Academic literature on the topic 'Aluminum alloy in electrohydraulic forming'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aluminum alloy in electrohydraulic forming.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Aluminum alloy in electrohydraulic forming"
Wei, Ya Nan, Fei Fei Zhang, Bo Wei, Hui Xu, and Kai He. "Experimental and Numerical Analyses of Tubular Electrohydraulic Forming Process." Key Engineering Materials 871 (January 2021): 80–86. http://dx.doi.org/10.4028/www.scientific.net/kem.871.80.
Full textOke, Sunday Ayoola, Kenechukwu Obinna Okponyia, and Olusola Adeyemi. "Applications of AHP, FAHP, BWM, Entropy, and CRITIC Methods in Electrohydraulic Forming Process Parametric Evaluation for Automotive Panels Using the 1100 Aluminum Alloy Sheets." International Journal of Industrial Engineering and Engineering Management 4, no. 2 (December 28, 2022): 75–86. http://dx.doi.org/10.24002/ijieem.v4i2.5527.
Full textWoo, Min-A., Woo-Jin Song, Beom-Soo Kang, and Jeong Kim. "Evaluation of formability enhancement of aluminum alloy sheet in electrohydraulic forming process with free-bulge die." International Journal of Advanced Manufacturing Technology 101, no. 1-4 (November 14, 2018): 1085–93. http://dx.doi.org/10.1007/s00170-018-2989-3.
Full textYu, Haiping, Lichao Sun, Xu Zhang, Shoulong Wang, and Chunfeng Li. "Experiments on electrohydraulic forming and electromagnetic forming of aluminum tube." International Journal of Advanced Manufacturing Technology 89, no. 9-12 (August 16, 2016): 3169–76. http://dx.doi.org/10.1007/s00170-016-9261-5.
Full textLangstädtler, Lasse, Holger Pegel, Marius Herrmann, Christian Schenck, and Bernd Kuhfuss. "Electrohydraulic incremental bulk metal forming." MATEC Web of Conferences 190 (2018): 03001. http://dx.doi.org/10.1051/matecconf/201819003001.
Full textShim, Ji-Yeon, and Bong-Yong Kang. "Development of Electrohydraulic Forming Process for Aluminum Sheet with Sharp Edge." Advances in Materials Science and Engineering 2017 (2017): 1–10. http://dx.doi.org/10.1155/2017/2715092.
Full textAhmed, Meraj, D. Ravi Kumar, and M. Nabi. "Enhancement of Formability of AA5052 Alloy Sheets by Electrohydraulic Forming Process." Journal of Materials Engineering and Performance 26, no. 1 (November 30, 2016): 439–52. http://dx.doi.org/10.1007/s11665-016-2446-0.
Full textKimura, Minami. "Emboss Forming of Superplastic Aluminum Alloy." Proceedings of the Materials and processing conference 2003.11 (2003): 387–88. http://dx.doi.org/10.1299/jsmemp.2003.11.387.
Full textPriem, Didier, Surendar Marya, and Guillaume Racineux. "On the Forming of Metallic Parts through Electromagnetic and Electrohydraulic Processing." Advanced Materials Research 15-17 (February 2006): 655–60. http://dx.doi.org/10.4028/www.scientific.net/amr.15-17.655.
Full textZhou, Ji Ming, Zhen Li, Le Hua Qi, and Xin Kang Wang. "Liquid-Solid Microextrusion of Aluminum Alloy." Solid State Phenomena 256 (September 2016): 175–80. http://dx.doi.org/10.4028/www.scientific.net/ssp.256.175.
Full textDissertations / Theses on the topic "Aluminum alloy in electrohydraulic forming"
Yang, Haoliang. "Creep age forming investigation on aluminum alloy 2219 and related studies." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/39352.
Full textNguyen, Vu Thua 1965. "Prediction of spring-back in thin sheet of aluminium alloy." Monash University, School of Physics and Materials Engineering, 2003. http://arrow.monash.edu.au/hdl/1959.1/5855.
Full textImbert, Boyd Jose. "Increased Formability and the Effects of the Tool/Sheet Interaction in Electromagnetic Forming of Aluminum Alloy Sheet." Thesis, University of Waterloo, 2005. http://hdl.handle.net/10012/857.
Full textSutton, Scott Christopher. "Characterization and Modeling of Lightweight Alloys in the Warm Forming Regime." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1524129785253984.
Full textShah, Manan Kanti. "Material Characterization and Forming of Light Weight Alloys at Elevated Temperature." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1306939665.
Full textAlves, José Augusto Camargo. "Estudo da conformabilidade de abas convexas da liga de alumínio AA2024-O no processo de hidroconformação de chapas." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/264433.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-19T02:21:16Z (GMT). No. of bitstreams: 1 Alves_JoseAugustoCamargo_M.pdf: 12204746 bytes, checksum: 78b1a8db87093cdc58baaa854932096e (MD5) Previous issue date: 2011
Resumo: O processo sheet hydroform, ou hidroconformação de chapas, é realizado por meio de uma prensa composta por uma membrana de borracha, preenchido com um fluido hidráulico cuja função é atuar como uma matriz, exercendo esforços sobre uma chapa de metal (blank), que é então empurrada contra um punção rígido, fazendo-o adquirir o formato deste. Embora este processo seja amplamente utilizado para a produção de pequenos lotes de peças metálicas de formato complexo e de espessura reduzida, ele exige habilidades de quem o define, pois se por um lado pode ser visto como simples por empregar apenas um molde maciço, por outro, a ausência de um sistema macho-fêmea capaz de garantir um completo travamento do blank pode ser encarado como um problema por permitir movimentos indesejados do material, que muitas vezes resultam na formação de rugas ou outros defeitos. Baseando-se nesses conceitos, o propósito deste trabalho foi o de mapear, por meio de simulações e ensaios práticos, a conformabilidade de abas convexas da liga de alumínio AA2024-0 de quatro espessuras quando submetidas a diferentes combinações de raio de curvatura e comprimento de aba. Deste modo, foi possível definir quais combinações destes parâmetros possibilitam a obtenção de componentes conformados adequadamente, isentos de rugas e outros defeitos macroscópicos, e ainda, quais condições levam à formação de irregularidades na aba conformada acima do limite preestabelecido, exigindo o emprego de prensa-chapas especiais, também conhecidos como dams, capazes de evitar a ocorrência de tais desvios. Com base nos resultados obtidos pode-se constatar que a ocorrência de rugas está associada principalmente à altura da aba conformada e não se altera significativamente quando a espessura do blank é modificada. Além disso, foi possível notar que raios de curvaturas maiores proporcionam menores valores de deformação compressiva na região conformada, permitindo obter abas mais altas e sem rugas
Abstract: Hydroform, or sheet metal fluid forming, is performed using a fluid cell press, in which the hydraulic fluid acts on the metallic blank pushing it against the male tool, acquiring its geometry. It is widely employed to manufacture small batches of complex and low thick components. If by one point of view it can be seen as simple, involving just a single rigid block as tool, by the other hand the absence of a rigid punch in certain cases can be a limitation, since it may allow the blank to move incorrectly during the process, causing wrinkles or other macro defects. Based on this limitation, the aim of this study was to define, using computational simulations and practical tests, the shrink flange formability limit of four different thickness aluminum alloy sheets when submitted to different combinations of curvature radius and flange length. As result, it could be seen which combinations can lead the material to be formed properly and which may cause failures, requiring special blank holders, known as dams, to avoid this problems. Based on the results, it can be verified that wrinkles nucleation is mainly associated with flange height and it does not change significantly when using blanks with different thicknesses. Furthermore, it could be noted that bigger curvature radius implies in smaller compressive strain on formed region, allowing to obtain higher flanges without wrinkles in these conditions
Mestrado
Materiais e Processos de Fabricação
Mestre em Engenharia Mecânica
Otomar, Heber Pires. "Estudo comparativo da estampabilidade da liga de aluminio AA1050 partindo de placas obtidas por vazamento direto e bobinas obtidas por vazamento contínuo." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/3/3133/tde-12082010-172944/.
Full textStampability of aluminum alloys is a subject of interest to several industrial sectors because they are largely used in the fabrication of several parts and components. The choice is based upon the stampability and the relative manufacturing capability in relation to other aluminum alloys that contain larger amounts of alloying elements and, consequently, higher mechanical properties. When comparing two solidification processes, namely the direct chill (DC) and the continuous casting (CC) via caster, the CC process historically presents inferior performance for the more critical stampings in these alloys. This study aims at the evaluation of the differences between the fabrication processes (routes) of AA1050 rolled to 1,80mm sheets in the conditions as annealed, rolled and after heat treatment and to characterize their microstructure and texture. Stamping tests have been performed to identify which process presents best stamping performance. To carry out these studies three production lots from the Companhia Brasileira de Alumínio CBA have been employed namely one from the DC method and two other lots from the DC method, one with and one without an intermediate homogenization treatment. All materials have been processed in rolling mills and ovens in an industrial scale. The metallurgical structure has been characterized by optical and electronic microscopy throughout the processes analyzing the intermetallics and precipitate distribution. Tensile tests have been perfumed to identify the evolution of the mechanical properties throughout the process. In the final condition, i.e., after rolling down to 1,80mm and annealing, earing tests, Erichsen drawing tests and anisotropy have been evaluated together with the Forming Limit Diagram( FLD), to evaluate which process presented the best results in terms of formability. In order to understand the changes that occurred, the macrotexture has been studied along the thickness of the rolled sheets. In the final condition, the microtexture of the DC and the CC without homogenization have been compared. Different microstructures have been obtained for the studied processes: the DC material was more homogeneous, both in terms of intemetallic distribution and grain size. The mechanical properties of the CC material, in terms of TS, YS and hardness, were sligthly higher than those for the DC material. Erichsen test showed that the DC material takes higher deformations. Earing tests showed that the CC material without homogeneization presented the best results however the DC material presented better cup height. The textures analyzed for the different process stages were mainly of the Goss , Cube and rotated Cube types. Also some typical shear textures of the Dillamore {4 4 11} and Taylor {11 11 8} types have been observed in cold rolled sheets. The S~ type, which is favourable for the formability of FCC metals, showed up in the final processing stages. The FLD showed that the CC with homogenization presented better results when compared to the other two processing routes. The stamping tests showed that the DC material presents higher drawability while the CC material without homogenization presents lower earing index.
ZAHEER, Omer. "RESHAPING AS NOVEL CIRCULAR ECONOMY STRATEGY FOR SHEET METAL BASED END-OF-LIFE COMPONENTS." Doctoral thesis, Università degli Studi di Palermo, 2022. http://hdl.handle.net/10447/533264.
Full textSiqueira, Gonçalo. "Caracterização microestrutural, mecânica e tratamento térmico da liga AA-6082 obtida pelo processo de conformação por spray." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/85/85134/tde-16012013-093254/.
Full textThe spray forming technology combines in a single step the advantages of the rapid solidification techniques and high the productivity of the conventional casting processes, allowing obtention of preforms with a refined microstructure, almost without porosity and macrosegregation free. The development and research efforts are leading to interesting alloys and materials production. The rapid solidification processes inherent to the spray forming allow the production of alloys with different compositions from those obtained by conventional ingot processes. The aim of this work was to carry out mechanical properties characterization of a spray formed AA-6082 alloy. The hardness results are presented in different sections related to the height of the spray formed preform (in a three-dimensional arrangement). The material was evaluated in the as sprayed condition and after heat treatment of solution at 525 ºC for 1 h, and aging for 1 h, 10 h, 100 h and 500 h periods. It was shown that the spray formed AA-6082 aluminum alloy is very stable regarding hardness variation during aging.
Otani, Lucas Barcelos. "Solidificação da liga de alumínio 319 conformada por spray." Universidade Federal de São Carlos, 2017. https://repositorio.ufscar.br/handle/ufscar/8903.
Full textApproved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-07-03T18:18:29Z (GMT) No. of bitstreams: 1 DissLBO.pdf: 5087062 bytes, checksum: ed0430974a336dc3223e730ae90cc724 (MD5)
Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-07-03T18:18:35Z (GMT) No. of bitstreams: 1 DissLBO.pdf: 5087062 bytes, checksum: ed0430974a336dc3223e730ae90cc724 (MD5)
Made available in DSpace on 2017-07-03T18:18:45Z (GMT). No. of bitstreams: 1 DissLBO.pdf: 5087062 bytes, checksum: ed0430974a336dc3223e730ae90cc724 (MD5) Previous issue date: 2017-03-03
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
The main application of 319 aluminum alloy is for manufacturing components for automobile industry. One of the main concerns related to the recycling of this metal is regarding the incorporation of impurities as iron, for instance. Due to its low solubility in solid aluminum, the presence of this element leads to the formation of intermetallic compounds such as α-Al8Fe2Si and β-Al9Fe2Si2, the most common iron phases in Si-containing Al-alloys. The β phase is harmful to mechanical properties because of its platelet like morphology. Spray forming is an advanced processing technique which can mitigate the deleterious effect of these intermetallic phases. However, the solidification process of spray formed metals is still an open discussion. In these sense, the aim of this work is to contribute to a better understanding of the solidification process of spray formed 319 aluminum alloy. The work was divided in three stages: the first evaluated the presence and morphology of intermetallic phases by varying the pouring temperature and Fe content (0.6 and 1.2 in mass percent); the second evaluated the eutectic Al-Si morphology through varying the processing conditions; and finally, the third evaluated the solute distribution in the final microstructure, in this case other aluminum alloys were studied together with the 319 (2024 and 7050). The basis for discussion the phenomena was a solidification model for spray formed metals recently proposed in the literature, which defines the process in two stages, being the final solidification occurring at low cooling rate. The results showed that by controlling the processing parameters it is possible to mitigate the β-Al9Fe2Si2 formation, as well as to alter the eutectic Al-Si morphology. The third stage indicated the possibility of maintenance of certain solute in solid solution on the periphery of aluminum grains. It could be concluded that the solidification model was adequate to explain the phenomena presented in this work.
A liga de alumínio 319 possui como aplicação a fabricação de componentes da indústria automobilística. Um dos principais problemas relacionados à reciclagem destas ligas é a incorporação de impurezas como o ferro. Devido à baixa solubilidade deste elemento, sua presença leva a formação de compostos intermetálicos, sendo o α-Al8Fe2Si e o β-Al9Fe2Si2 os mais comuns em sistemas com silício. A fase β é a mais danosa às propriedades mecânicas devido à sua morfologia de placas, sendo que uma rota de processamento que se mostra viável no sentido de mitigação do efeito deletério deste intermetálico é a conformação por spray. Apesar disso, o processo de solidificação desta técnica ainda é um assunto debatido na comunidade científica. Neste contexto, este trabalho possui o objetivo de contribuir para um melhor entendimento sobre o processo de solidificação da liga de alumínio 319 conformada por spray. O trabalho foi dividido em três etapas: a primeira avaliou a presença dos intermetálicos de ferro variando-se a temperatura de vazamento e o teor de ferro (0,6% e 1,2% em peso); a segunda avaliou a morfologia do eutético Al-Si através das alterações das condições de spray; e, por fim, a terceira avaliou a distribuição de soluto na microestrutura, neste caso, outras ligas de alumínio foram estudadas (2024 e 7050). A discussão dos fenômenos foi realizada a partir de um modelo de solidificação para materiais conformados por spray que divide o processo em duas etapas distintas, sendo a solidificação final ocorrendo a uma taxa de resfriamento relativamente lenta. Os resultados mostraram que através do controle das condições de spray é possível mitigar a formação do intermetálico β-Al9Fe2Si2, assim como alterar a morfologia do eutético Al-Si. A terceira etapa indicou a manutenção de certos elementos em solução sólida em regiões adjacentes aos contornos de grão. Pôde-se concluir que o modelo de solidificação utilizado foi adequado para explicar os fenômenos descritos nas etapas realizadas.
CNPq: 135810/2015-9
Books on the topic "Aluminum alloy in electrohydraulic forming"
Richter, Steven Kent. Grain growth characteristics of a superplastically deformed Ti-6Al-4V alloy. 1992.
Find full textKannan, K. Effects of alloy modification and thermo-mechanical processing on recrystallization of Al-Mg-Mn alloys. 1994.
Find full textNational Aeronautics and Space Administration (NASA) Staff. Effect of Thermal Exposure, Forming, and Welding on High-Temperature, Dispersion-Strengthened Aluminum Alloy: Al-8fe-1v-2si. Independently Published, 2018.
Find full textBook chapters on the topic "Aluminum alloy in electrohydraulic forming"
Bonnen, John J. F., Sergey F. Golovashchenko, Scott A. Dawson, Alexander V. Mamutov, and Alan J. Gillard. "Electrohydraulic Sheet Metal Forming of Aluminum Panels." In Light Metals 2012, 449–54. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-319-48179-1_76.
Full textBonnen, John J. F., Sergey F. Golovashchenko, Scott A. Dawson, Alexander V. Mamutov, and Alan J. Gillard. "Electrohydraulic Sheet Metal Forming of Aluminum Panels." In Light Metals 2012, 449–54. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118359259.ch76.
Full textChangela, Kandarp, K. Hariharan, and D. Ravi Kumar. "Cryorolling of Aluminum Alloy Sheets and Their Characterization: A Review." In Metal Forming Processes, 77–99. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003226703-5.
Full textNishiwaki, Takeshi, Ryota Sako, and Hideo Tsutamori. "Hydro-Mechanical Deep Drawing of Locally Solution-Treated Aluminum Alloy Sheets." In Forming the Future, 2729–39. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75381-8_226.
Full textSharma, S., A. Sharma, and S. Kumar. "Semi Solid Forming of A356 Al Alloy by Rapid Slurry Forming Process." In ICAA13: 13th International Conference on Aluminum Alloys, 1441–50. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118495292.ch219.
Full textHaga, Toshio, Kouta Inoue, Hideto Harada, and Ryoji Nakamura. "Micro-forming of aluminum alloy by cold rolling." In Proceedings of the 36th International MATADOR Conference, 41–44. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-432-6_9.
Full textZeng, Zhi Peng, Yan Shu Zhang, Yi Zhou, and Quan Lin Jin. "Superplastic Forming of Aluminum Alloy Car Body Panels." In Materials Science Forum, 3025–28. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-960-1.3025.
Full textWang, Qiang, Mu Meng, Xubin Li, and Zhimin Zhang. "Investigation of Forward–Backward–Radial Extrusion Process of Aluminum Alloy Wheel Hub." In Forming the Future, 1055–62. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75381-8_88.
Full textLi, Yantao, Wenzheng Dong, Qiquan Lin, and Zhigang Wang. "Constitutive Model and Plate Forging Ability of 5052 Aluminum Alloy Under Different Temperatures." In Forming the Future, 973–82. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75381-8_81.
Full textAlimov, Artem, Ivan Kniazkin, and Nikolay Biba. "Development and Implementation of Static Recrystallization Model of 6XXX Aluminum Alloy Using Industrial Experiments." In Forming the Future, 1715–25. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75381-8_144.
Full textConference papers on the topic "Aluminum alloy in electrohydraulic forming"
SUCKOW, T. "Damage prediction in roll forming of the high strength aluminum alloy AA7075." In Material Forming. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902479-86.
Full textYoon, J. W., F. Barlat, and R. E. Dick. "Sheet Metal Forming Simulation for Aluminum Alloy Sheets." In SAE 2000 World Congress. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2000. http://dx.doi.org/10.4271/2000-01-0774.
Full textOliveira, Dino A., M. J. Worswick, and M. Finn. "Simulation of Electromagnetic Forming of Aluminum Alloy Sheet." In SAE 2001 World Congress. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-0824.
Full textWang, Kaifeng, John E. Carsley, Thomas B. Stoughton, Jingjing Li, Lianhong Zhang, and Baiyan He. "Forming an age hardenable aluminum alloy with intermediate annealing." In NUMISHEET 2014: The 9th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes: Part A Benchmark Problems and Results and Part B General Papers. AIP, 2013. http://dx.doi.org/10.1063/1.4850136.
Full textHan, Kyu Bin, Ryan George, Srihari Kurukuri, Michael J. Worswick, and Sooky Winkler. "Springback of aluminum alloy brazing sheet in warm forming." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF GLOBAL NETWORK FOR INNOVATIVE TECHNOLOGY AND AWAM INTERNATIONAL CONFERENCE IN CIVIL ENGINEERING (IGNITE-AICCE’17): Sustainable Technology And Practice For Infrastructure and Community Resilience. Author(s), 2017. http://dx.doi.org/10.1063/1.5008096.
Full textSong, Y. L., L. Hua, J. Lu, P. Geng, and D. G. Dai. "Research Progress on Plastic Forming of Aluminum Alloy Sheet." In 4th International Conference on Advanced High Strength Steel and Press Hardening (ICHSU2018). WORLD SCIENTIFIC, 2018. http://dx.doi.org/10.1142/9789813277984_0057.
Full textUsuda, Matsuo, Koji Hashimoto, Tatsuo Amaike, Tomohisa Katayama, Yuuji Abe, and Masakatu Yoshida. "Forming Performance of Aluminum Alloy Sheets for Automobile Body Panels." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/950924.
Full textGiuseppina, Ambrogio, Citrea Teresa, Filice Luigino, and Gagliardi Francesco. "Numerical simulation of high speed incremental forming of aluminum alloy." In NUMISHEET 2014: The 9th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes: Part A Benchmark Problems and Results and Part B General Papers. AIP, 2013. http://dx.doi.org/10.1063/1.4850096.
Full textLi, Xiaoqiang, Honghan Yu, Guiqiang Guo, and Dongsheng Li. "Single-point incremental forming of 2024-T3 aluminum alloy sheets." In NUMISHEET 2014: The 9th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes: Part A Benchmark Problems and Results and Part B General Papers. AIP, 2013. http://dx.doi.org/10.1063/1.4850103.
Full textOgawa, Kyohei, Shinichi Nishida, Shogo Imai, Daichi Uematsu, Makoto Hagiwara, Mizuki Kawawa, and Kentaro Tsunoda. "Screw Forming by Semi-Solid Forging of Aluminum Alloy A7075." In JSME 2020 Conference on Leading Edge Manufacturing/Materials and Processing. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/lemp2020-8509.
Full textReports on the topic "Aluminum alloy in electrohydraulic forming"
Sunwoo, A., R. Lum, and R. Vandervoort. Concurrent solid state diffusion bonding and superplastic forming of aluminum alloy 7475. Office of Scientific and Technical Information (OSTI), January 1995. http://dx.doi.org/10.2172/74169.
Full textVandervoort, Richard, and Kevin Brown. 7XXX Aluminum Alloy Superplastic Forming Development Close Out Report CRADA No. TC-0154-91. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/1438801.
Full textLesuer, D., and T. Sun. Development of Weldable Superplastic Forming Aluminum Alloy Sheet Final Report CRADA No. TC-1086-95. Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1408988.
Full textLesuer, D. Development of Weldable Superplastic Forming Aluminum Alloy Sheet Final Report CRADA No. TC-1086-95. Office of Scientific and Technical Information (OSTI), July 2001. http://dx.doi.org/10.2172/790147.
Full text