Academic literature on the topic 'Aluminium Oxide Phosphate'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aluminium Oxide Phosphate.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Aluminium Oxide Phosphate"
Coletti-Previero, M.-A., M. Pugnière, H. Mattras, J. C. Nicolas, and A. Previero. "Selective retention of organic phosphate esters and phosphonates on aluminium oxide." Bioscience Reports 6, no. 5 (May 1, 1986): 477–83. http://dx.doi.org/10.1007/bf01116139.
Full textXie, Weimin, Qunhui Wang, Hongzhi Ma, and Hiroaki Ogawa. "Phosphate removal from wastewater using aluminium oxide as adsorbent." International Journal of Environment and Pollution 23, no. 4 (2005): 486. http://dx.doi.org/10.1504/ijep.2005.007611.
Full textPrijambada, Irfan Dwidya, Jaka Widada, Siti Kabirun, and Donny Widianto. "Secretion of Organic Acids by Phosphate Solubilizing Bacteria." JOURNAL OF TROPICAL SOILS 14, no. 3 (September 1, 2009): 245. http://dx.doi.org/10.5400/jts.2009.v14i3.245-251.
Full textChanthima, Natthakridta, Yaowaluk Tariwong, Hong Joo Kim, Jakrapong Kaewkhao, and Narong Sangwaranatee. "Effect of Eu3+ Ions on the Physical, Optical and Luminescence Properties of Aluminium Phosphate Glasses." Key Engineering Materials 766 (April 2018): 122–26. http://dx.doi.org/10.4028/www.scientific.net/kem.766.122.
Full textVippola, M., J. Vuorinen, P. Vuoristo, T. Lepistö, and T. Mäntylä. "Thermal analysis of plasma sprayed oxide coatings sealed with aluminium phosphate." Journal of the European Ceramic Society 22, no. 12 (November 2002): 1937–46. http://dx.doi.org/10.1016/s0955-2219(01)00522-2.
Full textBirch, W. D., and A. Pring. "Sieleckiite, a New Copper Aluminium Phosphate from Mt Oxide, Queensland, Australia." Mineralogical Magazine 52, no. 367 (September 1988): 515–18. http://dx.doi.org/10.1180/minmag.1988.052.367.11.
Full textBorges, I., J. P. Wignacourt, J. C. Boivin, A. Nonat, A. Lorriaux-Rubbens, F. Wallart, and J. M. Canini. "The Magnesium Oxide- Mono Aluminium Phosphate Reaction: Mechanism and Concentration Dependence." Advanced Materials Research 1-2 (September 1994): 609–20. http://dx.doi.org/10.4028/www.scientific.net/amr.1-2.609.
Full textIbrahim, Ali M., Y. H. Elbashar, A. M. Badr, H. A. Elshaikh, and A. G. Mostafa. "Mixed ionic–polaronic conduction in copper sodium phosphate glasses containing aluminium oxide." Journal of Microwave Power and Electromagnetic Energy 51, no. 1 (January 2, 2017): 71–89. http://dx.doi.org/10.1080/08327823.2017.1291069.
Full textLuchese, Eduardo Bernardi, Ervim Lenzi, Luzia Otília Bortotti Favero, and Luceide Heloisa Loubak. "Phosphorus collectors from filter paper and synthetic cloth coated with iron or aluminium oxide to provide phosphorus by diffusion in soils." Brazilian Archives of Biology and Technology 43, no. 2 (2000): 173–79. http://dx.doi.org/10.1590/s1516-89132000000200006.
Full textAraoyinbo, Alaba O., Mohd Nazree Derman, Azmi Rahmat, and Khairel Rafezi Ahmad. "Electrochemical Measurement of PBS Using Cyclic Voltammetry and AAO Fabricated at Ambient Temperature and Low Potential." Advanced Materials Research 795 (September 2013): 654–57. http://dx.doi.org/10.4028/www.scientific.net/amr.795.654.
Full textDissertations / Theses on the topic "Aluminium Oxide Phosphate"
Aubertin, Nadine. "Caractérisation d'une nouvelle série d'oxysels à base de ferrate (VI) et application dans le traitement des eaux." Nancy 1, 1994. http://www.theses.fr/1994NAN10015.
Full textGuan, Xiaohong. "Adsorption of phosphates and organic acids on aluminum hydroxide in aquatic environment : mechanisms and interactions /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202005%20GUAN.
Full textKotsedi, Lebogang. "Fabrication and characterization of a solar cell using an aluminium p-doped layer in the hot-wire chemical vapour deposition process." Thesis, University of the Western Cape, 2010. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_1349_1363785866.
Full textWhen the amorphous silicon (a-Si) dangling bonds are bonded to hydrogen the concentration of the dangling bond is decreased. The resulting film is called hydrogenated amorphous silicon (a-Si:H). The reduction in the dangling bonds concentration improves the optoelectrical properties of the film. The improved properties of a-Si:H makes it possible to manufacture electronic devices including a solar cell. A solar cell device based on the hydrogenated amorphous silicon (a-Si:H) was fabricated using the Hot-Wire Chemical Vapour Deposition (HWCVD). When an n-i-p solar cell configuration is grown, the norm is that the p-doped layer is deposited from a mixture of silane (SiH4) gas with diborane (B2H6). The boron atoms from diborane bonds to the silicon atoms and because of the number of the valance electrons, the grown film becomes a p-type film. Aluminium is a group 3B element and has the same valence electrons as boron, hence it will also produce a p-type film when it bonds with silicon. In this study the p-doped layer is grown from the co-deposition of a-Si:H from SiH4 with aluminium evaporation resulting in a crystallized, p-doped thin film. When this thin film is used in the n-i-p cell configuration, the device shows photo-voltaic activity. The intrinsic layer and the n-type layers for the solar cell were grown from SiH4 gas and Phosphine (PH3) gas diluted in SiH4 respectively. The individual layers of the solar cell device were characterized for both their optical and electrical properties. This was done using a variety of experimental techniques. The analyzed results from the characterization techniques showed the films to be of device quality standard. The analysed results of the ptype layer grown from aluminium showed the film to be successfully crystallized and doped. A fully functional solar cell was fabricated from these layers and the cell showed photovoltaic activity.
 
Roy, Amit Kumar. "Atomic Layer Deposition onto Fibers." Doctoral thesis, Universitätsbibliothek Chemnitz, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-85451.
Full textDas Hauptziel dieser Dissertation bestand darin nachzuweisen, dass die Atomlagenabscheidung (engl. atomic layer deposition (ALD)) auf „endlose“ Fasern angewendet werden kann. Es wurde ein Reaktor zur Atomlagenabscheidung gestaltet, der speziell für die Beschichtung meterlanger Faserbündel geeignet ist. Aluminiumoxid, Titanoxid, Doppelschichten aus Aluminiumoxid und Titanoxid sowie Aluminiumphosphat wurden mit Hilfe des selbstgebauten Reaktors auf Kohlefaserbündel abgeschieden. Rasterelektronenmikroskopische (REM) und transmissionselektronenmikroskopische (TEM) Aufnahmen zeigten, dass die Beschichtung auf den Fasern einheitlich und oberflächentreu war. Des Weiteren wurde eine gute Adhäsion zwischen Beschichtung und Fasern beobachtet. Das Prinzip der Beschichtung mit Titanoxid und Aluminiumoxid mit Hilfe der ALD war bereits vorher bekannt und im Rahmen dieser Dissertation jedoch erstmals auf "endlose" Fasern angewendet. Des Weiteren wird in dieser Dissertation erstmals gezeigt, dass es möglich ist, Aluminiumphosphat mittels ALD abzuscheiden (sowohl auf planaren Oberflächen als auch auf Fasern). Aluminiumphosphat könnte von besonderem Interesse in der Faserbeschichtung sein, da es ein relativ weiches Material ist und könnte daher als eine Art „schwacher“ Verbindung zwischen Faser und Matrix in Kompositen dienen. Die Oxidationsbeständigkeit von beschichten Kohlefasern wurde im Vergleich zu unbeschichteten Fasern bis zu einem gewissen Grad erhöht. Monoschichten von Aluminiumoxid und Titanoxid waren dafür wenig effektiv. Aluminiumphosphatbeschichtete Fasern waren deutlich besser geeignet als die beiden anderen. Eine Doppelschicht aus Titanoxid gefolgt von Aluminiumoxid verbesserte die Oxidationsbeständigkeit nochmals deutlich gegenüber allen anderen Beschichtungen, die in dieser Dissertation verwendet wurden. Mikroröhren aus Aluminiumoxid, Titanoxid und Doppelschichten wurden durch die selektive Entfernung der zugrunde liegenden Kohlefasern erhalten. Einzelne Mikroröhren waren von benachbarten Röhren getrennt und sie weisen eine nahezu einheitliche Wanddicke auf
Liu, Kuang-Hsing, and 劉光興. "The Study on Aluminum Oxide of Coating Calcium Phosphate." Thesis, 1994. http://ndltd.ncl.edu.tw/handle/81094573394467846540.
Full textChen, Cheng-Yao, and 陳承耀. "Low-Temperature Preparation of Calcium Phosphate plus Aluminum oxide Biocomposite." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/99709470784854417759.
Full text義守大學
材料科學與工程學系
102
Tri-calcium phosphate(Ca3(PO4)2), hydroxyapatite(Ca10(PO4)6(OH)2), aluminum oxide(Al2O3), and hydroxide are used to prepare biocomposites in this study. This is because tri-calcium phosphate , hydroxyapatite, and aluminum oxide are bio-compatible with excellent mechanical properties. Among them, Ca10(PO4)6(OH)2 is similar to the composition of natural bone, and Al2O3 is bioisert. Except for these three materials, NaOH and KOH are added to react-sinter with them at low temperatures, which are 350℃ and 900℃, or 450℃ and 900℃, to observe dimension shrinkage and phase existence after sintering. In tradition, Ca10(PO4)6(OH)2 (HA) or Ca3(PO4)2 composites are mostly sintered at high temperatures, which are T>1000℃. In this study , under a sintering condition at 350℃ or 450℃, most of sintered Ca3(PO4)2 + Al2O3 , or Ca10(PO4)6(OH)2 + Al2O3 specimens show their linear shrinkage with 1~2%. When specimens being sintered at 900℃, some specimens show their densification rate up to 90%. As to phase existence of sintered specimens : HA+ Al2O3 composites contain. HA and α-Al2O3 crystal structures. Ca3(PO4)2 + Al2O3 composites contain β-Ca3(PO4)2 and α-Al2O3 crystal structures. whether α-Ca3(PO4)2 exists in these sintered specimens will be further discussed. As to microstructures, Ca3(PO4)2, Al2O3, and HA do not show any significant grain growth. As to the correlations among sample preparations, sintering mechanisms, and physical properties, are discussed in detail.
Mondal, Sandip. "Fully Solution Processed Flash Memory." Thesis, 2017. http://etd.iisc.ac.in/handle/2005/4131.
Full textFu, Chuni, and 傅珺怡. "The study of properties and structure of terbium oxide doped zinc aluminum phosphate glasses." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/19548738150162638733.
Full text國立聯合大學
材料科學工程學系碩士班
99
This study explores optical, physical and structure properties based on zinc aluminum phosphate glass system (P2O5-ZnO-Al2O3) doped with different amounts of (terbium oxide), which changed the composition ratio between ZnO and P2O5. With increasing the terbium oxide and ZnO contents the density,refractive index and chemical durability of glasses increase, while the molar volume and thermal expansion coefficient decrease. Structure of glasses was analyzed by Fourier-transformed-infrared spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy in glasses system. With decreasing P2O5 content and the increase of network modifier (ZnO) leak the bridge oxygen bonds and the non-bridging oxygen bonds increase. In the optical analysis, with terbium oxide exceed 2.5 mol% the glasses exhibiters maximum intensity of blue emission from 5D3 to 7Fj level, while green emission from 5D4 level has increases linearly up to 9 mol% of Tb2O3. The concentration quenching of blue emission (5D3→7Fj) is attributed mainly to the cross-relaxation among the excited and nearest neighbor unexcited Tb3+ ions in the glass matrix. The fluorescence intensity increases with the increasing of ZnO content. The ZnO photogenerated electrons are trapped in the band gap defects which lie next to the Tb3+ excited states, and energy transferred to Tb3+ ion through radiation less process.
Lebogang, Kotsedi. "Fabrication and characterization of a solar cell using an aluminium p-doped layer in the hot-wire chemical vapour deposition process." Thesis, 2010. http://hdl.handle.net/11394/3441.
Full textWhen the amorphous silicon (a-Si) dangling bonds are bonded to hydrogen the concentration of the dangling bond is decreased. The resulting film is called hydrogenated amorphous silicon (a-Si:H). The reduction in the dangling bonds concentration improves the optoelectrical properties of the film. The improved properties of a-Si:H makes it possible to manufacture electronic devices including a solar cell.A solar cell device based on the hydrogenated amorphous silicon (a-Si:H) was fabricated using the Hot-Wire Chemical Vapour Deposition (HWCVD). When an n-i-p solar cell configuration is grown, the norm is that the p-doped layer is deposited from a mixture of silane (SiH4) gas with diborane (B2H6). The boron atoms from diborane bonds to the silicon atoms and because of the number of the valance electrons, the grown film becomes a p-type film. Aluminium is a group 3B element and has the same valence electrons as boron, hence it will also produce a p-type film when it bonds with silicon.In this study the p-doped layer is grown from the co-deposition of a-Si:H from SiH4 with aluminium evaporation resulting in a crystallized, p-doped thin film. When this thin film is used in the n-i-p cell configuration, the device shows photo-voltaic activity.The intrinsic layer and the n-type layers for the solar cell were grown from SiH4 gas and Phosphine (PH3) gas diluted in SiH4 respectively. The individual layers of the solar cell device were characterized for both their optical and electrical properties. This was done using a variety of experimental techniques. The analyzed results from the characterization techniques showed the films to be of device quality standard. The analysed results of the ptype layer grown from aluminium showed the film to be successfully crystallized and doped.A fully functional solar cell was fabricated from these layers and the cell showed photovoltaic activity.
Roy, Amit Kumar. "Atomic Layer Deposition onto Fibers." Doctoral thesis, 2011. https://monarch.qucosa.de/id/qucosa%3A19686.
Full textDas Hauptziel dieser Dissertation bestand darin nachzuweisen, dass die Atomlagenabscheidung (engl. atomic layer deposition (ALD)) auf „endlose“ Fasern angewendet werden kann. Es wurde ein Reaktor zur Atomlagenabscheidung gestaltet, der speziell für die Beschichtung meterlanger Faserbündel geeignet ist. Aluminiumoxid, Titanoxid, Doppelschichten aus Aluminiumoxid und Titanoxid sowie Aluminiumphosphat wurden mit Hilfe des selbstgebauten Reaktors auf Kohlefaserbündel abgeschieden. Rasterelektronenmikroskopische (REM) und transmissionselektronenmikroskopische (TEM) Aufnahmen zeigten, dass die Beschichtung auf den Fasern einheitlich und oberflächentreu war. Des Weiteren wurde eine gute Adhäsion zwischen Beschichtung und Fasern beobachtet. Das Prinzip der Beschichtung mit Titanoxid und Aluminiumoxid mit Hilfe der ALD war bereits vorher bekannt und im Rahmen dieser Dissertation jedoch erstmals auf "endlose" Fasern angewendet. Des Weiteren wird in dieser Dissertation erstmals gezeigt, dass es möglich ist, Aluminiumphosphat mittels ALD abzuscheiden (sowohl auf planaren Oberflächen als auch auf Fasern). Aluminiumphosphat könnte von besonderem Interesse in der Faserbeschichtung sein, da es ein relativ weiches Material ist und könnte daher als eine Art „schwacher“ Verbindung zwischen Faser und Matrix in Kompositen dienen. Die Oxidationsbeständigkeit von beschichten Kohlefasern wurde im Vergleich zu unbeschichteten Fasern bis zu einem gewissen Grad erhöht. Monoschichten von Aluminiumoxid und Titanoxid waren dafür wenig effektiv. Aluminiumphosphatbeschichtete Fasern waren deutlich besser geeignet als die beiden anderen. Eine Doppelschicht aus Titanoxid gefolgt von Aluminiumoxid verbesserte die Oxidationsbeständigkeit nochmals deutlich gegenüber allen anderen Beschichtungen, die in dieser Dissertation verwendet wurden. Mikroröhren aus Aluminiumoxid, Titanoxid und Doppelschichten wurden durch die selektive Entfernung der zugrunde liegenden Kohlefasern erhalten. Einzelne Mikroröhren waren von benachbarten Röhren getrennt und sie weisen eine nahezu einheitliche Wanddicke auf.:Bibliographische Beschreibung und Referat 2 Abstract 4 List of abbreviations 10 1. General introduction and outline of this dissertation 12 1.1 References 20 2. Atomic layer deposition: Process and reactor 25 2.1 Introduction 25 2.2 Principle of atomic layer deposition 26 2.3 Materials and methods 29 2.3.1 Precursors 29 2.3.2 Precursors transportation 31 2.3.3 Carrier and purge gas 32 2.3.4 ALD reactors 32 2.4 Flow-Type ALD reactor for fiber coating 33 2.5 Conclusion 35 2.6 References 35 3. Single layer oxide coatings 38 3.1 State of the art 38 3.2 Alumina coating using non-flammable precursors 39 3.2.1 Introduction 39 3.2.Result and discussion 39 3.3 Alumina coating using organometallic precursor 46 3.2.1 Introduction 46 3.2.2 Results and discussion 46 3.4 Titania coating using titanium tetrachloride and water 59 3.4.1 Introduction 59 3.4.2 Results and discussion 59 3.5 Experimental Part 67 3.5.1 General experiments 67 3.5.2 Alumina coating using aluminum chloride and water 69 3.5.3 Alumina coating using trimethylalumium and water 69 3.5.4 Titania coating 72 3.6 Conclusions 72 3.7 References 74 4. Coating thickness and morphology 78 4.1 Introduction 78 4.2 Results and discussion 80 4.2.1 Purge time 15 s 81 4.2.2 Purge time 30 s 85 4.2.3 Purge time 45 s to 100 s 85 4.3 Experimental part 88 4.4 Conclusions 89 4.5 References 89 5. Alumina and titania double layer coatings 91 5.1 Introduction 91 5.2 Results and discussion 92 5.3 Experimental part 102 5.4 Conclusions 103 5.5 References 103 6. Atomic layer deposition of aluminum phosphate 105 6.1 Introduction 105 6.2 Results and discussion 106 6.3 Experimental part 113 6.4 Conclusions 114 6.5 References 115 7. Alumina microtubes 117 7.1 Introduction 117 7.2 Results and discussion 118 7.2.1 Fibers before coating deposition 118 7.2.2 Coatings on the carbon fibers 118 7.2.3 Microtubes 121 7.3 Experimental part 127 7.4 Conclusions 128 7.5 References 128 8. Conclusions 131 Acknowledgements 136 Curriculum Vitae 138 Selbständigkeitserklärung 142
Book chapters on the topic "Aluminium Oxide Phosphate"
Holmquist, M., L. Hoffer, A. Kristoffersson, and R. Lundberg. "Aluminium Phosphate Bonded Oxide Fibre Reinforced Porous Mullite-Based Matrix Composites." In High Temperature Ceramic Matrix Composites, 627–32. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527605622.ch95.
Full textDr. Soumita Ghosh. "CONSTRAINTS IN AGRICULTURAL PRODUCTIVITY OF LATERITIC SOIL OF WEST BENGAL." In CONTEMPORARY SOCIAL RESEARCH: HEALTH, ECONOMY AND ENVIRONMENT: Vol 2. 2nd ed. REDSHINE London, 2019. http://dx.doi.org/10.25215/1387415603.02.
Full textZhang, G. Y., and T. R. Yu. "Coordination Adsorption of Anions." In Chemistry of Variable Charge Soils. Oxford University Press, 1997. http://dx.doi.org/10.1093/oso/9780195097450.003.0009.
Full textBergin, E. "Using Aluminum and a 1,1′-Bi-2-naphthol Bis(phosphine oxide) Ligand." In Stereoselective Reactions of Carbonyl and Imino Groups, 1. Georg Thieme Verlag KG, 2011. http://dx.doi.org/10.1055/sos-sd-202-00295.
Full textHolmes, Steve, Louisa Sartoni, Andy Burrows, Vincent Martin, Graham J. Hutchings, Chris Kiely, and Jean-Claude Volta. "Modifications of vanadium phosphorus oxides by aluminium phosphate for n-butane oxidation to maleic anhydride." In Studies in Surface Science and Catalysis, 1709–14. Elsevier, 2000. http://dx.doi.org/10.1016/s0167-2991(00)80447-4.
Full textSaito, S. "Lithium Aluminum Hydride with Cerium(III) Chloride for Reductive Dehalogenation and Reduction of Phosphine Oxides to Phosphines." In Compounds of Groups 13 and 2 (Al, Ga, In, Tl, Be...Ba), 1. Georg Thieme Verlag KG, 2004. http://dx.doi.org/10.1055/sos-sd-007-00046.
Full textConference papers on the topic "Aluminium Oxide Phosphate"
Oksa, M., E. Turunen, and T. Varis. "Sealing of Thermally Sprayed HVOF Coatings for Boiler Applications." In ITSC2004, edited by Basil R. Marple and Christian Moreau. ASM International, 2004. http://dx.doi.org/10.31399/asm.cp.itsc2004p0120.
Full textVippola, M., S. Ahmaniemi, P. Vuoristo, T. Lepistö, and T. Mäntylä. "Microstructural Study of Plasma Sprayed Chromium Oxide Coatings: Effect of Aluminum Phosphate Sealing." In ITSC2001, edited by Christopher C. Berndt, Khiam A. Khor, and Erich F. Lugscheider. ASM International, 2001. http://dx.doi.org/10.31399/asm.cp.itsc2001p0607.
Full textVippola, M., S. Ahmaniemi, P. Vuoristo, T. Lepistö, and T. Mäntylä. "Analytical Transmission Electron Microscopy of Phosphate Sealed Plasma Sprayed Oxide Coatings." In ITSC2002, edited by C. C. Berndt and E. Lugscheider. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 2002. http://dx.doi.org/10.31399/asm.cp.itsc2002p0755.
Full textKnuuttila, J., S. Ahmaniemi, E. Leivo, P. Sorsa, P. Vuoristo, and T. Mantyla. "Wet Abrasion and Slurry Erosion Resistance of Sealed Oxide Coatings." In ITSC 1998, edited by Christian Coddet. ASM International, 1998. http://dx.doi.org/10.31399/asm.cp.itsc1998p0145.
Full textVan, Tuan Nguyen, Tuan Anh Nguyen, Ha Pham Thi, Ly Pham Thi, Phuong Nguyen, Thuy Hoang Thi Bich, Trung Trinh Van, Duong Vu, and Quy Le Thu. "Sealing Treatment of Plasma Sprayed Cr3C2-NiCr/Al2O3-TiO2 Coating by Aluminum Phosphate Sealant Containing Al2O3 Nanoparticles." In ITSC2021, edited by F. Azarmi, X. Chen, J. Cizek, C. Cojocaru, B. Jodoin, H. Koivuluoto, Y. C. Lau, et al. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.itsc2021p0331.
Full textJaworski, R., L. Pawlowski, C. Pierlot, F. Roudet, S. Kozerski, and F. Petit. "Suspension Plasma Sprayed Titanium Oxide and Hydroxyapatite Coatings." In ITSC2009, edited by B. R. Marple, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima, and G. Montavon. ASM International, 2009. http://dx.doi.org/10.31399/asm.cp.itsc2009p0156.
Full textAhmaniemi, S., J. Knuuttila, and T. Mäntylä. "Residual Stresses in Plasma Sprayed Alumina and Chromia Coatings and Their Effect on Wear." In ITSC 1999, edited by E. Lugscheider and P. A. Kammer. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 1999. http://dx.doi.org/10.31399/asm.cp.itsc1999p0219.
Full textFryauf, David M., Junce Zhang, Kate J. Norris, Juan Diaz Leon, and Nobuhiko P. Kobayashi. "Aluminum oxide coating for post-growth photo emission wavelength tuning of indium phosphide nanowire networks." In SPIE NanoScience + Engineering, edited by Nobuhiko P. Kobayashi, A. Alec Talin, Albert V. Davydov, and M. Saif Islam. SPIE, 2013. http://dx.doi.org/10.1117/12.2022953.
Full textOmar, N., P. Van den Bossche, G. Mulder, M. Daowd, J. M. Timmermans, J. Van Mierlo, and S. Pauwels. "Assessment of performance of lithium iron phosphate oxide, nickel manganese cobalt oxide and nickel cobalt aluminum oxide based cells for using in plug-in battery electric vehicle applications." In 2011 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2011. http://dx.doi.org/10.1109/vppc.2011.6043017.
Full textLohn, Andrew J., Noel Dawson, Robert Cormia, David Fryauf, Junce Zhang, Kate J. Norris, and Nobuhiko P. Kobayashi. "Study on indium phosphide nanowires grown by metal organic chemical vapor deposition and coated with aluminum oxides deposited by atomic layer deposition." In SPIE NanoScience + Engineering, edited by Nobuhiko P. Kobayashi, A. Alec Talin, and M. Saif Islam. SPIE, 2012. http://dx.doi.org/10.1117/12.930525.
Full textReports on the topic "Aluminium Oxide Phosphate"
Shenker, Moshe, Paul R. Bloom, Abraham Shaviv, Adina Paytan, Barbara J. Cade-Menun, Yona Chen, and Jorge Tarchitzky. Fate of Phosphorus Originated from Treated Wastewater and Biosolids in Soils: Speciation, Transport, and Accumulation. United States Department of Agriculture, June 2011. http://dx.doi.org/10.32747/2011.7697103.bard.
Full text