Academic literature on the topic 'Alternative waste technologies'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Alternative waste technologies.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Alternative waste technologies"
Kolar, James L. "Alternative energy technologies." Environmental Quality Management 10, no. 2 (2000): 45–54. http://dx.doi.org/10.1002/1520-6483(200024)10:2<45::aid-tqem6>3.0.co;2-p.
Full textValenti, Michael. "Rx For Medical Waste." Mechanical Engineering 122, no. 09 (September 1, 2000): 52–56. http://dx.doi.org/10.1115/1.2000-sep-1.
Full textSalkin, I. F. "Conventional and alternative technologies for the treatment of infectious waste." Journal of Material Cycles and Waste Management 5, no. 1 (March 1, 2003): 9–12. http://dx.doi.org/10.1007/s101630300002.
Full textAmândio, Mariana S. T., Joana M. Pereira, Jorge M. S. Rocha, Luísa S. Serafim, and Ana M. R. B. Xavier. "Getting Value from Pulp and Paper Industry Wastes: On the Way to Sustainability and Circular Economy." Energies 15, no. 11 (June 2, 2022): 4105. http://dx.doi.org/10.3390/en15114105.
Full textROBBAT, ALBERT. "Hazardous Waste Site Investigation and Cleanup: Innovative Technologies, an Alternative Approach." Hazardous Waste and Hazardous Materials 11, no. 2 (January 1994): 249–51. http://dx.doi.org/10.1089/hwm.1994.11.249.
Full textRachiero, Giovanni P., Paula Berton, and Julia Shamshina. "Deep Eutectic Solvents: Alternative Solvents for Biomass-Based Waste Valorization." Molecules 27, no. 19 (October 5, 2022): 6606. http://dx.doi.org/10.3390/molecules27196606.
Full textBraverman, V. Ya, and V. V. Vlasyuk. "ТECHNOLOGIES OF UTILIZATION OF MUNICIPAL SOLID WASTE AS A SOURCE OF RECEIVING ALTERNATIVE ENERGY RESOURCES ON THE EXSAMPLE OF ODESSA REGION (REVIEW)." Energy Technologies & Resource Saving, no. 1 (March 20, 2017): 54–59. http://dx.doi.org/10.33070/etars.1.2017.06.
Full textGubacheva, L. A., D. Yu Chizhevskaya, I. V. Makarova, and A. A. Andreev. "TECHNOLOGIES OF RATIONAL NATURE MANAGEMENT IN TRANSPORT." Ecology. Economy. Informatics.System analysis and mathematical modeling of ecological and economic systems 1, no. 5 (2020): 123–29. http://dx.doi.org/10.23885/2500-395x-2020-1-5-123-129.
Full textZulqarnain, Muhammad Ayoub, Mohd Hizami Mohd Yusoff, Muhammad Hamza Nazir, Imtisal Zahid, Mariam Ameen, Farooq Sher, Dita Floresyona, and Eduardus Budi Nursanto. "A Comprehensive Review on Oil Extraction and Biodiesel Production Technologies." Sustainability 13, no. 2 (January 15, 2021): 788. http://dx.doi.org/10.3390/su13020788.
Full textTsai, Tsuey-Lin, Yi-Fu Chiou, and Shih-Chin Tsai. "Overview of the Nuclear Fuel Cycle Strategies and the Spent Nuclear Fuel Management Technologies in Taiwan." Energies 13, no. 11 (June 10, 2020): 2996. http://dx.doi.org/10.3390/en13112996.
Full textDissertations / Theses on the topic "Alternative waste technologies"
Robinson, Janet E. "Hazardous waste treatment and disposal: alternative technologies and groundwater impacts." Thesis, Virginia Polytechnic Institute and State University, 1986. http://hdl.handle.net/10919/91066.
Full textM.S.
Mathews, Lopez Francisco. "A Multi-Criteria Decision-Making Model for Evaluation of Waste-to-Energy Technologies from Municipal Solid Waste| Combustion or Gasification for Puerto Rico?" Thesis, The George Washington University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10845962.
Full textThe island of Puerto Rico, a commonwealth of the United States of America, has a population of 3,725,789 according to the 2010 census, and generates 11,100 tons daily of waste. In the Island, landfilling is the dominant form of waste disposal. Most municipal solid waste landfills (MSWLF) in Puerto Rico are a principal source of land, water, and air pollution. In addition, the scarcity of appropriate land to open new landfill facilities make this type of waste disposal an unsustainable form of waste management for the Island.
This study evaluated the current situation of the MSWLFs in Puerto Rico and the geographic limitations of continuing with this type of waste disposal on the Island. As alternatives to this problem, the principal waste-to-energy (WTE) technologies, combustion and gasification, are evaluated as environmentally responsible forms for disposal of non-recycled waste.
The evaluation methodology used is based on a multi-criteria decision-making model that uses a subjective rank-order weighting method. Evaluation of WTE technologies is performed by comparing dissimilar indicators in five interest areas: technical, economic, environmental, socio-political, and risk. The methodology is composed of two-components: an expert survey and data analysis.
An evaluation of the environmental interest area was performed to assess which of the WTE technologies studied herein, combustion or gasification, is more environmentally responsible. In addition, using the relevant scores in different interest areas, they were evaluated to determine the economic benefits of these WTE technologies as viable waste management alternatives for Puerto Rico.
Warnken, Matthew. "Optimal Recovery of Resources: a Case Study of Wood Waste in the Greater Sydney Region." Thesis, The University of Sydney, 2004. http://hdl.handle.net/2123/634.
Full textWarnken, Matthew. "Optimal Recovery of Resources: a Case Study of Wood Waste in the Greater Sydney Region." University of Sydney. Chemical Engineering, 2004. http://hdl.handle.net/2123/634.
Full textBrewis, Chandre. "Quantifying the environmental dimension of sustainability for the built environment : with a focus on low-cost housing in South Africa." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20298.
Full textENGLISH ABSTRACT: Sustainability is difficult to achieve in a world where population and economic growth leads to increased production of greenhouse gases, resource depletion and waste generation. Today, the environmental dimension of sustainability, which is more commonly known as the natural environment, and the construction industry are two terms often mentioned together. In Europe, 12.4 % of greenhouse gas emissions are induced by the construction and manufacturing industry (Maydl, 2004). Also, 50 % of the resources extracted are used in the construction industry and more than 25 % of waste generated is construction and demolition waste. In South Africa, the building sector accounts for approximately 23 % of the total greenhouse gas emissions (Milford, 2009). Furthermore, 60 % of investment is made in the residential sector where 33 % of the building stock is the focus of the government’s Housing Programme. It is seen that the construction industry significantly impacts the natural environment and the aim should be to reduce this negative impact. Within the local residential sector, the low-cost housing sector presents potential when it comes to sustainable improvements. Each of the three spheres of sustainability, namely economy, natural environment and society, plays a crucial role in this sector. Various studies have been done on the economical and social fields, but little information exists on the impact low-cost houses have on the environment. A need arises to scientifically quantify the environmental impact hereof, therefore it is chosen as the focus of this study. Various methods in order to determine the environmental impact of the built environment exist globally, but they tend to be complex, are used in conjunction with difficult to understand databases and require expensive software. A need for a local quantification method with which to determine the environmental impact of the built environment, more specifically low-cost housing, has been identified. A simple and easy-to-use analysis-orientated quantification method is proposed in this study. The quantification method is compiled with indicators related to the local conditions; these include Emissions, Resource Depletion and Waste Generation. The end objective is to provide the user with an aggregated total value called the Environmental Impact Index to ease comparison of possible alternatives. The quantification method is developed as a mathematical tool in the form of a partial Life Cycle Assessment which can aid in objective decision making during the conception and design phase of a specific project. Note that only the Pre-Use Phase of the building life cycle is considered during the assessment, but can be extended to include the Use Phase and End-of-Life Phase. The proposed method has the capability of calculating and optimising the environmental impact of a building. Regarding low-cost housing, different housing unit designs can be compared in order to select the best alternative. The quantification method is implemented for two low-cost house design types in this study. Firstly, the conventional brick and mortar design is considered whereafter a Light Steel Frame Building is viewed as an alternative. The model implementation demonstrates that the model operates in its supposed manner. Also, Light Steel Frame Building housing units are shown to be worth investigating as an alternative to the conventional brick and mortar design but should be confirmed with a more accurate Life Cycle Assessment.
AFRIKAANSE OPSOMMING: In ’n wêreld waar toenemende ekonomiese en bevolkingsgroei veroorsaak dat al hoe meer kweekhuisgasse voortgebring word, hulpbronne uitgeput word en groter hoeveelhede rommel geproduseer word, is dit ’n bykans onbegonne taak om volhoubaarheid te probeer bereik. Volhoubaarheid rakende die natuurlike omgewing en konstruksie is twee terme wat vandag dikwels saam genoem word. Ongeveer 12.4 % van die kweekhuisgasse wat in Europa vrygestel word kom uit die konstruksie- en vervaardigingbedrywe (Maydl, 2004). Die konstruksiebedryf gebruik ook bykans die helfte van hulpbronne wat ontgin word en meer as 25 % van rommel word deur konstruksie of sloping produseer. Die Suid-Afrikaaanse boubedryf is verantwoordelik vir 23 % van die totale hoeveelheid kweekhuisgasse wat die land vrystel. Die behuisingsektor, waar die regering aan die hoof van 33 % van eenhede staan, ontvang 60 % van bestaande beleggings (Milford, 2009). Dit is dus duidelik dat die boubedryf ’n negatiewe impak op die natuurlike omgewing het en dat dit van groot belang is om dié situasie te verbeter. In die behuisingsektor het lae-koste-behuising groot potensiaal as dit kom by volhoubaarheid. Volhoubaarheid bestaan uit drie sfere: ekonomie, natuurlike omgewing en sosiaal, en al drie speel ’n betekenisvolle rol in lae-koste-behuising. Daar is reeds verskeie studies aangepak om die ekonomiese en sosiale sfere te beskryf, maar daar is steeds min inligting beskikbaar oor die omgewingsimpak van ’n lae-koste-huis. Dit laat die behoefte ontstaan om hierdie impak te kwantifiseer. Bestaande metodes wat wêreldwyd gebruik word om ʼn omgewingsimpak te bepaal is dikwels besonder kompleks en benodig duur sagteware tesame met ingewikkelde databasisse om dit te implementeer. ’n Behoefte aan ’n plaaslike kwantifiseringsmetode is geïdentifiseer. Hierdie studie stel ’n eenvoudige, gebruikersvriendelike kwantifiseringsmetode bekend. Dit word saamgestel uit faktore wat verband hou met die plaaslike omgewing: Uitlaatgasse, Hulpbronuitputting en Rommelvervaardiging. Uiteindelik word ’n saamgestelde waarde, wat die Omgewingsimpak-indeks genoem word, bereken om vergelyking te vergemaklik. Hierdie kwantifiseringsmetode word aan die hand van ’n gedeeltelike lewenssiklus-analise as ’n wiskundige hulpmiddel ontwikkel. Slegs die eerste fase van ’n gebou se lewenssiklus word beskou tydens hierdie studie, maar dit is moontlik om die ander twee fases in te sluit. Die voorgestelde metode het die vermoë om die omgewingsimpak te bereken en ook te optimeer. Tydens die ontwerpsfase, wanneer belangrike besluite geneem moet word, kan so ’n hulpmiddel van enorme waarde wees om die beste opsie uit verskillende alternatiewe te help identifiseer. Die studie beskou twee tipes behuisingseenhede vir die doel van implementering van die kwantifiseringsmetode: die konvensionele baksteen en mortel metode en alternatiewelik ’n ligte staalraamwerk-gebou. Tydens implementering van die voorgestelde metode, demonstreer die model dat dit werk soos dit veronderstel is om te funksioneer. Verder is getoon dat ’n ligte staalraamwerk-gebou ’n waardevolle alternatief is om te ondersoek, maar dit moet liefs met ’n meer akkurate lewenssiklus-analise bevestig word.
(9780230), Sharmina Begum. "Assessment of alternative waste technologies for energy recovery from solid waste in Australia." Thesis, 2016. https://figshare.com/articles/thesis/Assessment_of_alternative_waste_technologies_for_energy_recovery_from_solid_waste_in_Australia/13436876.
Full text(7518488), Michael D. Ozeh. "Design And Fabrication Of A Hybrid Nanoparticle-Wick Heat Sink Structure For Thermoelectric Generators In Low-Grade Heat Utilization.pdf." Thesis, 2019.
Find full textAustin, Lorimer Mark. "Investigation into the South African application of certain alternative technologies for disposal of sanitation system wastes." Diss., 2000. http://hdl.handle.net/2263/23564.
Full textBooks on the topic "Alternative waste technologies"
Waste management and valorization: Alternative technologies. Toronto: Apple Academic Press, 2015.
Find full textHazardous Substances Alternative Treatment Technologies Seminar (1985 Springfield, Ill.). Hazardous Substances Alternative Treatment Technologies Seminar: Proceedings. Springfield, Ill. (2200 Churchill Rd., Springfield 62706): Illinois Environmental Protection Agency, 1985.
Find full textTim, Holden, ed. How to select hazardous waste treatment technologies for soils and sludges: Alternative, innovative, and emerging technologies. Park Ridge, N.J., U.S.A: Noyes Data Corp., 1989.
Find full textRobbins, Janelle Hope. Understanding alternative technologies for animal waste treatment: A citizen's guide to manure treatment teachnologies. Tarrytown, N.Y: Waterkeeper Alliance, 2005.
Find full textChertow, Marian R. Garbage solutions: A public official's guide to recycling and alternative solid waste management technologies. Washington, D.C: National Resource Recovery Association, United States Conference of Mayors, 1989.
Find full textMaterials, California Legislature Assembly Committee on Environmental Safety and Toxic. Interim hearing on alternative technologies and practices for the management of hazardous waste in California: November 13, 1987, Room 437, State Capitol, Sacramento, California. Sacramento, CA: Joint Publications Office, 1987.
Find full textNATO Advanced Research Workshop on Scientific Advances in Alternative Demilitarization Technologies (1995 Warsaw, Poland). Scientific advances in alternative demilitarization technologies. Dordrecht: Kluwer Academic, 1996.
Find full textUnited States. Congress. House. Committee on Public Works and Transportation. Subcommittee on Investigations and Oversight. Administration of the federal Superfund program: Hearings before the Subcommittee on Investigations and Oversight of the Committee on Public Works and Transportation, House of Representatives, One Hundred Second Congress, second session, May 19, 1992 (liability issues), June 9, 1992 (risk assessment), June 30, 1992 (selection of remedy), July 28, 29, 1992 (federal facilities), September 15, 1992 (innovative and alternative cleanup technologies). Washington: U.S. G.P.O., 1993.
Find full textW, Holm Francis, North Atlantic Treaty Organization. Scientific Affairs Division., and NATO Advanced Research Workshop on Effluents from Alternative Demilitarization Technologies (1997 : Prague, Czech Republic), eds. Effluents from alternative demilitarization technologies. Dordrecht: Kluwer Academic Publishers, 1998.
Find full textUnited States. Congress. Office of Technology Assessment., ed. Disposal of chemical weapons: Alternative technologies. Washington, D.C: Congress of the U.S., Office of Technology Assessment, 1992.
Find full textBook chapters on the topic "Alternative waste technologies"
Anderson, Thomas. "Overview of Radioactive and Mixed Waste Cleanup Technologies." In Mobile Alternative Demilitarization Technologies, 221–77. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5526-7_14.
Full textVehlow, Jurgen. "Cleaning of Gaseous Products from Thermal Waste Treatment." In Effluents from Alternative Demilitarization Technologies, 47–69. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5310-2_5.
Full textYasay, Jeffrey John R. "Development and Assessment of Outdated Computers: A Technology Waste for Alternative Using Parallel Clustering." In Smart Innovation, Systems and Technologies, 685–94. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3675-2_52.
Full textLin, J., B. Hong, T. S. Li, D. W. Wan, Z. P. Fan, and Sabine Leischner. "Recycling of waste Glass Fiber Reinforced Polymer (GFRP) power as alternative filler for asphalt mastics." In Green and Intelligent Technologies for Sustainable and Smart Asphalt Pavements, 525–30. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003251125-83.
Full textMarmolejo-Rebellón, Luis Fernando, Edgar Ricardo Oviedo-Ocaña, and Patricia Torres-Lozada. "Organic Waste Composting at Versalles: An Alternative That Contributes to the Economic, Social and Environmental Well-Being of Stakeholders." In Organic Waste Composting through Nexus Thinking, 147–64. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36283-6_7.
Full textRay, Shiv Kumar, and Om Prakash. "Biodiesel Extracted from Waste Vegetable Oil as an Alternative Fuel for Diesel Engine: Performance Evaluation of Kirlosker 5 kW Engine." In Renewable Energy and its Innovative Technologies, 219–29. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2116-0_18.
Full textBerkey, Edgar, Stephen W. Paff, and A. Bruce King. "Sulchem Process for Treatment of Chemical Weapons-Related Wastes." In Mobile Alternative Demilitarization Technologies, 129–48. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5526-7_8.
Full textHerrero, Mario, Marta Hugas, Uma Lele, Aman Wirakartakusumah, and Maximo Torero. "A Shift to Healthy and Sustainable Consumption Patterns." In Science and Innovations for Food Systems Transformation, 59–85. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-15703-5_5.
Full textKrause, Ariane. "Valuing Waste – A Multi-method Analysis of the Use of Household Refuse from Cooking and Sanitation for Soil Fertility Management in Tanzanian Smallholdings." In Organic Waste Composting through Nexus Thinking, 91–122. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36283-6_5.
Full text"Energy Generation from Waste Sources." In Handbook of Alternative Fuel Technologies, 542–67. CRC Press, 2014. http://dx.doi.org/10.1201/b17157-21.
Full textConference papers on the topic "Alternative waste technologies"
Загороднюк, Л. Х., L. H. Zagorodnyuk, Н. А. Науменко, N. A. Naumenko, И. Н. Туцкая, and I. N. Tuckaya. "ALTERNATIVE CONSTRUCTIONS FOR COLLECTION DOMESTIC WASTE." In International Scientific and Practical 65th anniversary conference BSTU them. V.G. Shukhov "HIGH-TECH TECHNOLOGIES AND INNOVATIONS (XXIII scientific readings)". Belgorod State Technological University named after V.G. Shukhov, 2019. http://dx.doi.org/10.12737/conferencearticle_5cecedc2416900.74337634.
Full textMoulton-Patterson, Linda. "The Emergence of Conversion Technologies in California as a Viable Alternative to Landfilling." In 12th Annual North American Waste-to-Energy Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/nawtec12-2201.
Full textPavani, Abhishek, Akash Hebale, Veraj Poojary, Shashank Parulekar, Chaudhari Kiran, and Kapse Neeta. "Waste sunflower oil as an alternative fuel for diesel engines." In 2015 International Conference on Nascent Technologies in the Engineering Field (ICNTE). IEEE, 2015. http://dx.doi.org/10.1109/icnte.2015.7029919.
Full textSafin, R., V. Sotnikov, I. Karimov, R. Miftahov, and I. Il'yasov. "ENERGY-SAVING TECHNOLOGY FOR PROCESSING WOOD WASTE." In Ecological and resource-saving technologies in science and technology. FSBE Institution of Higher Education Voronezh State University of Forestry and Technologies named after G.F. Morozov, 2022. http://dx.doi.org/10.34220/erstst2021_192-196.
Full textEllyin, Claudine, and Nickolas J. Themelis. "Small Scale Waste-to-Energy Technologies." In 19th Annual North American Waste-to-Energy Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/nawtec19-5447.
Full textGhilardi, Alessandra, Guido Francesco Frate, Andrea Baccioli, Dario Ulivieri, Lorenzo Ferrari, Umberto Desideri, Lorenzo Cosi, Simone Amidei, and Vittorio Michelassi. "Techno-Economic Comparison of Several Technologies for the Waste Heat Recovery From Gas Turbine Exhausts." In ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/gt2022-83199.
Full textBanner, Shannon C., John Classen, Prince Dugba, Mark Rice, and Kelly Zering. "Environmental Tradeoffs of Alternative Scenarios for Swine Waste Management Technologies: A Life Cycle Perspective." In 2017 Spokane, Washington July 16 - July 19, 2017. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2017. http://dx.doi.org/10.13031/aim.201700187.
Full textZemba, Stephen G., James J. Binder, Michael R. Ames, and Richard R. Lester. "A Risk Assessment Framework for Evaluating Health Risks From New and Emerging Waste Management Technologies." In 18th Annual North American Waste-to-Energy Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/nawtec18-3537.
Full textDobrovolsky, I., I. Kapkaev, and D. Sorokin. "Economic and Technological Prospects of Solid Waste Pyrolysis as an Alternative Energy Source." In 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). IEEE, 2020. http://dx.doi.org/10.1109/fareastcon50210.2020.9271213.
Full textGershman, Harvey W. "The Latest and Greatest on the Resurgence of Waste-to-Energy and Conversion Technologies." In 18th Annual North American Waste-to-Energy Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/nawtec18-3503.
Full textReports on the topic "Alternative waste technologies"
Borduin, L. C., B. A. Palmer, and J. A. Pendergrass. Mixed waste focus area alternative technologies workshop. Office of Scientific and Technical Information (OSTI), May 1995. http://dx.doi.org/10.2172/90169.
Full textSchwinkendorf, W. E., B. C. Musgrave, and R. N. Drake. Evaluation of alternative nonflame technologies for destruction of hazardous organic waste. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/578607.
Full textAsvapathanagul, Pitiporn, Leanne Deocampo, and Nicholas Banuelos. Biological Hydrogen Gas Production from Food Waste as a Sustainable Fuel for Future Transportation. Mineta Transportation Institute, July 2022. http://dx.doi.org/10.31979/mti.2021.2141.
Full textAsvapathanagul, Pitiporn, Leanne Deocampo, and Nicholas Banuelos. Biological Hydrogen Gas Production from Food Waste as a Sustainable Fuel for Future Transportation. Mineta Transportation Institute, July 2022. http://dx.doi.org/10.31979/mti.2022.2141.
Full textAuthor, Not Given. Data summary of municipal solid waste management alternatives. Volume 4, Appendix B: RDF technologies. Office of Scientific and Technical Information (OSTI), October 1992. http://dx.doi.org/10.2172/10138540.
Full textAuthor, Not Given. Data summary of municipal solid waste management alternatives. Volume 3, Appendix A: Mass burn technologies. Office of Scientific and Technical Information (OSTI), October 1992. http://dx.doi.org/10.2172/10137774.
Full textJang, B. W., J. J. Spivey, C. R. Savage, and R. B. Timmons. Comprehensive Evaluation of Catalytic Hydroreduction and Nonthermal Plasma as Alternative Technologies for Detoxification of Chemical Wastes. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada396448.
Full textAuthor, Not Given. Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies. Office of Scientific and Technical Information (OSTI), October 1992. http://dx.doi.org/10.2172/10137454.
Full textPelletier, Austin, Amanda Hohner, Idil Deniz Akin, Indranil Chowdhury, Richard Watts, Xianming Shi, Brendan Dutmer, and James Mueller. Bench-scale Electrochemical Treatment of Co-contaminated Clayey Soil. Illinois Center for Transportation, June 2021. http://dx.doi.org/10.36501/0197-9191/21-018.
Full text