To see the other types of publications on this topic, follow the link: Alternative lengthening of telomeres (ALT).

Journal articles on the topic 'Alternative lengthening of telomeres (ALT)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Alternative lengthening of telomeres (ALT).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Cohn, Marita, Ahu Karademir Andersson, Raquel Quintilla Mateo, and Mirja Carlsson Möller. "Alternative Lengthening of Telomeres in the Budding Yeast Naumovozyma castellii." G3: Genes|Genomes|Genetics 9, no. 10 (August 19, 2019): 3345–58. http://dx.doi.org/10.1534/g3.119.400428.

Full text
Abstract:
The enzyme telomerase ensures the integrity of linear chromosomes by maintaining telomere length. As a hallmark of cancer, cell immortalization and unlimited proliferation is gained by reactivation of telomerase. However, a significant fraction of cancer cells instead uses alternative telomere lengthening mechanisms to ensure telomere function, collectively known as Alternative Lengthening of Telomeres (ALT). Although the budding yeast Naumovozyma castellii (Saccharomyces castellii) has a proficient telomerase activity, we demonstrate here that telomeres in N. castellii are efficiently maintained by a novel ALT mechanism after telomerase knockout. Remarkably, telomerase-negative cells proliferate indefinitely without any major growth crisis and display wild-type colony morphology. Moreover, ALT cells maintain linear chromosomes and preserve a wild-type DNA organization at the chromosome termini, including a short stretch of terminal telomeric sequence. Notably, ALT telomeres are elongated by the addition of ∼275 bp repeats containing a short telomeric sequence and the subtelomeric DNA located just internally (TelKO element). Although telomeres may be elongated by several TelKO repeats, no dramatic genome-wide amplification occurs, thus indicating that the repeat addition may be regulated. Intriguingly, a short interstitial telomeric sequence (ITS) functions as the initiation point for the addition of the TelKO element. This implies that N. castellii telomeres are structurally predisposed to efficiently switch to the ALT mechanism as a response to telomerase dysfunction.
APA, Harvard, Vancouver, ISO, and other styles
2

Udroiu, Ion, and Antonella Sgura. "Alternative Lengthening of Telomeres and Chromatin Status." Genes 11, no. 1 (December 30, 2019): 45. http://dx.doi.org/10.3390/genes11010045.

Full text
Abstract:
Telomere length is maintained by either telomerase, a reverse transcriptase, or alternative lengthening of telomeres (ALT), a mechanism that utilizes homologous recombination (HR) proteins. Since access to DNA for HR enzymes is regulated by the chromatin status, it is expected that telomere elongation is linked to epigenetic modifications. The aim of this review is to elucidate the epigenetic features of ALT-positive cells. In order to do this, it is first necessary to understand the telomeric chromatin peculiarities. So far, the epigenetic nature of telomeres is still controversial: some authors describe them as heterochromatic, while for others, they are euchromatic. Similarly, ALT activity should be characterized by the loss (according to most researchers) or formation (as claimed by a minority) of heterochromatin in telomeres. Besides reviewing the main works in this field and the most recent findings, some hypotheses involving the role of telomere non-canonical sequences and the possible spatial heterogeneity of telomeres are given.
APA, Harvard, Vancouver, ISO, and other styles
3

Hou, Kailong, Yuyang Yu, Duda Li, Yanduo Zhang, Ke Zhang, Jinkai Tong, Kunxian Yang, and Shuting Jia. "Alternative Lengthening of Telomeres and Mediated Telomere Synthesis." Cancers 14, no. 9 (April 27, 2022): 2194. http://dx.doi.org/10.3390/cancers14092194.

Full text
Abstract:
Telomeres are DNA–protein complexes that protect eukaryotic chromosome ends from being erroneously repaired by the DNA damage repair system, and the length of telomeres indicates the replicative potential of the cell. Telomeres shorten during each division of the cell, resulting in telomeric damage and replicative senescence. Tumor cells tend to ensure cell proliferation potential and genomic stability by activating telomere maintenance mechanisms (TMMs) for telomere lengthening. The alternative lengthening of telomeres (ALT) pathway is the most frequently activated TMM in tumors of mesenchymal and neuroepithelial origin, and ALT also frequently occurs during experimental cellular immortalization of mesenchymal cells. ALT is a process that relies on homologous recombination (HR) to elongate telomeres. However, some processes in the ALT mechanism remain poorly understood. Here, we review the most recent understanding of ALT mechanisms and processes, which may help us to better understand how the ALT pathway is activated in cancer cells and determine the potential therapeutic targets in ALT pathway-stabilized tumors.
APA, Harvard, Vancouver, ISO, and other styles
4

Gauchier, Mathilde, Sophie Kan, Amandine Barral, Sandrine Sauzet, Eneritz Agirre, Erin Bonnell, Nehmé Saksouk, et al. "SETDB1-dependent heterochromatin stimulates alternative lengthening of telomeres." Science Advances 5, no. 5 (May 2019): eaav3673. http://dx.doi.org/10.1126/sciadv.aav3673.

Full text
Abstract:
Alternative lengthening of telomeres, or ALT, is a recombination-based process that maintains telomeres to render some cancer cells immortal. The prevailing view is that ALT is inhibited by heterochromatin because heterochromatin prevents recombination. To test this model, we used telomere-specific quantitative proteomics on cells with heterochromatin deficiencies. In contrast to expectations, we found that ALT does not result from a lack of heterochromatin; rather, ALT is a consequence of heterochromatin formation at telomeres, which is seeded by the histone methyltransferase SETDB1. Heterochromatin stimulates transcriptional elongation at telomeres together with the recruitment of recombination factors, while disrupting heterochromatin had the opposite effect. Consistently, loss of SETDB1, disrupts telomeric heterochromatin and abrogates ALT. Thus, inhibiting telomeric heterochromatin formation in ALT cells might offer a new therapeutic approach to cancer treatment.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhao, Shuang, Feng Wang, and Lin Liu. "Alternative Lengthening of Telomeres (ALT) in Tumors and Pluripotent Stem Cells." Genes 10, no. 12 (December 10, 2019): 1030. http://dx.doi.org/10.3390/genes10121030.

Full text
Abstract:
A telomere consists of repeated DNA sequences (TTAGGG)n as part of a nucleoprotein structure at the end of the linear chromosome, and their progressive shortening induces DNA damage response (DDR) that triggers cellular senescence. The telomere can be maintained by telomerase activity (TA) in the majority of cancer cells (particularly cancer stem cells) and pluripotent stem cells (PSCs), which exhibit unlimited self-proliferation. However, some cells, such as telomerase-deficient cancer cells, can add telomeric repeats by an alternative lengthening of the telomeres (ALT) pathway, showing telomere length heterogeneity. In this review, we focus on the mechanisms of the ALT pathway and potential clinical implications. We also discuss the characteristics of telomeres in PSCs, thereby shedding light on the therapeutic significance of telomere length regulation in age-related diseases and regenerative medicine.
APA, Harvard, Vancouver, ISO, and other styles
6

Xu, Mafei, Jun Qin, Leiming Wang, Hui-Ju Lee, Chung-Yang Kao, Dan Liu, Zhou Songyang, Junjie Chen, Ming-Jer Tsai, and Sophia Y. Tsai. "Nuclear receptors regulate alternative lengthening of telomeres through a novel noncanonical FANCD2 pathway." Science Advances 5, no. 10 (October 2019): eaax6366. http://dx.doi.org/10.1126/sciadv.aax6366.

Full text
Abstract:
Alternative lengthening of telomeres (ALT) is known to use homologous recombination (HR) to replicate telomeric DNA in a telomerase-independent manner. However, the detailed process remains largely undefined. It was reported that nuclear receptors COUP-TFII and TR4 are recruited to the enriched GGGTCA variant repeats embedded within ALT telomeres, implicating nuclear receptors in regulating ALT activity. Here, we identified a function of nuclear receptors in ALT telomere maintenance that involves a direct interaction between COUP-TFII/TR4 and FANCD2, the key protein in the Fanconi anemia (FA) DNA repair pathway. The COUP-TFII/TR4-FANCD2 complex actively induces the DNA damage response by recruiting endonuclease MUS81 and promoting the loading of the PCNA-POLD3 replication complex in ALT telomeres. Furthermore, the COUP-TFII/TR4-mediated ALT telomere pathway does not require the FA core complex or the monoubiquitylation of FANCD2, key steps in the canonical FA pathway. Thus, our findings reveal that COUP-TFII/TR4 regulates ALT telomere maintenance through a novel noncanonical FANCD2 pathway.
APA, Harvard, Vancouver, ISO, and other styles
7

Perrem, Kilian, Lorel M. Colgin, Axel A. Neumann, Thomas R. Yeager, and Roger R. Reddel. "Coexistence of Alternative Lengthening of Telomeres and Telomerase in hTERT-Transfected GM847 Cells." Molecular and Cellular Biology 21, no. 12 (June 15, 2001): 3862–75. http://dx.doi.org/10.1128/mcb.21.12.3862-3875.2001.

Full text
Abstract:
ABSTRACT It has been shown previously that some immortalized human cells maintain their telomeres in the absence of significant levels of telomerase activity by a mechanism referred to as alternative lengthening of telomeres (ALT). Cells utilizing ALT have telomeres of very heterogeneous length, ranging from very short to very long. Here we report the effect of telomerase expression in the ALT cell line GM847. Expression of exogenous hTERT in GM847 (GM847/hTERT) cells resulted in lengthening of the shortest telomeres; this is the first evidence that expression of hTERT in ALT cells can induce telomerase that is active at the telomere. However, rapid fluctuation in telomere length still occurred in the GM847/hTERT cells after more than 100 population doublings. Very long telomeres and ALT-associated promyelocytic leukemia (PML) bodies continued to be generated, indicating that telomerase activity induced by exogenous hTERT did not abolish the ALT mechanism. In contrast, when the GM847 cell line was fused with two different telomerase-positive tumor cell lines, the ALT phenotype was repressed in each case. These hybrid cells were telomerase positive, and the telomeres decreased in length, very rapidly at first and then at the rate seen in telomerase-negative normal cells. Additionally, ALT-associated PML bodies disappeared. After the telomeres had shortened sufficiently, they were maintained at a stable length by telomerase. Together these data indicate that the telomerase-positive cells contain a factor that represses the ALT mechanism but that this factor is unlikely to be telomerase. Further, the transfection data indicate that ALT and telomerase can coexist in the same cells.
APA, Harvard, Vancouver, ISO, and other styles
8

Mentegari, Elisa, Federica Bertoletti, Miroslava Kissova, Elisa Zucca, Silvia Galli, Giulia Tagliavini, Anna Garbelli, et al. "A Role for Human DNA Polymerase λ in Alternative Lengthening of Telomeres." International Journal of Molecular Sciences 22, no. 5 (February 27, 2021): 2365. http://dx.doi.org/10.3390/ijms22052365.

Full text
Abstract:
Telomerase negative cancer cell types use the Alternative Lengthening of Telomeres (ALT) pathway to elongate telomeres ends. Here, we show that silencing human DNA polymerase (Pol λ) in ALT cells represses ALT activity and induces telomeric stress. In addition, replication stress in the absence of Pol λ, strongly affects the survival of ALT cells. In vitro, Pol λ can promote annealing of even a single G-rich telomeric repeat to its complementary strand and use it to prime DNA synthesis. The noncoding telomeric repeat containing RNA TERRA and replication protein A negatively regulate this activity, while the Protection of Telomeres protein 1 (POT1)/TPP1 heterodimer stimulates Pol λ. Pol λ associates with telomeres and colocalizes with TPP1 in cells. In summary, our data suggest a role of Pol λ in the maintenance of telomeres by the ALT mechanism.
APA, Harvard, Vancouver, ISO, and other styles
9

Sung, Ji-Yong, Hee-Woong Lim, Je-Gun Joung, and Woong-Yang Park. "Pan-Cancer Analysis of Alternative Lengthening of Telomere Activity." Cancers 12, no. 8 (August 7, 2020): 2207. http://dx.doi.org/10.3390/cancers12082207.

Full text
Abstract:
Alternative lengthening of telomeres (ALT) is a telomerase-independent mechanism that extends telomeres in cancer cells. It influences tumorigenesis and patient survival. Despite the clinical significance of ALT in tumors, the manner in which ALT is activated and influences prognostic outcomes in distinct cancer types is unclear. In this work, we profiled distinct telomere maintenance mechanisms (TMMs) using 8953 transcriptomes of 31 different cancer types from The Cancer Genome Atlas (TCGA). Our results demonstrated that approximately 29% of cancer types display high ALT activity with low telomerase activity in the telomere-lengthening group. Among the distinct ALT mechanisms, homologous recombination was frequently observed in sarcoma, adrenocortical carcinoma, and kidney chromophobe. Five cancer types showed a significant difference in survival in the presence of high ALT activity. Sarcoma patients with elevated ALT had unfavorable risks (p < 0.038) coupled with a high expression of TOP2A, suggesting this as a potential drug target. On the contrary, glioblastoma patients had favorable risks (p < 0.02), and showed low levels of antigen-presenting cells. Together, our analyses highlight cancer type-dependent TMM activities and ALT-associated genes as potential therapeutic targets.
APA, Harvard, Vancouver, ISO, and other styles
10

Bechard, Laura H., Bilge D. Butuner, George J. Peterson, Will McRae, Zeki Topcu, and Michael J. McEachern. "Mutant Telomeric Repeats in Yeast Can Disrupt the Negative Regulation of Recombination-Mediated Telomere Maintenance and Create an Alternative Lengthening of Telomeres-Like Phenotype." Molecular and Cellular Biology 29, no. 3 (November 24, 2008): 626–39. http://dx.doi.org/10.1128/mcb.00423-08.

Full text
Abstract:
ABSTRACT Some human cancers maintain telomeres using alternative lengthening of telomeres (ALT), a process thought to be due to recombination. In Kluyveromyces lactis mutants lacking telomerase, recombinational telomere elongation (RTE) is induced at short telomeres but is suppressed once telomeres are moderately elongated by RTE. Recent work has shown that certain telomere capping defects can trigger a different type of RTE that results in much more extensive telomere elongation that is reminiscent of human ALT cells. In this study, we generated telomeres composed of either of two types of mutant telomeric repeats, Acc and SnaB, that each alter the binding site for the telomeric protein Rap1. We show here that arrays of both types of mutant repeats present basally on a telomere were defective in negatively regulating telomere length in the presence of telomerase. Similarly, when each type of mutant repeat was spread to all chromosome ends in cells lacking telomerase, they led to the formation of telomeres produced by RTE that were much longer than those seen in cells with only wild-type telomeric repeats. The Acc repeats produced the more severe defect in both types of telomere maintenance, consistent with their more severe Rap1 binding defect. Curiously, although telomerase deletion mutants with telomeres composed of Acc repeats invariably showed extreme telomere elongation, they often also initially showed persistent very short telomeres with few or no Acc repeats. We suggest that these result from futile cycles of recombinational elongation and truncation of the Acc repeats from the telomeres. The presence of extensive 3′ overhangs at mutant telomeres suggests that Rap1 may normally be involved in controlling 5′ end degradation.
APA, Harvard, Vancouver, ISO, and other styles
11

Amato, Roberta, Martina Valenzuela, Francesco Berardinelli, Erica Salvati, Carmen Maresca, Stefano Leone, Antonio Antoccia, and Antonella Sgura. "G-quadruplex Stabilization Fuels the ALT Pathway in ALT-positive Osteosarcoma Cells." Genes 11, no. 3 (March 13, 2020): 304. http://dx.doi.org/10.3390/genes11030304.

Full text
Abstract:
Most human tumors maintain telomere lengths by telomerase, whereas a portion of them (10–15%) uses a mechanism named alternative lengthening of telomeres (ALT). The telomeric G-quadruplex (G4) ligand RHPS4 is known for its potent antiproliferative effect, as shown in telomerase-positive cancer models. Moreover, RHPS4 is also able to reduce cell proliferation in ALT cells, although the influence of G4 stabilization on the ALT mechanism has so far been poorly investigated. Here we show that sensitivity to RHPS4 is comparable in ALT-positive (U2OS; SAOS-2) and telomerase-positive (HOS) osteosarcoma cell lines, unlinking the telomere maintenance mechanism and RHPS4 responsiveness. To investigate the impact of G4 stabilization on ALT, the cardinal ALT hallmarks were analyzed. A significant induction of telomeric doublets, telomeric clusterized DNA damage, ALT-associated Promyelocytic Leukaemia-bodies (APBs), telomere sister chromatid exchanges (T-SCE) and c-circles was found exclusively in RHPS4-treated ALT cells. We surmise that RHPS4 affects ALT mechanisms through the induction of replicative stress that in turn is converted in DNA damage at telomeres, fueling recombination. In conclusion, our work indicates that RHPS4-induced telomeric DNA damage promotes overactivation of telomeric recombination in ALT cells, opening new questions on the therapeutic employment of G4 ligands in the treatment of ALT positive tumors.
APA, Harvard, Vancouver, ISO, and other styles
12

Jiang, Wei-Qin, Ze-Huai Zhong, Jeremy D. Henson, Axel A. Neumann, Andy C. M. Chang, and Roger R. Reddel. "Suppression of Alternative Lengthening of Telomeres by Sp100-Mediated Sequestration of the MRE11/RAD50/NBS1 Complex." Molecular and Cellular Biology 25, no. 7 (April 1, 2005): 2708–21. http://dx.doi.org/10.1128/mcb.25.7.2708-2721.2005.

Full text
Abstract:
ABSTRACT Approximately 10% of cancers overall use alternative lengthening of telomeres (ALT) instead of telomerase to prevent telomere shortening, and ALT is especially common in astrocytomas and various types of sarcomas. The hallmarks of ALT in telomerase-negative cancer cells include a unique pattern of telomere length heterogeneity, rapid changes in individual telomere lengths, and the presence of ALT-associated promyelocytic leukemia bodies (APBs) containing telomeric DNA and proteins involved in telomere binding, DNA replication, and recombination. The ALT mechanism appears to involve recombination-mediated DNA replication, but the molecular details are largely unknown. In telomerase-null Saccharomyces cerevisiae, an analogous survivor mechanism is dependent on the RAD50 gene. We demonstrate here that overexpression of Sp100, a constituent of promyelocytic leukemia nuclear bodies, sequestered the MRE11, RAD50, and NBS1 recombination proteins away from APBs. This resulted in repression of the ALT mechanism, as evidenced by progressive telomere shortening at 121 bp per population doubling, a rate within the range found in telomerase-negative normal cells, suppression of rapid telomere length changes, and suppression of APB formation. Spontaneously generated C-terminally truncated Sp100 that did not sequester the MRE11, RAD50, and NBS1 proteins failed to inhibit ALT. These findings identify for the first time proteins that are required for the ALT mechanism.
APA, Harvard, Vancouver, ISO, and other styles
13

Iyer, Shilpa, Ashley D. Chadha, and Michael J. McEachern. "A Mutation in the STN1 Gene Triggers an Alternative Lengthening of Telomere-Like Runaway Recombinational Telomere Elongation and Rapid Deletion in Yeast." Molecular and Cellular Biology 25, no. 18 (September 15, 2005): 8064–73. http://dx.doi.org/10.1128/mcb.25.18.8064-8073.2005.

Full text
Abstract:
ABSTRACT Some human cancer cells achieve immortalization by using a recombinational mechanism termed ALT (alternative lengthening of telomeres). A characteristic feature of ALT cells is the presence of extremely long and heterogeneous telomeres. The molecular mechanism triggering and maintaining this pathway is currently unknown. In Kluyveromyces lactis, we have identified a novel allele of the STN1 gene that produces a runaway ALT-like telomeric phenotype by recombination despite the presence of an active telomerase pathway. Additionally, stn1-M1 cells are synthetically lethal in combination with rad52 and display chronic growth and telomere capping defects including extensive 3′ single-stranded telomere DNA and highly elevated subtelomere gene conversion. Strikingly, stn1-M1 cells undergo a very high rate of telomere rapid deletion (TRD) upon reintroduction of STN1. Our results suggest that the protein encoded by STN1, which protects the terminal 3′ telomere DNA, can regulate both ALT and TRD.
APA, Harvard, Vancouver, ISO, and other styles
14

Siddiqa, Aisha, David Cavazos, Jeffery Chavez, Linda Long, and Robert A. Marciniak. "Modulation of Telomeres in Alternative Lengthening of Telomeres Type I Like Human Cells by the Expression of Werner Protein and Telomerase." Journal of Oncology 2012 (2012): 1–11. http://dx.doi.org/10.1155/2012/806382.

Full text
Abstract:
The alternative lengthening of telomeres (ALT) is a recombination-based mechanism of telomere maintenance activated in 5–20% of human cancers. InSaccharomyces cerevisiae, survivors that arise after inactivation of telomerase can be classified as type I or type II ALT. In type I, telomeres have a tandem array structure, with each subunit consisting of a subtelomeric Y′ element and short telomere sequence. Telomeres in type II have only long telomere repeats and require Sgs1, theS. cerevisiaeRecQ family helicase. We previously described the first human ALT cell line, AG11395, that has a telomere structure similar to type I ALT yeast cells. This cell line lacks the activity of the Werner syndrome protein, a human RecQ helicase. The telomeres in this cell line consist of tandem repeats containing SV40 DNA, including the origin of replication, and telomere sequence. We investigated the role of the SV40 origin of replication and the effects of Werner protein and telomerase on telomere structure and maintenance in AG11395 cells. We report that the expression of Werner protein facilitates the transition in human cells of ALT type I like telomeres to type II like telomeres in some aspects. These findings have implications for the diagnosis and treatment of cancer.
APA, Harvard, Vancouver, ISO, and other styles
15

Lee, Yoo-Kyung, Noh-Hyun Park, and Hyunsook Lee. "Prognostic Value of Alternative Lengthening of Telomeres–Associated Biomarkers in Uterine Sarcoma and Uterine Carcinosarcoma." International Journal of Gynecologic Cancer 22, no. 3 (March 2012): 434–41. http://dx.doi.org/10.1097/igc.0b013e31823ca017.

Full text
Abstract:
ObjectiveA subset of cancer cells maintains telomere lengths in a telomerase-independent manner known as the alternative lengthening of telomeres (ALT). The goal of this study was to evaluate the frequency of ALT in uterine sarcoma and carcinosarcoma and to assess its association with clinical parameters.MethodsRetrospectively collected paraffin blocks from 41 patients with uterine sarcomas and carcinosarcomas were analyzed for ALT-associated promyelocytic leukemia bodies (APBs), which are a significant feature of ALT cells, using combined immunofluorescence and telomere fluorescence in situ hybridization. In addition, a C-circle assay and human telomerase reverse transcriptase immunohistochemistry were performed to support these results.ResultsThe APB assay and C-circle assay indicated that 46.3% (19/41 cases) and 36.4% (8/22 cases) of sarcomas of the uterus, respectively, were positive for ALT. Alternative lengthening of telomerase positivity was correlated with high-grade uterine sarcoma and parameters indicative of an aggressive tumor, such as tumor size (P= 0.033) and mitotic index (P= 0.001); ALT positivity was negatively correlated with human telomerase reverse transcriptase reactivity (P= 0.036). In a survival analysis, the presence of APBs was found to be a poor prognostic factor for disease-free survival (P= 0.018) and overall survival (P= 0.021).ConclusionsAlternative lengthening of telomeres is a prevalent mechanism in uterine sarcomas and carcinosarcomas and is associated with the aggressiveness of the tumor and tumor progression. Importantly, ALT positivity is an indicator of poor prognosis for patients with uterine sarcoma and carcinosarcoma.
APA, Harvard, Vancouver, ISO, and other styles
16

Toubiana, Shir, Aya Tzur-Gilat, and Sara Selig. "Epigenetic Characteristics of Human Subtelomeres Vary in Cells Utilizing the Alternative Lengthening of Telomeres (ALT) Pathway." Life 11, no. 4 (March 26, 2021): 278. http://dx.doi.org/10.3390/life11040278.

Full text
Abstract:
Most human cancers circumvent senescence by activating a telomere length maintenance mechanism, most commonly involving telomerase activation. A minority of cancers utilize the recombination-based alternative lengthening of telomeres (ALT) pathway. The exact requirements for unleashing normally repressed recombination at telomeres are yet unclear. Epigenetic modifications at telomeric regions were suggested to be pivotal for activating ALT; however, conflicting data exist regarding their exact nature and necessity. To uncover common ALT-positive epigenetic characteristics, we performed a comprehensive analysis of subtelomeric DNA methylation, histone modifications, and TERRA expression in several ALT-positive and ALT-negative cell lines. We found that subtelomeric DNA methylation does not differentiate between the ALT-positive and ALT-negative groups, and most of the analyzed subtelomeres within each group do not share common DNA methylation patterns. Additionally, similar TERRA levels were measured in the ALT-positive and ALT-negative groups, and TERRA levels varied significantly among the members of the ALT-positive group. Subtelomeric H3K4 and H3K9 trimethylation also differed significantly between samples in the ALT-positive group. Our findings do not support a common route by which epigenetic modifications activate telomeric recombination in ALT-positive cells, and thus, different therapeutic approaches will be necessary to overcome ALT-dependent cellular immortalization.
APA, Harvard, Vancouver, ISO, and other styles
17

Damle, Rajendra N., Taraneh Banapour, Cristina Sison, Steven L. Allen, Kanti R. Rai, and Nicholas Chiorazzi. "Evidence for Alternative Lengthening of Telomeres in Chronic Lymphocytic Leukemia Patients." Blood 106, no. 11 (November 16, 2005): 1179. http://dx.doi.org/10.1182/blood.v106.11.1179.1179.

Full text
Abstract:
Abstract Telomere shortening is a consequence of repetitive clonal replication and leads to clonal deletion unless DNA extension and repair occur. All tumors must circumvent this problem by up-regulating mechanisms that lead to chromosomal lengthening. Two mechanisms have been identified that maintain chromosome ends- telomerase that does so by reverse transcription and alternative lengthening of telomeres (ALT) that occurs by homologous recombination. The latter function is characterized by the presence of promyelocytic leukemia protein-associated nuclear bodies (PML-NBs) and the presence of PML-NB is used to mark cells that use this process. B cell Chronic lymphocytic leukemia (B-CLL) cells with unmutated Ig V genes have shorter mean telomere lengths compared with those exhibiting mutated Ig V genes. In addition, cells with unmutated Ig V genes demonstrate more telomerase activity than their mutated counterparts. The mutated cases show long and heterogeneously elongated telomeres in spite of the absence, in most cases, of detectable telomerase activity. Therefore we determined whether the ALT pathway plays a role in telomere maintenance in B-CLL, using a monoclonal anti-PML antibody and a flow-cytometric assay for assessment of PML protein. Telomerase-expressing Jurkat T cells and murine fibroblasts-L cells served as negative controls for PML staining, whereas the ALT positive Osteosarcoma cell line U2-OS served as a positive control. In a cohort of 20 B-CLL cases, PML protein was detected in all cases regardless of Ig V mutation status. In addition, a similar percentage of cells within the clones contained PML (10 - 90% of the members of unmutated clones and 11–96% of mutated clones), whereas peripheral blood B cells from 6/6 elderly normal donors did not show any PML staining. PML expression was compared with telomere length and telomerase activity in the same cases. The percentage of cells showing PML expression inversely correlated with telomerase activity (r= −0.58; p=0.029). Although in most published reports telomere maintenance by ALT occurs in the absence of telomerase activity, we found ALT (as suggested by PML positive cells) in cells with telomerase activity (detected by the standard TRAP assay). Thus, B-CLL cases can express PML bodies and some B-CLL cells can contain both PML-NB and express telomerase activity. These findings suggest that B-CLL cells can use two distinct mechanisms to assure telomere maintenance and perpetuate clonal survival and expansion.
APA, Harvard, Vancouver, ISO, and other styles
18

Conomos, Dimitri, Michael D. Stutz, Mark Hills, Axel A. Neumann, Tracy M. Bryan, Roger R. Reddel, and Hilda A. Pickett. "Variant repeats are interspersed throughout the telomeres and recruit nuclear receptors in ALT cells." Journal of Cell Biology 199, no. 6 (December 10, 2012): 893–906. http://dx.doi.org/10.1083/jcb.201207189.

Full text
Abstract:
Telomeres in cells that use the recombination-mediated alternative lengthening of telomeres (ALT) pathway elicit a DNA damage response that is partly independent of telomere length. We therefore investigated whether ALT telomeres contain structural abnormalities that contribute to ALT activity. Here we used next generation sequencing to analyze the DNA content of ALT telomeres. We discovered that variant repeats were interspersed throughout the telomeres of ALT cells. We found that the C-type (TCAGGG) variant repeat predominated and created a high-affinity binding site for the nuclear receptors COUP-TF2 and TR4. Nuclear receptors were directly recruited to telomeres and ALT-associated characteristics were induced after incorporation of the C-type variant repeat by a mutant telomerase. We propose that the presence of variant repeats throughout ALT telomeres results from recombination-mediated telomere replication and spreading of variant repeats from the proximal regions of the telomeres and that the consequent binding of nuclear receptors alters the architecture of telomeres to facilitate further recombination.
APA, Harvard, Vancouver, ISO, and other styles
19

Calado, Rodrigo T., Solomon A. Graf, and Neal S. Young. "Telomeric Recombination in Lymphocytes Implicates ALT, an Alternative Mechanism for Telomere Length Maintenance, in Normal Human Hematopoietic Cells." Blood 110, no. 11 (November 16, 2007): 1332. http://dx.doi.org/10.1182/blood.v110.11.1332.1332.

Full text
Abstract:
Abstract Telomeres are the very ends of chromosomes and protect the genome from recombination, end-to-end-fusion, and recognition as damaged DNA. Telomeres are eroded with each cell division, eventually reaching such critically short length as to cause cell cycle arrest, apoptosis, or genomic instability. In most highly proliferative cells, including hematopoietic stem cells and T lymphocytes, telomere attrition is countered by telomere extension by telomerase reverse transcriptase complex. The majority of cancer cells also express telomerase, which maintains telomere length and allows indefinite cell proliferation. However, about 10% of tumors maintain telomere length in the absence of telomerase by mechanisms collectively termed alternative lengthening of telomeres (ALT). ALT mainly acts through asymmetrical exchange of telomeric material between chromosomes or sister chromatids, producing one daughter-cell with short telomeres and a limited life-span and its sister with long telomeres and higher proliferative capacity. To date, ALT has only been reported in cancer cells or through genetic engineering of mammalian cells. Here we investigated whether ALT mechanisms were active in hematopoietic cells using chromosome orientation fluorescent in situ hybridization (CO-FISH). In standard FISH, a telomeric probe produces fours signals per chromosome, one at each end of the two chromatids. Using CO-FISH, the newly synthesized DNA strand is fragmented by BrdU incorporation and UV light exposure and then digested by exonucleases. In CO-FISH, a telomeric probe produces two signals only, one at each end of the chromosome; in the presence of telomeric recombination, the telomeric signal is split, generating more than two signals per chromosome. Peripheral blood lymphocytes from three healthy volunteers, normal human fibroblasts, K562 cells, telomerase-positive HeLa cells (known to be negative for ALT),and telomerase-negative VA13 cells (known to be positive for ALT) were investigated for telomeric sister chromatid exchange (t-SCE); at least 20 metaphases per cell type were examined. Cultured peripheral blood lymphocytes and VA13 cells both showed increased levels of telomeric sister chromatid exchange in comparison to the other cells (P=0.0001): telomeric probe generated 2.62±0.11 telomeric signals/chromosome in lymphocytes; 2.23±0.04 in VA13 cells; 2.09±0.01 in HeLa cells; 2.02±0.01 in K562 cells; and 2.02±0.01 in human skin fibroblasts. Staining incorporated-BrdU over 24 hours and evaluation of “harlequin” chromosomes point to a similar rate of genomic sister chromatid exchange in lymphocytes, VA13 cells, and HeLa cells, suggesting that high chromatid exchange is confined to the telomeric region. A physical association between promyelocytic leukemia protein (PML) and telomeres is characteristic of some ALT-positive cells, but confocal microscopy failed to co-localize the telomeric probe and anti-PML monoclonal antibody in peripheral blood lymphocytes, suggesting that t-SCE in lymphocytes is not mediated by PML. This is the first demonstration of ALT activation in normal mammalian cells. ALT may be activated in peripheral blood lymphocytes as a complementary mechanism to maintain telomere length, and may explain the differences in age-related telomere shortening observed between lymphocytes and granulocytes.
APA, Harvard, Vancouver, ISO, and other styles
20

Jiang, Wei-Qin, Ze-Huai Zhong, Akira Nguyen, Jeremy D. Henson, Christian D. Toouli, Antony W. Braithwaite, and Roger R. Reddel. "Induction of alternative lengthening of telomeres-associated PML bodies by p53/p21 requires HP1 proteins." Journal of Cell Biology 185, no. 5 (May 25, 2009): 797–810. http://dx.doi.org/10.1083/jcb.200810084.

Full text
Abstract:
Alternative lengthening of telomeres (ALT) is a recombination-mediated process that maintains telomeres in telomerase-negative cancer cells. In asynchronously dividing ALT-positive cell populations, a small fraction of the cells have ALT-associated promyelocytic leukemia nuclear bodies (APBs), which contain (TTAGGG)n DNA and telomere-binding proteins. We found that restoring p53 function in ALT cells caused p21 up-regulation, growth arrest/senescence, and a large increase in cells containing APBs. Knockdown of p21 significantly reduced p53-mediated induction of APBs. Moreover, we found that heterochromatin protein 1 (HP1) is present in APBs, and knockdown of HP1α and/or HP1γ prevented p53-mediated APB induction, which suggests that HP1-mediated chromatin compaction is required for APB formation. Therefore, although the presence of APBs in a cell line or tumor is an excellent qualitative marker for ALT, the association of APBs with growth arrest/senescence and with “closed” telomeric chromatin, which is likely to repress recombination, suggests there is no simple correlation between ALT activity level and the number of APBs or APB-positive cells.
APA, Harvard, Vancouver, ISO, and other styles
21

Royle, Nicola J., Aarón Méndez-Bermúdez, Athanasia Gravani, Clara Novo, Jenny Foxon, Jonathan Williams, Victoria Cotton, and Alberto Hidalgo. "The role of recombination in telomere length maintenance." Biochemical Society Transactions 37, no. 3 (May 20, 2009): 589–95. http://dx.doi.org/10.1042/bst0370589.

Full text
Abstract:
Human telomeres shorten during each cell division, predominantly because of incomplete DNA replication. This eventually results in short uncapped telomeres that elicit a DNA-damage response, leading to cellular senescence. However, evasion of senescence results in continued cell division and telomere erosion ultimately results in genome instability. In the long term, this genome instability is not sustainable, and cancer cells activate a TMM (telomere maintenance mechanism), either expression of telomerase or activation of the ALT (alternative lengthening of telomeres) pathway. Activation of the ALT mechanism results in deregulation of recombination-based activities at telomeres. Thus ALT+ cells show elevated T-SCE (telomere sister-chromatid exchange), misprocessing of t-loops that cap chromosomes and recombination-based processes between telomeres or between telomeres and ECTRs (extrachromosomal telomeric repeats). Some or all of these processes underlie the chaotic telomere length maintenance that allows cells in ALT+ tumours unlimited replicative capacity. ALT activation is also associated with destabilization of a minisatellite, MS32. The connection between the minisatellite instability and the deregulation of recombination-based activity at telomeres is not understood, but analysis of the minisatellite can be used as a marker for ALT. It is known that telomere length maintenance in ALT+ cells is dependent on the MRN [MRE11 (meiotic recombination 11)–Rad50–NBS1 (Nijmegen breakage syndrome 1)] complex, but knowledge of the role of other genes, including the Werner's (WRN) and Bloom's (BLM) syndrome DNA helicase genes, is still limited.
APA, Harvard, Vancouver, ISO, and other styles
22

De Vitis, Marco, Francesco Berardinelli, Elisa Coluzzi, Jessica Marinaccio, Roderick J. O’Sullivan, and Antonella Sgura. "X-rays Activate Telomeric Homologous Recombination Mediated Repair in Primary Cells." Cells 8, no. 7 (July 12, 2019): 708. http://dx.doi.org/10.3390/cells8070708.

Full text
Abstract:
Cancer cells need to acquire telomere maintenance mechanisms in order to counteract progressive telomere shortening due to multiple rounds of replication. Most human tumors maintain their telomeres expressing telomerase whereas the remaining 15%–20% utilize the alternative lengthening of telomeres (ALT) pathway. Previous studies have demonstrated that ionizing radiations (IR) are able to modulate telomere lengths and to transiently induce some of the ALT-pathway hallmarks in normal primary fibroblasts. In the present study, we investigated the telomere length modulation kinetics, telomeric DNA damage induction, and the principal hallmarks of ALT over a period of 13 days in X-ray-exposed primary cells. Our results show that X-ray-treated cells primarily display telomere shortening and telomeric damage caused by persistent IR-induced oxidative stress. After initial telomere erosion, we observed a telomere elongation that was associated to the transient activation of a homologous recombination (HR) based mechanism, sharing several features with the ALT pathway observed in cancer cells. Data indicate that telomeric damage activates telomeric HR-mediated repair in primary cells. The characterization of HR-mediated telomere repair in normal cells may contribute to the understanding of the ALT pathway and to the identification of novel strategies in the treatment of ALT-positive cancers.
APA, Harvard, Vancouver, ISO, and other styles
23

Rosso, Ilaria, and Fabrizio d’Adda di Fagagna. "Detection of Telomeric DNA:RNA Hybrids Using TeloDRIP-qPCR." International Journal of Molecular Sciences 21, no. 24 (December 21, 2020): 9774. http://dx.doi.org/10.3390/ijms21249774.

Full text
Abstract:
Because of their intrinsic characteristics, telomeres are genomic loci that pose significant problems during the replication of the genome. In particular, it has been observed that telomeres that are maintained in cancer cells by the alternative mechanism of the lengthening of telomeres (ALT) harbor higher levels of replicative stress compared with telomerase-positive cancer cells. R-loops are three-stranded structures formed by a DNA:RNA hybrid and a displaced ssDNA. Emerging evidence suggests that controlling the levels of R-loops at ALT telomeres is critical for telomere maintenance. In fact, on the one hand, they favor telomere recombination, but on the other, they are a source of detrimental replicative stress. DRIP (DNA:RNA immunoprecipitation) is the main technique used for the detection of R-loops, and it is based on the use of the S9.6 antibody, which recognizes preferentially DNA:RNA hybrids in a sequence-independent manner. The detection of DNA:RNA hybrids in repetitive sequences such as telomeres requires some additional precautions as a result of their repetitive nature. Here, we share an optimized protocol for the detection of telomeric DNA:RNA hybrids, and we demonstrate its application in an ALT and in a telomerase-positive cell line. We demonstrate that ALT telomeres bear higher levels of DNA:RNA hybrids, and we propose this method as a reliable way to detect them in telomeres.
APA, Harvard, Vancouver, ISO, and other styles
24

Hsu, Joseph K., Tao Lin, and Robert Y. L. Tsai. "Nucleostemin prevents telomere damage by promoting PML-IV recruitment to SUMOylated TRF1." Journal of Cell Biology 197, no. 5 (May 28, 2012): 613–24. http://dx.doi.org/10.1083/jcb.201109038.

Full text
Abstract:
Continuously dividing cells must be protected from telomeric and nontelomeric DNA damage in order to maintain their proliferative potential. Here, we report a novel telomere-protecting mechanism regulated by nucleostemin (NS). NS depletion increased the number of telomere damage foci in both telomerase-active (TA+) and alternative lengthening of telomere (ALT) cells and decreased the percentage of damaged telomeres associated with ALT-associated PML bodies (APB) and the number of APB in ALT cells. Mechanistically, NS could promote the recruitment of PML-IV to SUMOylated TRF1 in TA+ and ALT cells. This event was stimulated by DNA damage. Supporting the importance of NS and PML-IV in telomere protection, we demonstrate that loss of NS or PML-IV increased the frequency of telomere damage and aberration, reduced telomeric length, and perturbed the TRF2ΔBΔM-induced telomeric recruitment of RAD51. Conversely, overexpression of either NS or PML-IV protected ALT and TA+ cells from telomere damage. This work reveals a novel mechanism in telomere protection.
APA, Harvard, Vancouver, ISO, and other styles
25

Cesare, Anthony J., and Jack D. Griffith. "Telomeric DNA in ALT Cells Is Characterized by Free Telomeric Circles and Heterogeneous t-Loops." Molecular and Cellular Biology 24, no. 22 (November 15, 2004): 9948–57. http://dx.doi.org/10.1128/mcb.24.22.9948-9957.2004.

Full text
Abstract:
ABSTRACT A prerequisite for cellular immortalization in human cells is the elongation of telomeres through the upregulation of telomerase or by the alternative lengthening of telomeres (ALT) pathway. In this study, telomere structure in multiple ALT cell lines was examined by electron microscopy. Nuclei were isolated from GM847, GM847-Tert, and WI-38 VA13 ALT cells, psoralen photo-cross-linked in situ, and the telomere restriction fragments were purified by gel filtration chromatography. Examination of telomere-enriched fractions revealed frequent extrachromosomal circles, ranging from 0.7 to 56.8 kb. t-loops were also observed, with the loop portion ranging from 0.5 to 70.2 kb. The total length of the loop plus tail of the t-loops corresponded to the telomere restriction fragment length from the ALT cell lines as determined by pulsed-field gel electrophoresis. The presence of extrachromosomal circles containing telomeric DNA was confirmed by two-dimensional pulsed-field gel electrophoresis. These results show that extrachromosomal telomeric DNA circles are present in ALT nuclei and suggest a roll-and-spread mechanism of telomere elongation similar to that seen in previous observations of multiple yeast species. Results presented here also indicate that expression of telomerase in GM847 cells does not affect t-loop or extrachromosomal circle formation.
APA, Harvard, Vancouver, ISO, and other styles
26

Caslini, Corrado, and Jay L. Hess. "MLL Modulates Telomere Length in Mammalian Cells." Blood 108, no. 11 (November 1, 2006): 2209. http://dx.doi.org/10.1182/blood.v108.11.2209.2209.

Full text
Abstract:
Abstract In mammalian cells, the telomeric complex at the end of chromosomes consists of several thousand copies of the exanucleotide TTAGGG and associated proteins attached to the nuclear matrix. Chromatin modifying enzymes involved in histone H3/lysine 9 and histone H4/lysine 20 trimethylation, and DNA methylation are known to preserve the telomere heterochromatic structure, length and capping function. Loss of these heterochromatic marks leads to telomere lengthening, most likely through the negative regulation of telomerase or alternative lengthening of telomeres (ALT) mechanisms. The MLL protein is a chromatin modifying enzyme with histone H3/lysine 4 methyltransferase activity, which maintains active transcriptional state of target genes in a large multiprotein complex. Analogously, the yeast’s MLL homologous protein Set1 is part of a multiprotein complex required for maintenance of target genes expression. In addition, Set1 deletion mutants show disruption of telomeric silencing along with telomere shortening or lengthening, respectively in budding and fission yeast. This raised the question of whether MLL, like Set1, plays a role in epigenetic maintenance of telomeric heterochromatin. Here, using chromatin immunoprecipitation (ChIP) analysis, we show that MLL associates with the heterochromatic complex at telomeres of primary and transformed human cell lines. ChIP analysis of cell lines conditionally expressing Flag-tagged MLL chimeric proteins and deletion mutants shows the amino terminus of MLL, which confers association to the nuclear matrix, is responsible for targeting to the telomeric complex. MLL associates with the telomeres of telomerase and ALT positive cell lines in amount that is proportional to the telomere length, as revealed by Southern blot terminal restriction fragment analysis. Moreover, immunoprecipitation analysis evidenced the association of MLL with the terminal-repeat binding factor TRF2, a protein known to play a key role in telomere capping, and indirect immunofluorescence analysis showed MLL and TRF2 colocalization at ALT-associated PML nuclear bodies. In search for possible biological functions of MLL at the telomeric complex, we found abnormally longer telomeres in Mll-null mouse embryonic stem (ES) cells and fibroblasts (MEFs) than in wild-type control cells. In Mll-null MEFs, a significant telomere shortening was obtained by stable reexpression of an MLL allele. In addition, we found that in aging human cells the MLL binding to the telomeric complex is abrogated by the progressive telomere shortening due to telomere attrition, suggesting a possible involvement of MLL in signaling for replicative senescence.
APA, Harvard, Vancouver, ISO, and other styles
27

Shi, Guang, Yang Hu, Xing Zhu, Yuanling Jiang, Junjie Pang, Chuanle Wang, Wenjun Huang, et al. "A critical role of telomere chromatin compaction in ALT tumor cell growth." Nucleic Acids Research 48, no. 11 (May 7, 2020): 6019–31. http://dx.doi.org/10.1093/nar/gkaa224.

Full text
Abstract:
Abstract ALT tumor cells often contain abundant DNA damage foci at telomeres and rely on the alternative lengthening of telomeres (ALT) mechanism to maintain their telomeres. How the telomere chromatin is regulated and maintained in these cells remains largely unknown. In this study, we present evidence that heterochromatin protein 1 binding protein 3 (HP1BP3) can localize to telomeres and is particularly enriched on telomeres in ALT cells. HP1BP3 inhibition led to preferential growth inhibition of ALT cells, which was accompanied by telomere chromatin decompaction, increased presence of C-circles, more pronounced ALT-associated phenotypes and elongated telomeres. Furthermore, HP1BP3 appeared to participate in regulating telomere histone H3K9me3 epigenetic marks. Taken together, our data suggest that HP1BP3 functions on telomeres to maintain telomere chromatin and represents a novel target for inhibiting ALT cancer cells.
APA, Harvard, Vancouver, ISO, and other styles
28

Armendáriz-Castillo, Isaac, Andrés López-Cortés, Jennyfer García-Cárdenas, Patricia Guevara-Ramírez, Paola E. Leone, Andy Pérez-Villa, Verónica Yumiceba, Ana K. Zambrano, Santiago Guerrero, and César Paz-y-Miño. "TCGA Pan-Cancer Genomic Analysis of Alternative Lengthening of Telomeres (ALT) Related Genes." Genes 11, no. 7 (July 21, 2020): 834. http://dx.doi.org/10.3390/genes11070834.

Full text
Abstract:
Telomere maintenance mechanisms (TMM) are used by cancer cells to avoid apoptosis, 85–90% reactivate telomerase, while 10–15% use the alternative lengthening of telomeres (ALT). Due to anti-telomerase-based treatments, some tumors switch from a telomerase-dependent mechanism to ALT; in fact, the co-existence between both mechanisms has been observed in some cancers. Although different elements in the ALT pathway are uncovered, some molecular mechanisms are still poorly understood. Therefore, with the aim to identify potential molecular markers for the study of ALT, we combined in silico approaches in a 411 telomere maintenance gene set. As a consequence, we conducted a genomic analysis of these genes in 31 Pan-Cancer Atlas studies from The Cancer Genome Atlas and found 325,936 genomic alterations; from which, we identified 20 genes highly mutated in the cancer studies. Finally, we made a protein-protein interaction network and enrichment analysis to observe the main pathways of these genes and discuss their role in ALT-related processes, like homologous recombination and homology directed repair. Overall, due to the lack of understanding of the molecular mechanisms of ALT cancers, we proposed a group of genes, which after ex vivo validations, could represent new potential therapeutic markers in the study of ALT.
APA, Harvard, Vancouver, ISO, and other styles
29

Idilli, Aurora Irene, Francesca Pagani, Emanuela Kerschbamer, Francesco Berardinelli, Manuel Bernabé, María Luisa Cayuela, Silvano Piazza, Pietro Luigi Poliani, Emilio Cusanelli, and Maria Caterina Mione. "Changes in the Expression of Pre-Replicative Complex Genes in hTERT and ALT Pediatric Brain Tumors." Cancers 12, no. 4 (April 22, 2020): 1028. http://dx.doi.org/10.3390/cancers12041028.

Full text
Abstract:
Background: The up-regulation of a telomere maintenance mechanism (TMM) is a common feature of cancer cells and a hallmark of cancer. Routine methods for detecting TMMs in tumor samples are still missing, whereas telomerase targeting treatments are becoming available. In paediatric cancers, alternative lengthening of telomeres (ALT) is found in a subset of sarcomas and malignant brain tumors. ALT is a non-canonical mechanism of telomere maintenance developed by cancer cells with no-functional telomerase. Methods: To identify drivers and/or markers of ALT, we performed a differential gene expression analysis between two zebrafish models of juvenile brain tumors, that differ only for the telomere maintenance mechanism adopted by tumor cells: one is ALT while the other is telomerase-dependent. Results: Comparative analysis of gene expression identified five genes of the pre-replicative complex, ORC4, ORC6, MCM2, CDC45 and RPA3 as upregulated in ALT. We searched for a correlation between telomerase levels and expression of the pre-replicative complex genes in a cohort of paediatric brain cancers and identified a counter-correlation between telomerase expression and the genes of the pre-replicative complex. Moreover, the analysis of ALT markers in a group of 20 patients confirmed the association between ALT and increased RPA and decreased H3K9me3 localization at telomeres. Conclusions: Our study suggests that telomere maintenance mechanisms may act as a driver of telomeric DNA replication and chromatin status in brain cancers and identifies markers of ALT that could be exploited for precise prognostic and therapeutic purposes.
APA, Harvard, Vancouver, ISO, and other styles
30

Sommer, Aurore, and Nicola J. Royle. "ALT: A Multi-Faceted Phenomenon." Genes 11, no. 2 (January 27, 2020): 133. http://dx.doi.org/10.3390/genes11020133.

Full text
Abstract:
One of the hallmarks of cancer cells is their indefinite replicative potential, made possible by the activation of a telomere maintenance mechanism (TMM). The majority of cancers reactivate the reverse transcriptase, telomerase, to maintain their telomere length but a minority (10% to 15%) utilize an alternative lengthening of telomeres (ALT) pathway. Here, we review the phenotypes and molecular markers specific to ALT, and investigate the significance of telomere mutations and sequence variation in ALT cell lines. We also look at the recent advancements in understanding the different mechanisms behind ALT telomere elongation and finally, the progress made in identifying potential ALT-targeted therapies, including those already in use for the treatment of both hematological and solid tumors.
APA, Harvard, Vancouver, ISO, and other styles
31

Eid, Rita, Marie-Véronique Demattei, Harikleia Episkopou, Corinne Augé-Gouillou, Anabelle Decottignies, Nathalie Grandin, and Michel Charbonneau. "Genetic Inactivation ofATRXLeads to a Decrease in the Amount of Telomeric Cohesin and Level of Telomere Transcription in Human Glioma Cells." Molecular and Cellular Biology 35, no. 16 (June 8, 2015): 2818–30. http://dx.doi.org/10.1128/mcb.01317-14.

Full text
Abstract:
Mutations in ATRX (alphathalassemia/mentalretardation syndromeX-linked), a chromatin-remodeling protein, are associated with the telomerase-independent ALT (alternative lengthening of telomeres) pathway of telomere maintenance in several types of cancer, including human gliomas. In telomerase-positive glioma cells, we found by immunofluorescence that ATRX localized not far from the chromosome ends but not exactly at the telomere termini. Chromatin immunoprecipitation (ChIP) experiments confirmed a subtelomeric localization for ATRX, yet short hairpin RNA (shRNA)-mediated genetic inactivation ofATRXfailed to trigger the ALT pathway. Cohesin has been recently shown to be part of telomeric chromatin. Here, using ChIP, we showed that genetic inactivation ofATRXprovoked diminution in the amount of cohesin in subtelomeric regions of telomerase-positive glioma cells. Inactivation ofATRXalso led to diminution in the amount of TERRAs, noncoding RNAs resulting from transcription of telomeric DNA, as well as to a decrease in RNA polymerase II (RNAP II) levels at the telomeres. Our data suggest that ATRX might establish functional interactions with cohesin on telomeric chromatin in order to control TERRA levels and that one or the other or both of these events might be relevant to the triggering of the ALT pathway in cancer cells that exhibit genetic inactivation ofATRX.
APA, Harvard, Vancouver, ISO, and other styles
32

Stagno D'Alcontres, Martina, Aaron Mendez-Bermudez, Jennifer L. Foxon, Nicola J. Royle, and Paolo Salomoni. "Lack of TRF2 in ALT cells causes PML-dependent p53 activation and loss of telomeric DNA." Journal of Cell Biology 179, no. 5 (December 3, 2007): 855–67. http://dx.doi.org/10.1083/jcb.200703020.

Full text
Abstract:
Alternative lengthening of telomere (ALT) tumors maintain telomeres by a telomerase-independent mechanism and are characterized by a nuclear structure called the ALT-associated PML body (APB). TRF2 is a component of a telomeric DNA/protein complex called shelterin. However, TRF2 function in ALT cells remains elusive. In telomerase-positive tumor cells, TRF2 inactivation results in telomere de-protection, activation of ATM, and consequent induction of p53-dependent apoptosis. We show that in ALT cells this sequence of events is different. First, TRF2 inactivation/silencing does not induce cell death in p53-proficient ALT cells, but rather triggers cellular senescence. Second, ATM is constitutively activated in ALT cells and colocalizes with TRF2 into APBs. However, it is only following TRF2 silencing that the ATM target p53 is activated. In this context, PML is indispensable for p53-dependent p21 induction. Finally, we find a substantial loss of telomeric DNA upon stable TRF2 knockdown in ALT cells. Overall, we provide insight into the functional consequences of shelterin alterations in ALT cells.
APA, Harvard, Vancouver, ISO, and other styles
33

Geiller, Helene E. B., Adam Harvey, Rhiannon E. Jones, Julia W. Grimstead, Kez Cleal, Eric A. Hendrickson, and Duncan M. Baird. "ATRX modulates the escape from a telomere crisis." PLOS Genetics 18, no. 11 (November 9, 2022): e1010485. http://dx.doi.org/10.1371/journal.pgen.1010485.

Full text
Abstract:
Telomerase activity is the principal telomere maintenance mechanism in human cancers, however 15% of cancers utilise a recombination-based mechanism referred to as alternative lengthening of telomeres (ALT) that leads to long and heterogenous telomere length distributions. Loss-of-function mutations in the Alpha Thalassemia/Mental Retardation Syndrome X-Linked (ATRX) gene are frequently found in ALT cancers. Here, we demonstrate that the loss of ATRX, coupled with telomere dysfunction during crisis, is sufficient to initiate activation of the ALT pathway and that it confers replicative immortality in human fibroblasts. Additionally, loss of ATRX combined with a telomere-driven crisis in HCT116 epithelial cancer cells led to the initiation of an ALT-like pathway. In these cells, a rapid and precise telomeric elongation and the induction of C-circles was observed; however, this process was transient and the telomeres ultimately continued to erode such that the cells either died or the escape from crisis was associated with telomerase activation. In both of these instances, telomere sequencing revealed that all alleles, irrespective of whether they were elongated, were enriched in variant repeat types, that appeared to be cell-line specific. Thus, our data show that the loss of ATRX combined with telomere dysfunction during crisis induces the ALT pathway in fibroblasts and enables a transient activation of ALT in epithelial cells.
APA, Harvard, Vancouver, ISO, and other styles
34

Buttarelli, Francesca Romana, Simone Minasi, Maria Luisa Garrè, Maura Massimino, Veronica Biassoni, Tobias Goschzik, Torsten Pietsch, and Felice Giangaspero. "MEDB-68. Analysis of telomeres length and Alternative Lengthening of Telomeres (ALT) in molecular subgroups of infant medulloblastoma." Neuro-Oncology 24, Supplement_1 (June 1, 2022): i122. http://dx.doi.org/10.1093/neuonc/noac079.442.

Full text
Abstract:
Abstract We investigated the association between the molecular profile and telomere length in a infant medulloblastoma (iMB) cohort, retrospectively studied. Activation of telomeres maintenance mechanisms was analyzed to determine whether the senescence escape triggered by telomere-elongation mechanisms could explain the aggressivity of some iMB belonging to the same molecular subgroup. Interestingly, several telomerase- and ALT-targeted therapies have recently been tested on pediatric cancers and might represent a promising strategy for the future treatment of aggressive telomerase- or ALT-positive iMB. We analyzed a cohort of 50 FFPE tissues from young MB patients (age ≤ 3); IHC, FISH, and an Illumina 850K methylation profile were used to identify molecular subgroups. Telomere length was measured using Telo-quantitative FISH, and image analysis was performed using TFL-Telo software. Three distinct telomere intensity categories (low (L), medium (M), and high (H)) were identified by comparing neoplastic- to endothelial-cell signals in each sample. ATRX loss and TERTp mutation/methylation were investigated using IHC and Sanger sequencing/methylation-specific PCR. SHH-MBs accounted for 59% of our cohort, while Group3/4-MBs accounted for 41%; no WNT-MBs were detected. ALT was found to be activated in 10% of iMBs and was not exclusive to any molecular subgroup, implying that it could be a potential mechanism associated with aggressive behaviour in a subset of iMBs. Promising results have been found in the telomere length distribution among the iMB molecular subgroups: SHH iMBs had a higher frequency of High (H) telomeres length (85%) than NON-SHH/NON-WNT iMBs (p=0.046), which were more frequently associated with Medium (M) telomeres length. CONCLUSIONS: ALT activation in infant MBs (10%) could be a novel target for risk-stratification and personalized therapy. It may be useful to examine ALT as a potential predictor of aggressive behaviour and as a promising novel therapeutic approach for a subset of these tumors in the diagnostic workup.
APA, Harvard, Vancouver, ISO, and other styles
35

Li, Duda, Kailong Hou, Ke Zhang, and Shuting Jia. "Regulation of Replication Stress in Alternative Lengthening of Telomeres by Fanconi Anaemia Protein." Genes 13, no. 2 (January 20, 2022): 180. http://dx.doi.org/10.3390/genes13020180.

Full text
Abstract:
Fanconi anaemia (FA)-related proteins function in interstrand crosslink (ICL) repair pathways and multiple damage repair pathways. Recent studies have found that FA proteins are involved in the regulation of replication stress (RS) in alternative lengthening of telomeres (ALT). Since ALT cells often exhibit high-frequency ATRX mutations and high levels of telomeric secondary structure, high levels of DNA damage and replicative stress exist in ALT cells. Persistent replication stress is required to maintain the activity of ALT mechanistically, while excessive replication stress causes ALT cell death. FA proteins such as FANCD2 and FANCM are involved in the regulation of this balance by resolving or inhibiting the formation of telomere secondary structures to stabilize stalled replication forks and promote break-induced repair (BIR) to maintain the survival of ALT tumour cells. Therefore, we review the role of FA proteins in replication stress in ALT cells, providing a rationale and direction for the targeted treatment of ALT tumours.
APA, Harvard, Vancouver, ISO, and other styles
36

Jegou, Thibaud, Inn Chung, Gerrit Heuvelman, Malte Wachsmuth, Sabine M. Görisch, Karin M. Greulich-Bode, Petra Boukamp, Peter Lichter, and Karsten Rippe. "Dynamics of Telomeres and Promyelocytic Leukemia Nuclear Bodies in a Telomerase-negative Human Cell Line." Molecular Biology of the Cell 20, no. 7 (April 2009): 2070–82. http://dx.doi.org/10.1091/mbc.e08-02-0108.

Full text
Abstract:
Telomerase-negative tumor cells maintain their telomeres via an alternative lengthening of telomeres (ALT) mechanism. This process involves the association of telomeres with promyelocytic leukemia nuclear bodies (PML-NBs). Here, the mobility of both telomeres and PML-NBs as well as their interactions were studied in human U2OS osteosarcoma cells, in which the ALT pathway is active. A U2OS cell line was constructed that had lac operator repeats stably integrated adjacent to the telomeres of chromosomes 6q, 11p, and 12q. By fluorescence microscopy of autofluorescent LacI repressor bound to the lacO arrays the telomere mobility during interphase was traced and correlated with the telomere repeat length. A confined diffusion model was derived that describes telomere dynamics in the nucleus on the time scale from seconds to hours. Two telomere groups were identified that differed with respect to the nuclear space accessible to them. Furthermore, translocations of PML-NBs relative to telomeres and their complexes with telomeres were evaluated. Based on these studies, a model is proposed in which the shortening of telomeres results in an increased mobility that could facilitate the formation of complexes between telomeres and PML-NBs.
APA, Harvard, Vancouver, ISO, and other styles
37

Zhang, Huaiying, Rongwei Zhao, Jason Tones, Michel Liu, Robert L. Dilley, David M. Chenoweth, Roger A. Greenberg, and Michael A. Lampson. "Nuclear body phase separation drives telomere clustering in ALT cancer cells." Molecular Biology of the Cell 31, no. 18 (August 15, 2020): 2048–56. http://dx.doi.org/10.1091/mbc.e19-10-0589.

Full text
Abstract:
A chemical dimerization approach is developed to induce phase separation of APB nuclear bodies involved in telomere elongation in alternative lengthening of telomeres (ALT) cancer cells. It reveals that ALT telomere-associated promyelocytic leukemia nuclear body (APB) fusion leads to telomere clustering to provide templates for homology-directed telomere synthesis, an ability that is decoupled from APB function in enriching DNA repair factors.
APA, Harvard, Vancouver, ISO, and other styles
38

Robinson, Nathaniel J., Masaru Miyagi, Jessica A. Scarborough, Jacob G. Scott, Derek J. Taylor, and William P. Schiemann. "SLX4IP promotes RAP1 SUMOylation by PIAS1 to coordinate telomere maintenance through NF-κB and Notch signaling." Science Signaling 14, no. 689 (June 29, 2021): eabe9613. http://dx.doi.org/10.1126/scisignal.abe9613.

Full text
Abstract:
The maintenance of telomere length supports repetitive cell division and therefore plays a central role in cancer development and progression. Telomeres are extended by either the enzyme telomerase or the alternative lengthening of telomeres (ALT) pathway. Here, we found that the telomere-associated protein SLX4IP dictates telomere proteome composition by recruiting and activating the E3 SUMO ligase PIAS1 to the SLX4 complex. PIAS1 SUMOylated the telomere-binding protein RAP1, which disrupted its interaction with the telomere-binding protein TRF2 and facilitated its nucleocytoplasmic shuttling. In the cytosol, RAP1 bound to IκB kinase (IKK), resulting in activation of the transcription factor NF-κB and its induction of Jagged-1 expression, which promoted Notch signaling and the institution of ALT. This axis could be targeted therapeutically in ALT-driven cancers and in tumor cells that develop resistance to antitelomerase therapies. Our results illuminate the mechanisms underlying SLX4IP-dependent telomere plasticity and demonstrate the role of telomere proteins in directly coordinating intracellular signaling and telomere maintenance dynamics.
APA, Harvard, Vancouver, ISO, and other styles
39

Grandin, Nathalie, and Michel Charbonneau. "Telomerase- and Rad52-Independent Immortalization of Budding Yeast by an Inherited-Long-Telomere Pathway of Telomeric Repeat Amplification." Molecular and Cellular Biology 29, no. 4 (December 1, 2008): 965–85. http://dx.doi.org/10.1128/mcb.00817-08.

Full text
Abstract:
ABSTRACT In the absence of telomerase, telomeres erode, provoking accumulation of DNA damage and death by senescence. Rare survivors arise, however, due to Rad52-based amplification of telomeric sequences by homologous recombination. The present study reveals that in budding yeast cells, postsenescence survival relying on amplification of the TG1-3 telomeric repeats can take place in the absence of Rad52 when overelongated telomeres are present during senescence (hence its designation ILT, for inherited-long-telomere, pathway). By growth competition, the Rad52-independent pathway was almost as efficient as the Rad51- and Rad52-dependent pathway that predominates in telomerase-negative cells. The ILT pathway could also be triggered by increased telomerase accessibility before telomerase removal, combined with loss of telomere protection, indicating that prior accumulation of recombination proteins was not required. The ILT pathway was dependent on Rad50 and Mre11 but not on the Rad51 recombinase and Rad59, thus making it distinct from both the type II (budding yeast ALT [alternative lengthening of telomeres]) and type I pathways amplifying the TG1-3 repeats and subtelomeric sequences, respectively. The ILT pathway also required the Rad1 endonuclease and Elg1, a replication factor C (RFC)-like complex subunit, but not Rad24 or Ctf18 (two subunits of two other RFC-like complexes), the Dnl4 ligase, Yku70, or Nej1. Possible mechanisms for this Rad52-independent pathway of telomeric repeat amplification are discussed. The effects of inherited long telomeres on Rad52-dependent recombination are also reported.
APA, Harvard, Vancouver, ISO, and other styles
40

Mukherjee, Joydeep, Ajay Pandita, Chatla Kamalakar, Tor-Christian Johannessen, Shigeo Ohba, Yongjian Tang, Cecilia L. Dalle-Ore, Rolf Bjerkvig, and Russell O. Pieper. "A subset of PARP inhibitors induces lethal telomere fusion in ALT-dependent tumor cells." Science Translational Medicine 13, no. 592 (May 5, 2021): eabc7211. http://dx.doi.org/10.1126/scitranslmed.abc7211.

Full text
Abstract:
About 10% of all tumors, including most lower-grade astrocytoma, rely on the alternative lengthening of telomere (ALT) mechanism to resolve telomeric shortening and avoid limitations on their growth. Here, we found that dependence on the ALT mechanism made cells hypersensitive to a subset of poly(ADP-ribose) polymerase inhibitors (PARPi). We found that this hypersensitivity was not associated with PARPi-created genomic DNA damage as in most PARPi-sensitive populations but rather with PARPi-induced telomere fusion. Mechanistically, we determined that PARP1 was recruited to the telomeres of ALT-dependent cells as part of a DNA damage response. By recruiting MRE11 and BRCC3 to stabilize TRF2 at the ends of telomeres, PARP1 blocked chromosomal fusion. Exposure of ALT-dependent tumor cells to a subset of PARPi induced a conformational change in PARP1 that limited binding to MRE11 and BRCC3 and delayed release of the TRF2-mediated block on lethal telomeric fusion. These results therefore provide a basis for PARPi treatment of ALT-dependent tumors, as well as establish chromosome fusion as a biomarker of their activity.
APA, Harvard, Vancouver, ISO, and other styles
41

Armendáriz-Castillo, Isaac, Katherine Hidalgo-Fernández, Andy Pérez-Villa, Jennyfer M. García-Cárdenas, Andrés López-Cortés, and Santiago Guerrero. "Identification of Key Proteins from the Alternative Lengthening of Telomeres-Associated Promyelocytic Leukemia Nuclear Bodies Pathway." Biology 11, no. 2 (January 25, 2022): 185. http://dx.doi.org/10.3390/biology11020185.

Full text
Abstract:
Alternative lengthening of telomeres-associated promyelocytic leukemia nuclear bodies (APBs) are a hallmark of telomere maintenance. In the last few years, APBs have been described as the main place where telomeric extension occurs in ALT-positive cancer cell lines. A different set of proteins have been associated with APBs function, however, the molecular mechanisms behind their assembly, colocalization, and clustering of telomeres, among others, remain unclear. To improve the understanding of APBs in the ALT pathway, we integrated multiomics analyses to evaluate genomic, transcriptomic and proteomic alterations, and functional interactions of 71 APBs-related genes/proteins in 32 Pan-Cancer Atlas studies from The Cancer Genome Atlas Consortium (TCGA). As a result, we identified 13 key proteins which showed distinctive mutations, interactions, and functional enrichment patterns across all the cancer types and proposed this set of proteins as candidates for future ex vivo and in vivo analyses that will validate these proteins to improve the understanding of the ALT pathway, fill the current research gap about APBs function and their role in ALT, and be considered as potential therapeutic targets for the diagnosis and treatment of ALT-positive cancers in the future.
APA, Harvard, Vancouver, ISO, and other styles
42

Recagni, Marta, Joanna Bidzinska, Nadia Zaffaroni, and Marco Folini. "The Role of Alternative Lengthening of Telomeres Mechanism in Cancer: Translational and Therapeutic Implications." Cancers 12, no. 4 (April 11, 2020): 949. http://dx.doi.org/10.3390/cancers12040949.

Full text
Abstract:
Telomere maintenance mechanisms (i.e., telomerase activity (TA) and the alternative lengthening of telomere (ALT) mechanism) contribute to tumorigenesis by providing unlimited proliferative capacity to cancer cells. Although the role of either telomere maintenance mechanisms seems to be equivalent in providing a limitless proliferative ability to tumor cells, the contribution of TA and ALT to the clinical outcome of patients may differ prominently. In addition, several strategies have been developed to interfere with TA in cancer, including Imetelstat that has been the first telomerase inhibitor tested in clinical trials. Conversely, the limited information available on the molecular underpinnings of ALT has hindered thus far the development of genuine ALT-targeting agents. Moreover, whether anti-telomerase therapies may be hampered or not by possible adaptive responses is still debatable. Nonetheless, it is plausible hypothesizing that treatment with telomerase inhibitors may exert selective pressure for the emergence of cancer cells that become resistant to treatment by activating the ALT mechanism. This notion, together with the evidence that both telomere maintenance mechanisms may coexist within the same tumor and may distinctly impinge on patients’ outcomes, suggests that ALT may exert an unexpected role in tumor biology that still needs to be fully elucidated.
APA, Harvard, Vancouver, ISO, and other styles
43

Tornesello, Maria Lina, Andrea Cerasuolo, Noemy Starita, Anna Lucia Tornesello, Patrizia Bonelli, Franca Maria Tuccillo, Luigi Buonaguro, Maria G. Isaguliants, and Franco M. Buonaguro. "The Molecular Interplay between Human Oncoviruses and Telomerase in Cancer Development." Cancers 14, no. 21 (October 26, 2022): 5257. http://dx.doi.org/10.3390/cancers14215257.

Full text
Abstract:
Human oncoviruses are able to subvert telomerase function in cancer cells through multiple strategies. The activity of the catalytic subunit of telomerase (TERT) is universally enhanced in virus-related cancers. Viral oncoproteins, such as high-risk human papillomavirus (HPV) E6, Epstein–Barr virus (EBV) LMP1, Kaposi’s sarcoma-associated herpesvirus (HHV-8) LANA, hepatitis B virus (HBV) HBVx, hepatitis C virus (HCV) core protein and human T-cell leukemia virus-1 (HTLV-1) Tax protein, interact with regulatory elements in the infected cells and contribute to the transcriptional activation of TERT gene. Specifically, viral oncoproteins have been shown to bind TERT promoter, to induce post-transcriptional alterations of TERT mRNA and to cause epigenetic modifications, which have important effects on the regulation of telomeric and extra-telomeric functions of the telomerase. Other viruses, such as herpesviruses, operate by integrating their genomes within the telomeres or by inducing alternative lengthening of telomeres (ALT) in non-ALT cells. In this review, we recapitulate on recent findings on virus–telomerase/telomeres interplay and the importance of TERT-related oncogenic pathways activated by cancer-causing viruses.
APA, Harvard, Vancouver, ISO, and other styles
44

Auchter, Morgan, Sandrine Medves, Laetitia Chambeau, Sophie Gazzo, Etienne Moussay, Wim Ammerlaan, Hamid Morjani, et al. "Mechanisms of Telomere Maintenance Dysfunction in B-Chronic Lymphocytic Leukemia Through CpG Island Methylation." Blood 120, no. 21 (November 16, 2012): 3489. http://dx.doi.org/10.1182/blood.v120.21.3489.3489.

Full text
Abstract:
Abstract Abstract 3489 Telomeres are a repetitive DNA sequences associated with a protein complex named shelterin that protect chromosome ends. Two types of mechanisms maintain telomere in cancer cells. The first involves telomerase an enzyme able to copy the telomeric motif that consists of three principal subunits, including the telomerase reverse transcriptase hTERT. The second, named ALT (Alternative Lengthening of Telomere), corresponds to the recombination between telomeres that involves notably a complex formed by the topoisomerase III alpha (hTopoIIIa), BLM, RMI1 and RMI2. Little is known about the involvement of the ALT mechanism in B-chronic lymphocytic leukemia (B-CLL). In fact this leukemic disease shows low telomerase activity, shelterin defect and telomeric dysfunction. In an effort to characterize ALT cells from 31 B-CLL patients, we analyzed their telomere length and telomerase activity. B-CLL patients showed almost no hTERT transcript (detected in three cases), low telomerase activity (detected in 7 cases) and a telomere average size ranging from 3 to 10 kb. Moreover, a strong deregulation of genes encoding three shelterin proteins, TRF1, TRF2, Pot1, and an at least two fold downregulation of hTopoIIIa gene expression in 21 cases were observed, suggesting the presence of a telomere maintenance dysfunction affecting both mechanisms, telomerase dependent and ALT. CpG island methylation has been mapped for both promoters and if hTERT shows a disseminated methylation profile in 22 patients, for hTopoIIIα we identified nine CpG upstream the minimal promoter, being methylated in 19 of our 31 analyzed patients. We then performed luciferase experiments and we showed that methylation in this 9 CpG induced a strong inhibition of hTopoIIIa transcription. Finally we correlated telomere length and hTopoIIIa methylation status as we observed that 25.4% of the hTopoIIIa promoters were methylated in patients with shorter chromosomes and only 11.1 % were methylated in patients with longer telomeres (p<0.0025). As nearly no telomerase activity have been detected in our patients and as downregulation of hTopoIIIa could increase recombination rate between sister chromatid, methylation of hTERT and hTopoIIIa promoter CpG islands may lead to telomere dysfunction and increased genetic instability in B-CLL. Disclosures: No relevant conflicts of interest to declare.
APA, Harvard, Vancouver, ISO, and other styles
45

Thompson, Connor A. H., and Judy M. Y. Wong. "Non-canonical Functions of Telomerase Reverse Transcriptase: Emerging Roles and Biological Relevance." Current Topics in Medicinal Chemistry 20, no. 6 (April 13, 2020): 498–507. http://dx.doi.org/10.2174/1568026620666200131125110.

Full text
Abstract:
Increasing evidence from research on telomerase suggests that in addition to its catalytic telomere repeat synthesis activity, telomerase may have other biologically important functions. The canonical roles of telomerase are at the telomere ends where they elongate telomeres and maintain genomic stability and cellular lifespan. The catalytic protein component Telomerase Reverse Transcriptase (TERT) is preferentially expressed at high levels in cancer cells despite the existence of an alternative mechanism for telomere maintenance (alternative lengthening of telomeres or ALT). TERT is also expressed at higher levels than necessary for maintaining functional telomere length, suggesting other possible adaptive functions. Emerging non-canonical roles of TERT include regulation of non-telomeric DNA damage responses, promotion of cell growth and proliferation, acceleration of cell cycle kinetics, and control of mitochondrial integrity following oxidative stress. Non-canonical activities of TERT primarily show cellular protective effects, and nuclear TERT has been shown to protect against cell death following double-stranded DNA damage, independent of its role in telomere length maintenance. TERT has been suggested to act as a chromatin modulator and participate in the transcriptional regulation of gene expression. TERT has also been reported to regulate transcript levels through an RNA-dependent RNA Polymerase (RdRP) activity and produce siRNAs in a Dicer-dependent manner. At the mitochondria, TERT is suggested to protect against oxidative stress-induced mtDNA damage and promote mitochondrial integrity. These extra-telomeric functions of TERT may be advantageous in the context of increased proliferation and metabolic stress often found in rapidly-dividing cancer cells. Understanding the spectrum of non-canonical functions of telomerase may have important implications for the rational design of anti-cancer chemotherapeutic drugs.
APA, Harvard, Vancouver, ISO, and other styles
46

Pan, Xiaolei, William C. Drosopoulos, Louisa Sethi, Advaitha Madireddy, Carl L. Schildkraut, and Dong Zhang. "FANCM, BRCA1, and BLM cooperatively resolve the replication stress at the ALT telomeres." Proceedings of the National Academy of Sciences 114, no. 29 (July 3, 2017): E5940—E5949. http://dx.doi.org/10.1073/pnas.1708065114.

Full text
Abstract:
In the mammalian genome, certain genomic loci/regions pose greater challenges to the DNA replication machinery (i.e., the replisome) than others. Such known genomic loci/regions include centromeres, common fragile sites, subtelomeres, and telomeres. However, the detailed mechanism of how mammalian cells cope with the replication stress at these loci/regions is largely unknown. Here we show that depletion of FANCM, or of one of its obligatory binding partners, FAAP24, MHF1, and MHF2, induces replication stress primarily at the telomeres of cells that use the alternative lengthening of telomeres (ALT) pathway as their telomere maintenance mechanism. Using the telomere-specific single-molecule analysis of replicated DNA technique, we found that depletion of FANCM dramatically reduces the replication efficiency at ALT telomeres. We further show that FANCM, BRCA1, and BLM are actively recruited to the ALT telomeres that are experiencing replication stress and that the recruitment of BRCA1 and BLM to these damaged telomeres is interdependent and is regulated by both ATR and Chk1. Mechanistically, we demonstrated that, in FANCM-depleted ALT cells, BRCA1 and BLM help to resolve the telomeric replication stress by stimulating DNA end resection and homologous recombination (HR). Consistent with their roles in resolving the replication stress induced by FANCM deficiency, simultaneous depletion of BLM and FANCM, or of BRCA1 and FANCM, leads to increased micronuclei formation and synthetic lethality in ALT cells. We propose that these synthetic lethal interactions can be explored for targeting the ALT cancers.
APA, Harvard, Vancouver, ISO, and other styles
47

Stoklosa, Tomasz, Anna Deregowska, Katarzyna Pruszczyk, Iwona Solarska, Marcin M. Machnicki, Jagoda Adamczyk, Ilona Seferynska, Anna Lewinska, and Maciej Wnuk. "Role of Shelterin Complex and Alternative Telomere Lengthening in Genomic Instability and Disease Progression in Chronic Myeloid Leukemia." Blood 128, no. 22 (December 2, 2016): 1880. http://dx.doi.org/10.1182/blood.v128.22.1880.1880.

Full text
Abstract:
Abstract Genomic instability has many sources, among others, shortening of telomeres, nucleoprotein complexes located at the ends of chromosomes. Tumor cells have aberrant mechanisms of telomere maintenance: their telomeres are shortened, no longer preventing chromosome end-to-end fusion and recombination, but frequently not short enough to lead to cell senescence. Both telomerase and shelterin complexes are involved in telomere homeostasis. Reduction in the telomere length is considered as one of the features of chronic myeloid leukemia (CML) similar to other human malignancies and telomere shortening is correlated with disease progression from the chronic phase (CML-CP) to the blastic phase (CML-BP)1. However, recent report shows that shorter telomeres can actually be detected in patients who discontinued imatinib and are in treatment-free remission as compared to those who relapsed2. Therefore, there is no agreement on the telomere length dynamics in CML evolution. Moreover, the precise role of telomere-associated proteins, including shelterin complex in BCR-ABL1-mediated genomic instability in CML progression and resistance to TKIs, is not fully elucidated. Initially, we confirmed that the telomere shortening was positively correlated with CML progression (CML-BP in comparison to CML-CP). However, in CD34+ samples from CML-CP TKI-resistant patients in comparison to CML-CP patients, an increase in telomere length was observed. This suggests that shortening of telomeres in CML progression may have a biphasic scenario. This can be explained by alternative telomere lengthening (ALT) mechanisms, since no significant changes in the expression of subunits of the telomerase complex and its enzymatic activity were observed at different phases of the disease; enzymatic activity of telomerase was measured immunoenzymatically, while length of telomeres was determined by Southern blotting. Then we decided to analyze possible involvement of shelterin complex and of ALT mechanisms in CML progression. Importantly, expression of the three members of the shelterin complex, Protection Of Telomeres 1 (POT1), Repressor Activator Protein 1 (RAP1) and Tankyrase 1 (TNKS1) was significantly upregulated in CML-BP (10 samples) as compared to CML-CP (15 samples) and was also positively correlated with BCR-ABL1 expression. Moreover, as determined by TKI treatment of CD34+ CML-BP primary cells, expression of POT1 was BCR-ABL1-dependent. No significant changes were observed in the expression of other members of the shelterin complex, namely TINT1-PTOP-PIP1 (TPP1), TRF1 interactor 2 (TIN2) and Tankyrase 2 (TNKS2). Also telomere repeat-binding factor 1 and 2 (TRF1 and TRF2), which are responsible for anchoring shelterin complex to the double stranded telomeric repeats remain stable in the course of the disease. Expression of subunits of telomerase and shelterin complexes was examined by RT-qPCR and Western blotting. This was confirmed in K562 and K562 imatinib-resistant cell line model. Somatic mutations in POT1 have been recently described in human tumors including chronic lymphocytic leukemia (CLL). In CLL, mutations in POT1 affect telomere stability and are associated with shorter survival in patients receiving chemotherapy as a frontline treatment. We have screened our NGS data from targeted sequencing in a cohort of patients who progressed to CML-BP (paired CP and BP samples, n=10 and BP samples, n=9) but we did not detect any somatic mutations in POT1. This is in accordance with our data on POT1 upregulated expression and suggests that dysregulation of shelterin complex during progression of CML differs significantly from CLL. In conclusion, we present the first comprehensive analysis of the expression of all members of the shelterin complex in the course of CML. We postulate that abnormal expression of selected members such as POT1, RAP1 and TNKS1 may be responsible for the aberrant telomere maintenance mechanisms in CML cells and may play an important role in genomic instability associated with CML progression. References: 1. Brummendorf TH, et al. Blood 2000; 95:1883-1890. 2. Caocci et al. Journal of Hematology & Oncology 2016; 9:63; Disclosures Seferynska: Novartis: Consultancy, Honoraria.
APA, Harvard, Vancouver, ISO, and other styles
48

Lima, Matheus Fabiao de, Monique Oliveira Freitas, Mohammad K. Hamedani, Aline Rangel-Pozzo, Xu-Dong Zhu, and Sabine Mai. "Consecutive Inhibition of Telomerase and Alternative Lengthening Pathway Promotes Hodgkin’s Lymphoma Cell Death." Biomedicines 10, no. 9 (September 16, 2022): 2299. http://dx.doi.org/10.3390/biomedicines10092299.

Full text
Abstract:
Telomere maintenance is key during cancer development. Malignant cells can either use telomerase or an alternative lengthening of telomere (ALT) pathway to maintain their telomere length. In Hodgkin’s Lymphoma (HL), the presence of telomerase activation is established. The activation of ALT has been reported recently. Our data confirm this notion describing co-localization of the phosphorylated form of telomeric repeat-binding factor 1 (pT371-TRF1) with ALT-associated promyelocytic leukemia bodies. Surprisingly, to our knowledge, there are no published studies targeting both telomere maintenance pathways in HL. Consequently, we investigated, for the first time, the effects of both telomerase and ALT inhibition on HL cell viability: We inhibited telomerase and/or ALT, given either individually, simultaneously, or consecutively. We report that the inhibition of telomerase using BIBR1532 followed by ALT inhibition, using trabectedin, caused a decrease of greater than 90% in cell viability in three patient-derived HL cell lines. Our results suggest that HL cells are most vulnerable to the consecutive inhibition of telomerase followed by ALT inhibition.
APA, Harvard, Vancouver, ISO, and other styles
49

da Silva, Guilherme G., Karollyne S. Morais, Daniel S. Arcanjo, and Diêgo M. de Oliveira. "Clinical Relevance of Alternative Lengthening of Telomeres in Cancer." Current Topics in Medicinal Chemistry 20, no. 6 (April 13, 2020): 485–97. http://dx.doi.org/10.2174/1568026620666200110112854.

Full text
Abstract:
The alternative lengthening of telomere (ALT) is a pathway responsible for cell immortalization in some kinds of tumors. Since the first description of ALT is relatively recent in the oncology field, its mechanism remains elusive, but recent works address ALT-related proteins or cellular structures as potential druggable targets for more specific and efficient antitumor therapies. Moreover, some new generation compounds for antitelomerase therapy in cancer were able to provoke acquisition of ALT phenotype in treated tumors, enhancing the importance of studies on this alternative lengthening of the telomere. However, ALT has been implicated in different – sometimes opposite – outcomes, according to the tumor type studied. Then, in order to design and develop new drugs for ALT+ cancer in an effective way, it is crucial to understand its clinical implications. In this review, we gathered works published in the last two decades to highlight the clinical relevance of ALT on oncology.
APA, Harvard, Vancouver, ISO, and other styles
50

Akter, Jesmin, and Takehiko Kamijo. "How Do Telomere Abnormalities Regulate the Biology of Neuroblastoma?" Biomolecules 11, no. 8 (July 28, 2021): 1112. http://dx.doi.org/10.3390/biom11081112.

Full text
Abstract:
Telomere maintenance plays important roles in genome stability and cell proliferation. Tumor cells acquire replicative immortality by activating a telomere-maintenance mechanism (TMM), either telomerase, a reverse transcriptase, or the alternative lengthening of telomeres (ALT) mechanism. Recent advances in the genetic and molecular characterization of TMM revealed that telomerase activation and ALT define distinct neuroblastoma (NB) subgroups with adverse outcomes, and represent promising therapeutic targets in high-risk neuroblastoma (HRNB), an aggressive childhood solid tumor that accounts for 15% of all pediatric-cancer deaths. Patients with HRNB frequently present with widely metastatic disease, with tumors harboring recurrent genetic aberrations (MYCN amplification, TERT rearrangements, and ATRX mutations), which are mutually exclusive and capable of promoting TMM. This review provides recent insights into our understanding of TMM in NB tumors, and highlights emerging therapeutic strategies as potential treatments for telomerase- and ALT-positive tumors.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography