Academic literature on the topic 'Aluminium-air batteries'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aluminium-air batteries.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Aluminium-air batteries"

1

Patnaik, R. S. M., S. Ganesh, G. Ashok, M. Ganesan, and V. Kapali. "Heat management in aluminium/air batteries: sources of heat." Journal of Power Sources 50, no. 3 (July 1994): 331–42. http://dx.doi.org/10.1016/0378-7753(94)01909-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pino, M., J. Chacón, E. Fatás, and P. Ocón. "Performance of commercial aluminium alloys as anodes in gelled electrolyte aluminium-air batteries." Journal of Power Sources 299 (December 2015): 195–201. http://dx.doi.org/10.1016/j.jpowsour.2015.08.088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mori, Ryohei. "Semi-solid-state aluminium–air batteries with electrolytes composed of aluminium chloride hydroxide with various hydrophobic additives." Physical Chemistry Chemical Physics 20, no. 47 (2018): 29983–88. http://dx.doi.org/10.1039/c8cp03997f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yang, Hanxue, Xiaohui Li, Yijun Wang, Lixin Gao, Jin Li, Daquan Zhang, and Tong Lin. "Excellent performance of aluminium anode based on dithiothreitol additives for alkaline aluminium/air batteries." Journal of Power Sources 452 (March 2020): 227785. http://dx.doi.org/10.1016/j.jpowsour.2020.227785.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Egan, D. R., C. Ponce de León, R. J. K. Wood, R. L. Jones, K. R. Stokes, and F. C. Walsh. "Developments in electrode materials and electrolytes for aluminium–air batteries." Journal of Power Sources 236 (August 2013): 293–310. http://dx.doi.org/10.1016/j.jpowsour.2013.01.141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kapali, V., S. Venkatakrishna Iyer, V. Balaramachandran, K. B. Sarangapani, M. Ganesan, M. Anbu Kulandainathan, and A. Sheik Mideen. "Studies on the best alkaline electrolyte for aluminium/air batteries." Journal of Power Sources 39, no. 2 (January 1992): 263–69. http://dx.doi.org/10.1016/0378-7753(92)80147-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sumboja, A., B. Prakoso, Y. Ma, F. R. Irwan, J. J. Hutani, A. Mulyadewi, M. A. A. Mahbub, Y. Zong, and Z. Liu. "FeCo Nanoparticle-Loaded Nutshell-Derived Porous Carbon as Sustainable Catalyst in Al-Air Batteries." Energy Material Advances 2021 (February 12, 2021): 1–12. http://dx.doi.org/10.34133/2021/7386210.

Full text
Abstract:
Developing a high-performance ORR (oxygen reduction reaction) catalyst at low cost has been a challenge for the commercialization of high-energy density and low production cost aluminium-air batteries. Herein, we report a catalyst, prepared by pyrolyzing the shell waste of peanut or pistachio, followed by concurrent nitrogen-doping and FeCo alloy nanoparticle loading. Large surface area (1246.4 m2 g-1) of pistachio shell-derived carbon can be obtained by combining physical and chemical treatments of the biomass. Such a large surface area carbon eases nitrogen doping and provides more nucleation sites for FeCo alloy growth, furnishing the resultant catalyst (FeCo/N-C-Pistachio) with higher content of N, Fe, and Co with a larger electrochemically active surface area as compared to its peanut shell counterpart (FeCo/N-C-Peanut). The FeCo/N-C-Pistachio displays a promising onset potential of 0.93 V vs. RHE and a high saturating current density of 4.49 mA cm-2, suggesting its high ORR activity. An aluminium-air battery, with FeCo/N-C-Pistachio catalyst on the cathode and coupled with a commercial aluminium 1100 anode, delivers a power density of 99.7 mW cm-2 and a stable discharge voltage at 1.37 V over 5 h of operation. This high-performance, low-cost, and environmentally sustainable electrocatalyst shows potential for large-scale adoption of aluminium-air batteries.
APA, Harvard, Vancouver, ISO, and other styles
8

Pino, M., D. Herranz, J. Chacón, E. Fatás, and P. Ocón. "Carbon treated commercial aluminium alloys as anodes for aluminium-air batteries in sodium chloride electrolyte." Journal of Power Sources 326 (September 2016): 296–302. http://dx.doi.org/10.1016/j.jpowsour.2016.06.118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

He, Ting, Yaqian Zhang, Yang Chen, Zhenzhu Zhang, Haiyan Wang, Yongfeng Hu, Min Liu, et al. "Single iron atoms stabilized by microporous defects of biomass-derived carbon aerogels as high-performance cathode electrocatalysts for aluminum–air batteries." Journal of Materials Chemistry A 7, no. 36 (2019): 20840–46. http://dx.doi.org/10.1039/c9ta05981d.

Full text
Abstract:
Biomass-derived carbon aerogel with hierarchical porosity and FeN4 single atom sites outperforms platinum towards the oxygen reduction reaction in alkaline media and can be used as the cathode catalyst for aluminium–air batteries.
APA, Harvard, Vancouver, ISO, and other styles
10

Mukherjee, Ambick, and Indra N. Basumallick. "Metallized graphite as an improved cathode material for aluminium/air batteries." Journal of Power Sources 45, no. 2 (June 1993): 243–46. http://dx.doi.org/10.1016/0378-7753(93)87014-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Aluminium-air batteries"

1

Hunter, John Anthony. "The anodic behavior of aluminium alloys in alkaline electrolytes." Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.237870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nestoridi, Maria. "The study of aluminium anodes for high power density AL-air batteries with brine electrolytes." Thesis, University of Southampton, 2009. https://eprints.soton.ac.uk/71859/.

Full text
Abstract:
In this thesis aluminium alloys containing small additions of both tin (~ 0.1 wt %) and gallium (~ 0.05 wt %) dissolve anodically at high rates in brine media; at room temperature, current densities > 0.2 A cm-2 can be obtained at potentials close to the open circuit potential, ~ -1.5 V vs SCE. Alloys without both tin and gallium do not dissolve at such a negative potential. The tin exists in the alloys as a second phase, typically as ~ 1 μm inclusions throughout the aluminium structure. Anodic dissolution leads to rounded pits around the tin inclusions. The pits are different in structure from the crystallographic pits observed with Al and other alloys. Clearly, the AlMgSnGa alloys dissolve by a different mechanism. Although the distribution of the gallium in the alloy could not be established, it is essential to the formation of these pits and maintaining dissolution. In addition to the composition, mechanical working and heat treatment influence both the stability of the alloys to open circuit corrosion and the overpotential for high rate dissolution, factors critical to battery performance. The correlation between performance and alloy microstructure has been investigated. Imaging with a high speed camera with a resolution of 10 – 20 μm was used to observe the dissolution of AlMgSnGa alloys. Using microelectrodes with only a few Sn inclusions in their surface, allows confirmation that hydrogen evolution occurs only from the Sn inclusions and also showed that the evolution of H2 is not continuous. Therate of H2 evolution correlates with shifts in potential between - 1.5 V and much less negative potentials. The performance of a laboratory Al-air battery with 2 M NaCl electrolyte was limited by both the performance of the O2 cathode and the extent of dissolution of the alloy. Using a cell with a low electrolyte volume/surface area ratio, dissolution of the anode stopped after the passage of 1000 C cm-2 due to a high impedance, thick film of crystals clinging to the surface. Removal of this film allowed the dissolution to recommence. The charge limitation depends on cell design but a high charge density would be difficult to achieve with a low volume battery.
APA, Harvard, Vancouver, ISO, and other styles
3

AICHOUR, YOUCEF. "Etude et developpement de la batterie aluminium-air." Paris 6, 1994. http://www.theses.fr/1994PA066720.

Full text
Abstract:
De nos jours, les batteries al-air, caracterisees par leur energie et leur puissance specifiques elevees, sont devenues des candidates prometteuses comme source d'energie dans plusieurs domaines et plus specialement pour les vehicules electriques. Notre travail concerne l'etude des differents problemes qui limitent l'application de celle-ci et vise en particulier: * la determination des meilleures conditions de precipitation de l'hydrargillite, dans un systeme annexe au fur et a mesure de sa production, ce qui permettra alors la regeneration de l'electrolyte et le maintien d'une bonne conductivite. Ceci permettra alors d'obtenir l'autonomie necessaire au vehicule. * l'etude du comportement des electrodes a air et la determination des ameliorations necessaires (conditions operatoires optimales et conceptionde l'electrode) a l'obtention de longues durees de vie * la selection de materiaux d'anodes et d'additifs inhibiteurs convenables permettant d'aboutir a des faibles vitesses de corrosion (en circuit ouvert et sous polarisation) ainsi qu'a de bonnes valeurs de potentiel sous des densites de courant elevees (environ 150 ma/cm#2) * enfin, un dimensionnement et une conception d'un prototype bielement constituant le module de base d'un generateur de 20 kw sous 120 volts
APA, Harvard, Vancouver, ISO, and other styles
4

Doche, Marie-Laure. "Étude d'anodes pour générateur aluminium-air à électrolyte alcalin." Grenoble INPG, 1997. http://www.theses.fr/1997INPG0024.

Full text
Abstract:
Au cours des dernieres annees, le generateur aluminium - air a ete etudie, particulierement pour son application a la propulsion de vehicules electriques. L'aluminium presente en effet une energie theorique importante (8 kw. H/kg) et son utilisation en pile pourrait permettre d'augmenter l'autonomie d'un vehicule. La premiere partie du travail concerne l'etude technologique de ces generateurs utilisant l'electrolyte naoh. Elle a ete realisee sur une cellule aluminium - air pilote (1 v / 70 a), et a permis de degager les parametres essentiels (concentration en soude, temperature, concentration en inhibiteurs de corrosion. . . ) du fonctionnement de l'anode. Le rapport cout de l'alliage/performances en decharge a ete optimise en utilisant la methodologie experimentale des plans d'experiences. Il s'avere que le materiau d'anode habituellement utilise (aluminium 5n) peut etre avantageusement remplace par une nuance 3n5 moins chere, tout en garantissant des caracteristiques en puissance sensiblement equivalentes. Le maintien des performances, en cours de decharge prolongee, exige toutefois d'associer un volume important d'electrolyte au module electrochimique. La masse du systeme parait alors exclure une integration sur vehicule electrique ; le generateur reste adapte a une utilisation sur site fixe. La seconde partie du travail presente une analyse a caractere plus fondamental des mecanismes de dissolution - corrosion de l'aluminium en milieu concentre en soude. Un montage experimental original a permis de determiner, par mesure en continu du degagement d'hydrogene, la contribution du courant de corrosion au courant total de dissolution de l'anode. L'obtention de courbes de polarisation decorrelees permet d'analyser separement les cinetiques des deux reactions partielles qui ont lieu a la surface de l'aluminium. Le caractere passif de l'aluminium en milieu sodique tres concentre est mis en evidence. Les resultats obtenus dans des conditions experimentales, mettant en jeu les differents parametres de fonctionnement de la pile, permettent de rendre compte de l'effet de la temperature, des conditions hydrodynamiques, des impuretes et de la presence d'ions aluminate et stannate en solution, sur les cinetiques des deux reactions d'oxydation de l'aluminium et de degagement d'hydrogene.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Aluminium-air batteries"

1

Mohd-Kamal, Mohamad-Syafiq, Muhamad Husaini Abu Bakar, and Sazali Yaacob. "Study the Effect of Acetone as an Inhibitor for the Performance of Aluminium-Air Batteries." In Progress in Engineering Technology, 1–15. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28505-0_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography