : Role of microstructure." Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0026.

Full text
Abstract:
Le Cold spray est une technique de réalisation de dépôts épais par projection à haute vitesse de particules. Pour cette technologie, la température du gaz vecteur reste inférieure au point de fusion de poudres projetées. Dans ce cas, les mécanismes d’adhésion sont liés aux hautes déformations plastiques que subissent les particules lors de leur impact avec le substrat. Parmi la grande variété de poudres disponibles, trois compositions ont été retenues pour ce travail. Elles autorisent l’élaboration (i) d’alliage d’aluminium, (ii) d’acier inoxydable et (iii) de magnésium. L’ajout de particules de SiC (en fonction de leur quantité ou taille) aux poudres d’aluminium a également permis de modifier les propriétés mécaniques (telle que la dureté) des couches produites. En formant des couches denses et très peu poreuses, les revêtements cold spray présentent tous les atouts des revêtements anti-corrosion. Ce travail de thèse s’est attaché à comprendre les relations existantes entre les paramètres de projection de poudres (température et pression du gaz vecteur, concentration et tailles des particules de SiC) et la qualité du revêtement obtenu, de définir les interfaces substrat / revêtement en fonction de leur composition chimique et leurs influences sur les propriétés de protection vis-à-vis de la corrosion du substrat. D’un point de vu microstructural, les résultats obtenus montrent que l’augmentation de température du gaz améliore la densité des revêtements. En diminuant le nombre de défauts mais également en optimisant la qualité de l’interface substrat/revêtement, la résistance à la corrosion se trouve également améliorée. Sur la base des différences de potentiel entre le revêtement et le substrat, il est possible de classer la nature des couches selon (i) les revêtements sacrificiels et (ii) les revêtements cathodiques. Quel que soit leur nature, les revêtements obtenus par cold spray présentent tous de bonnes propriétés barrières. Toute fois le mode de dégradation des revêtements sacrificielles a pu être assimilé à de la corrosion intergranulaire en lien avec la morphologie du dépôt mais également la distribution et la taille de particule SiC (cas particulier du revêtement d’aluminium). Si les essais de corrosion longue durée ne permettent pas d’amorcer la corrosion du substrat après dissolution du revêtement (pour les couches sacrifielles), des essais de corrosion galvanique autorisent une discrimination rapide de l’efficacité de la couche barrière. Ces tests électrochimiques sont également l’occasion de discuter des effets de la rupture d’un revêtement sur les cinétiques de corrosion des matériaux qu’ils protègent. L’ensemble des caractérisations métallurgiques ainsi que les tests électrochimiques menés sur les différents assemblages substrat/revêtements indiquent que la technique de cold spray est une méthode de choix pour la protection des matériaux de structures vis-à-vis de la corrosion
Cold spray is a relatively new coating technology in which coatings are produced by powders projected at high velocity. A significant feature of cold spray is that bonding is generated through severe plastic deformation at temperatures well below melting point of feedstock powders. In the present study, kinds of metallic coatings were produced by cold spray, including aluminum alloy coating, pure magnesium coating, magnesium alloy coating, stainless steel coating and SiC reinforced composite coatings. According to the manner in which the coating protects its substrate against corrosion, these cold sprayed coatings can be divided into two types, i.e. sacrificial anodic coating and noble barrier coating. The objective of this thesis is to verify the feasibility of producing both sacrificial anodic coating and noble barrier coating with high corrosion performance by cold spray, and meanwhile demonstrate the usefulness of electrochemical measurements for the characterization of corrosion protection properties of cold sprayed coatings. Besides material system, process parameters which influence corrosion performance of cold sprayed coatings were studied. Two factors, i.e. process gas temperature and process gas pressure were chosen. Results showed that higher process gas temperature leads to denser aluminum coating. Likely, higher process gas pressure improves denseness and corrosion resistance of stainless steel 316L coating. SiC reinforced aluminum based composite coatings were deposited on aluminum, stainless steel and magnesium substrate. Compared with aluminum coating, the addition of hard ceramic particle affects microstructure of coatings, and improves corrosion resistance by increasing denseness. Ceramic particle fraction and size affect coating microstructure in different ways and also influence corrosion behavior. In view of corrosion process, results indicate that corrosion protection of cold sprayed coating could be divided into two steps. In the first step, substrate is completely shielded by dense coating, no corrosion reaction occurs on substrate. In the second step, two types of coatings show totally different behavior. In the case of sacrificial anodic coating, substrate is under cathodic protection in galvanic couple; hence no corrosion (or weakened corrosion) happens on substrate. In contrast, when the coating is noble than substrate, the protection effect would be immediately interrupted once corrosive electrolyte penetrates through coating to interface. The overall results indicate that cold spray is a highly reliable alternative for production of coatings in anti-corrosion applications. Electrochemical measurements are useful tools for quality evaluation of corrosion behavior of cold sprayed coatings
APA, Harvard, Vancouver, ISO, and other styles
49

Thieme, Michael, Christa Blank, de Oliveira Aline Pereira, Hartmut Worch, Ralf Frenzel, Susanne Höhne, Frank Simon, Lewis Hilton G. Pryce, and Aleksandr J. White. "Superhydrophobic Aluminum Surfaces: Preparation Routes, Properties and Artificial Weathering Impact." Technische Universität Dresden, 2009. https://tud.qucosa.de/id/qucosa%3A26716.

Full text
Abstract:
Among the materials that can be treated in order to impart superhydrophobic properties are many originally hydrophilic metals. For this, they must undergo a sequential treatment, including roughening and hydrophobic coating. This contribution presents various preparation routes along with various characterization methods, such as dynamic contact angle (DCA) measurements, scanning electron microscopy (SEM) and spectroscopic techniques (FT–IRRAS, XPS, EIS). Micro-rough surfaces of pure and alloyed aluminum were generated most easily by using a modifie Sulfuric Acid Anodization under Intensifie conditions (SAAi). This produces a micro-mountain-like oxide morphology with peak-to-valley heights of 2 μm and sub-μm roughness components. Additionally, micro-embossed and micro-blasted surfaces were investigated. These micro-roughened initial states were chemically modifie with a solution of a hydrophobic compound, such as the reactive f uoroalkylsilane PFATES, the reactive alkyl group containing polymer POMA, or the polymer Teflo ® AF. Alternatively, the chemical modificatio was made by a Hot Filament Chemical Vapor Deposition (HFCVD) of a PTFE layer. The latter can form a considerably higher thickness than the wet-deposited coatings, without detrimental leveling effects being observed in comparison with the original micro-rough surface. The inherent and controllable morphology of the PTFE layers represents an important feature. The impacts of a standardized artificia weathering (WTH) on the wetting behavior and the surface-chemical properties were studied and discussed in terms of possible damage mechanisms. A very high stability of the superhydrophobicity was observed for the f uorinated wet-deposited PFATES and Teflo ® AF coatings as well as for some of the PTFE layer variants, all on SAAi-pretreated substrates. Very good results were also obtained for specimens produced by appropriate mechanical roughening and PTFE coating.
APA, Harvard, Vancouver, ISO, and other styles
50

Yoon, Yuhchae. "Formation and breakdown on chromate conversion coatings on Al-Zn-Mg-Cu 7x75 alloys." Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1101754567.

Full text
Abstract:
Thesis (Ph. D.)--Ohio State University, 2004.
Title from first page of PDF file. Document formatted into pages; contains xxi, 282 p.; also includes graphics (some col.). Includes bibliographical references (p. 262-282).
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography