To see the other types of publications on this topic, follow the link: Alternative lengthening of telomeres (ALT).

Dissertations / Theses on the topic 'Alternative lengthening of telomeres (ALT)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 28 dissertations / theses for your research on the topic 'Alternative lengthening of telomeres (ALT).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Henson, Jeremy D. "The role of Alternative Lengthening of Telomeres in human cancer." Thesis, The University of Sydney, 2006. http://hdl.handle.net/2123/1533.

Full text
Abstract:
Activation of a telomere maintenance mechanism is a vital step in the development of most cancers and provides a target for the selective killing of cancer cells. Cancers can use either telomerase or Alternative Lengthening of Telomeres (ALT) to maintain their telomeres and inhibition of either telomere maintenance mechanism can cause cancer cells to undergo senescence or apoptosis. Although telomerase inhibitors are undergoing clinical trials, on commencing this study very little was known about the role of ALT in cancer, what proteins were involved in its mechanism and regulation and how it could be targeted clinically. The primary aim of this thesis was to develop an assay for ALT suitable for examining archived tumour specimens and to begin using it to examine the prevalence and clinical significance of ALT in cancer. This assay and gene expression analysis was also used to identify genes that are involved in or associated with the activation of the ALT mechanism, to contribute towards the overall goal of an ALT cancer therapy. The ALT mechanism involves recombination mediated replication and ALT cells have a marked increase in a range of recombinational events specifically at their telomeres. Presumably, as a consequence of this the telomere lengths of ALT cells are very heterogeneous and on average long. This can be detected by terminal restriction fragment (TRF) Southern analysis, which has been used previously as the definitive test for ALT activity. However, TRF analysis requires intact genomic DNA and is unsuitable for tumour specimens which are commonly archived by paraffin embedding. Another hallmark of ALT is ALT-associated PML bodies (APBs) which are the subset of PML bodies that contain telomeric DNA. Work done in this study to consolidate APBs as a hallmark of ALT, combined with published data, showed 29/31 ALT[+], 3/31 telomerase[+] and 0/10 mortal cell lines/strains are APB[+]. The three APB[+]/telomerase[+] cell lines identified here had an order of magnitude lower frequency of APB[+] nuclei than the ALT[+] cell lines. APBs may be functionally linked to the ALT mechanism and contain the recombination proteins that are thought to be involved in the ALT mechanism. This study, in collaboration with Dr W-Q Jiang, strengthened this functional link by demonstrating that loss of ALT activity (as determined by TRF analysis) coincided with the disruption of APBs. The detection of APBs was developed into a robust assay for ALT in archived tumour specimens using a technique of combined immunofluorescence and telomere fluorescence in situ hybridisation. It was demonstrated that the APB assay concurred exactly with the standard assay for ALT (TRF analysis) in 60 tumours for which TRF analysis gave unequivocal results. The APB assay may be a more appropriate technique in the case of tumour specimen heterogeneity, which may explain why the APB assay was able to give definitive results when TRF analysis was equivocal. We demonstrated that intratumoral heterogeneity for ALT does exist and this could explain why about 3% of tumours in this study were APB[+] but with more than a ten-fold reduction in the frequency of APB[+] nuclei. This study also made the novel discovery of single stranded C-rich telomeric DNA inside APBs which potentially could be used to make the APB assay more suitable for routine pathology laboratory use. The APB assay was used to show that ALT is a significant concern for oncology. ALT was utilised in approximately one quarter of glioblastoma multiforme (GBM), one third of soft tissue sarcomas (STS) including three quarters of malignant fibrous histiocytomas (MFH), half of osteosarcomas and one tenth of non-small cell lung carcinomas (NSCLC). Furthermore, the patients with these ALT[+] tumours had poor survival; median survivals were 2 years for ALT[+] GBM, 4 years for ALT[+] STS including 3.5 years for ALT[+] MFH and 5 years for ALT[+] osteosarcoma. ALT[+] STS and osteosarcomas were also just as aggressive as their ALT[-] counterparts in terms of grade and patient outcome. ALT status was not found to be associated with response to chemotherapy in osteosarcomas or survival in STS. ALT was however, less prevalent in metastatic STS. The APB assay was a prognostic indicator for GBM and was correlated with three fold increased median survival in GBM (although this survival was still poor). ALT was more common in lower grade astrocytomas (88% ALT[+]) than GBM (24% ALT[+]) and ALT[+] GBM had an identical median age at diagnosis to that reported for secondary GBM. It is discussed that these data indicate that ALT was indirectly associated with secondary GBM and is possibly an early event in its progression from lower grade astrocytoma. This is relevant because secondary GBM have distinct genetic alterations that may facilitate activation of the ALT mechanism. Putative repressors of ALT could explain why this study found that ALT varied among the different STS subtypes. ALT was common in MFH (77%), leiomyosarcoma (62%) and liposarcoma (33%) but rare in rhabdomyosarcoma (6%) and synovial sarcoma (9%). ALT was not found in colorectal carcinoma (0/31) or thyroid papillary carcinoma (0/17) which have a high prevalence of telomerase activity and a reduced need for a telomere maintenance mechanism (low cell turnover), respectively. A yeast model of ALT predicts that one of the five human RecQ helicases may be required for ALT. Using the APB assay to test for the presence of ALT in tumours from patients with known mutations in either WRN or RECQL4 it was demonstrated that neither of these RecQ helicases is essential for ALT. Although p53 and mismatch repair (MMR) proteins have been suggested to be possible repressors of ALT, there was no apparent increase in the frequency of ALT in tumours from patients with a germline mutation in p53 codon 273 or in colorectal carcinomas that had microsatellite instability and thus MMR deficiency. Also contrary to being a repressor of ALT but consistent with its ability to interact with a protein involved in the ALT mechanism, the MMR protein MLH1, was demonstrated to be present in the APBs of an ALT[+] cell line. To further test for genes that may be involved in the ALT mechanism or associated with its activation, RNA microarray was used to compare the gene expression of 12 ALT[+] with 12 matched telomerase[+] cell lines; 240 genes were identified that were significantly differentially expressed (p<0.005) between the ALT[+] and telomerase[+] cell lines. Only DRG2 and SFNX4 were significantly differentially expressed after adjusting for the estimated false positive rate. Overall, DRG2, MGMT and SATB1 were identified as most likely to be relevant to the ALT[+] tumours and Western analysis indicated that DRG2 and MGMT levels were down-regulated after activation of ALT and up-regulated after activation of telomerase, whereas SATB1 protein levels appeared to be up-regulated after immortalisation but to a higher degree with activation of ALT compared to telomerase. Since lack of MGMT is known to be a determinant of temozolomide sensitivity in GBM, the possibility that ALT and the APB assay could be used to predict temozolomide sensitivity is discussed. The microarray data was consistent with MGMT expression being suppressed by EGF (p < 0.05), indicating that caution may be needed with combining EGFR inhibitors with temozolomide in ALT cancers. One ALT[+] cell line which did not express MGMT had TTAA sequence in its telomeres. This could possibly have resulted from mutations due to lack of MGMT expression and a possible role for MGMT in the ALT mechanism is discussed. Further analysis of the microarray data identified two groups of co-regulated genes (p < 5x10-5): CEBPA, TACC2, SFXN4, HNRPK and MGMT, and SIGIRR, LEF1, NSBP1 and SATB1. Two thirds of differentially expressed genes were down-regulated in ALT. Chromosomes 10 and 15 had a bias towards genes with lower expression in ALT while chromosomes 1, 4, 14 and X had a bias towards genes with higher expression levels in ALT. This work has developed a robust assay for ALT in tumour specimens which was then used to show the significance of ALT in sarcomas, astrocytomas and NSCLC. It has also identified genes that could possibly be molecular targets for the treatment of ALT[+] cancers.
APA, Harvard, Vancouver, ISO, and other styles
2

Henson, Jeremy D. "The role of Alternative Lengthening of Telomeres in human cancer." University of Sydney, 2006. http://hdl.handle.net/2123/1533.

Full text
Abstract:
Doctor of Philosophy
Activation of a telomere maintenance mechanism is a vital step in the development of most cancers and provides a target for the selective killing of cancer cells. Cancers can use either telomerase or Alternative Lengthening of Telomeres (ALT) to maintain their telomeres and inhibition of either telomere maintenance mechanism can cause cancer cells to undergo senescence or apoptosis. Although telomerase inhibitors are undergoing clinical trials, on commencing this study very little was known about the role of ALT in cancer, what proteins were involved in its mechanism and regulation and how it could be targeted clinically. The primary aim of this thesis was to develop an assay for ALT suitable for examining archived tumour specimens and to begin using it to examine the prevalence and clinical significance of ALT in cancer. This assay and gene expression analysis was also used to identify genes that are involved in or associated with the activation of the ALT mechanism, to contribute towards the overall goal of an ALT cancer therapy. The ALT mechanism involves recombination mediated replication and ALT cells have a marked increase in a range of recombinational events specifically at their telomeres. Presumably, as a consequence of this the telomere lengths of ALT cells are very heterogeneous and on average long. This can be detected by terminal restriction fragment (TRF) Southern analysis, which has been used previously as the definitive test for ALT activity. However, TRF analysis requires intact genomic DNA and is unsuitable for tumour specimens which are commonly archived by paraffin embedding. Another hallmark of ALT is ALT-associated PML bodies (APBs) which are the subset of PML bodies that contain telomeric DNA. Work done in this study to consolidate APBs as a hallmark of ALT, combined with published data, showed 29/31 ALT[+], 3/31 telomerase[+] and 0/10 mortal cell lines/strains are APB[+]. The three APB[+]/telomerase[+] cell lines identified here had an order of magnitude lower frequency of APB[+] nuclei than the ALT[+] cell lines. APBs may be functionally linked to the ALT mechanism and contain the recombination proteins that are thought to be involved in the ALT mechanism. This study, in collaboration with Dr W-Q Jiang, strengthened this functional link by demonstrating that loss of ALT activity (as determined by TRF analysis) coincided with the disruption of APBs. The detection of APBs was developed into a robust assay for ALT in archived tumour specimens using a technique of combined immunofluorescence and telomere fluorescence in situ hybridisation. It was demonstrated that the APB assay concurred exactly with the standard assay for ALT (TRF analysis) in 60 tumours for which TRF analysis gave unequivocal results. The APB assay may be a more appropriate technique in the case of tumour specimen heterogeneity, which may explain why the APB assay was able to give definitive results when TRF analysis was equivocal. We demonstrated that intratumoral heterogeneity for ALT does exist and this could explain why about 3% of tumours in this study were APB[+] but with more than a ten-fold reduction in the frequency of APB[+] nuclei. This study also made the novel discovery of single stranded C-rich telomeric DNA inside APBs which potentially could be used to make the APB assay more suitable for routine pathology laboratory use. The APB assay was used to show that ALT is a significant concern for oncology. ALT was utilised in approximately one quarter of glioblastoma multiforme (GBM), one third of soft tissue sarcomas (STS) including three quarters of malignant fibrous histiocytomas (MFH), half of osteosarcomas and one tenth of non-small cell lung carcinomas (NSCLC). Furthermore, the patients with these ALT[+] tumours had poor survival; median survivals were 2 years for ALT[+] GBM, 4 years for ALT[+] STS including 3.5 years for ALT[+] MFH and 5 years for ALT[+] osteosarcoma. ALT[+] STS and osteosarcomas were also just as aggressive as their ALT[-] counterparts in terms of grade and patient outcome. ALT status was not found to be associated with response to chemotherapy in osteosarcomas or survival in STS. ALT was however, less prevalent in metastatic STS. The APB assay was a prognostic indicator for GBM and was correlated with three fold increased median survival in GBM (although this survival was still poor). ALT was more common in lower grade astrocytomas (88% ALT[+]) than GBM (24% ALT[+]) and ALT[+] GBM had an identical median age at diagnosis to that reported for secondary GBM. It is discussed that these data indicate that ALT was indirectly associated with secondary GBM and is possibly an early event in its progression from lower grade astrocytoma. This is relevant because secondary GBM have distinct genetic alterations that may facilitate activation of the ALT mechanism. Putative repressors of ALT could explain why this study found that ALT varied among the different STS subtypes. ALT was common in MFH (77%), leiomyosarcoma (62%) and liposarcoma (33%) but rare in rhabdomyosarcoma (6%) and synovial sarcoma (9%). ALT was not found in colorectal carcinoma (0/31) or thyroid papillary carcinoma (0/17) which have a high prevalence of telomerase activity and a reduced need for a telomere maintenance mechanism (low cell turnover), respectively. A yeast model of ALT predicts that one of the five human RecQ helicases may be required for ALT. Using the APB assay to test for the presence of ALT in tumours from patients with known mutations in either WRN or RECQL4 it was demonstrated that neither of these RecQ helicases is essential for ALT. Although p53 and mismatch repair (MMR) proteins have been suggested to be possible repressors of ALT, there was no apparent increase in the frequency of ALT in tumours from patients with a germline mutation in p53 codon 273 or in colorectal carcinomas that had microsatellite instability and thus MMR deficiency. Also contrary to being a repressor of ALT but consistent with its ability to interact with a protein involved in the ALT mechanism, the MMR protein MLH1, was demonstrated to be present in the APBs of an ALT[+] cell line. To further test for genes that may be involved in the ALT mechanism or associated with its activation, RNA microarray was used to compare the gene expression of 12 ALT[+] with 12 matched telomerase[+] cell lines; 240 genes were identified that were significantly differentially expressed (p<0.005) between the ALT[+] and telomerase[+] cell lines. Only DRG2 and SFNX4 were significantly differentially expressed after adjusting for the estimated false positive rate. Overall, DRG2, MGMT and SATB1 were identified as most likely to be relevant to the ALT[+] tumours and Western analysis indicated that DRG2 and MGMT levels were down-regulated after activation of ALT and up-regulated after activation of telomerase, whereas SATB1 protein levels appeared to be up-regulated after immortalisation but to a higher degree with activation of ALT compared to telomerase. Since lack of MGMT is known to be a determinant of temozolomide sensitivity in GBM, the possibility that ALT and the APB assay could be used to predict temozolomide sensitivity is discussed. The microarray data was consistent with MGMT expression being suppressed by EGF (p < 0.05), indicating that caution may be needed with combining EGFR inhibitors with temozolomide in ALT cancers. One ALT[+] cell line which did not express MGMT had TTAA sequence in its telomeres. This could possibly have resulted from mutations due to lack of MGMT expression and a possible role for MGMT in the ALT mechanism is discussed. Further analysis of the microarray data identified two groups of co-regulated genes (p < 5x10-5): CEBPA, TACC2, SFXN4, HNRPK and MGMT, and SIGIRR, LEF1, NSBP1 and SATB1. Two thirds of differentially expressed genes were down-regulated in ALT. Chromosomes 10 and 15 had a bias towards genes with lower expression in ALT while chromosomes 1, 4, 14 and X had a bias towards genes with higher expression levels in ALT. This work has developed a robust assay for ALT in tumour specimens which was then used to show the significance of ALT in sarcomas, astrocytomas and NSCLC. It has also identified genes that could possibly be molecular targets for the treatment of ALT[+] cancers.
APA, Harvard, Vancouver, ISO, and other styles
3

Perrem, Kilian Thomas. "Molecular Studies of an alternative lengthening of telomeres (ALT) mechanism." Thesis, The University of Sydney, 2001. http://hdl.handle.net/2123/793.

Full text
Abstract:
Telomeres are specialised structures, consisting of TTAGGG DNA repeats and binding proteins, that cap the ends of human chromosomes and maintain chromosome integrity. It has been shown that telomeres shorten with each round of cell division in most normal human somatic cells. It has become generally accepted that this shortening is due, in part, to the inability of DNA polymerases to replicate the extreme ends of chromosomes which is a phenomenon known as the 'end replication problem'. An intriguing hypothesis that has emerged from these observations is that critically shortened telomeres trigger growth arrest and senescence. This is regarded as a key determining factor in the limited lifespan of normal cells in culture and is commonly known as the 'Telomere Hypothesis of Senescence'. In support of this hypothesis it has been demonstrated that immortalised human cells, that have an unlimited lifespan in culture, maintain stable telomere lengths and do not undergo progressive telomere shortening. In most cases this is due to the ribonucleoprotein enzyme telomerase, the activation of which is as a key step in the immortalisation process. Telomerase compensates for sequential telomere shortening by utilising an RNA template to catalyse the addition of repeat sequences by reverse transcription. It is absent from most normal tissue but is present in the germline and is presumably downregulated during development. Significantly, analysis of human tumour cells has shown that a majority also have active telomerase, which supports the importance of immortalisation in tumourigenesis. Previous work in this laboratory has shown that, although the majority of in vitro immortalised cells and tumour cells that have been studied maintain telomeres by reactivation of telomerase, a proportion do not have detectable telomerase activity. These telomerase-negative cells still maintain telomeres, however, and this is via a mechanism(s) yet to be fully elucidated known as Alternative Lengthening of Telomeres (ALT). ALT is characterised, in addition to lack of telomerase activity, by extreme telomere length heterogeneity with telomere lengths ranging from over 50 kilobases (kb) of DNA to almost undetectable. This phenotype is evident, by Southern analysis and fluorescent in situ hybridisation (FISH), in all ALT cells. Alternative mechanisms of telomere maintenance, via retrotransposition and recombination, had already been characterised in lower eukaryotes. It has been shown in this laboratory that ALT cell lines and tumours contain a novel type of PML body, referred to as ALT-associated PML bodies (APBs). APBs have been found in all of the ALT cell lines so far tested and also in archival tumour sections, and contain a number of factors which co-localise. These include PML, TTAGGG repeats, TRF 1 & TRF 2 telomere binding proteins and proteins involved in homologous recombination: RAD51 & RAD52. More recently, it has been shown that the RAD50/Mre11/Nbs1 complex, which is involved in cell cycle checkpoint control and repair of DNA damage, is also present in APBs. The presence of these RAD proteins in APBs is of great interest as a recombination between telomeres has been proposed as the central mechanism by which ALT lengthens telomeres. Studies in yeast have identified such a mechanism and it was proposed that a similar process occurred in human immortal cells that utilise ALT. It has now been shown by this laboratory that a recombination mechanism is indeed evident at the telomeres of ALT cells. To date all in vitro immortalised cell lines and most tumour cell types that have been studied have a telomere maintenance mechanism either via telomerase or ALT. Targeting telomerase has become a major focus of anti-cancer research as inhibitors have the potential to treat a wide variety of different tumour types. An understanding of ALT and its regulation is likely to be important in such therapeutic strategies, as selective pressure due to telomerase inhibition may result in ALT revertants within the tumour mass. Development of inhibitors of both telomerase and ALT may therefore be required when targeting telomere maintenance. The main focus of this thesis is the understanding of ALT repression in the SV40 immortalised skin fibroblast cell line GM847, as a means to further understanding the mechanism of ALT. The data presented provide new insights into the repression of ALT and also the relationship between telomerase and ALT which is important for our understanding of telomere maintenance in human cancer. Hybrids formed by fusion of normal cells and ALT cells underwent rapid telomere loss followed by senescence, indicating that normal cells contain factors that repress ALT. This strongly suggests that ALT is recessive and is activated in part by loss or mutation of repressors. Similar experiments were performed with ALT cells and telomerasepositive cells, and the resulting hybrids were all telomerase-positive and ALT repressed. It is possible that the same negative regulators are involved as additional data show that telomerase does not act as an ALT inhibitor. Exogenous expression of telomerase in ALT cells did not repress ALT, but both mechanisms co-existed in these transfected cells. This result provides a further argument for targeting both ALT and telomerase in any future treatments of tumours as it demonstrates in principle that these mechanisms are not mutually exclusive. A serendipitous finding was that a dominant-negative telomerase catalytic subunit caused telomere shortening in ALT cells, had not been reported elsewhere, and indeed was in contrast to previous findings. This provided further evidence for a link between telomerase and ALT as it suggested that there were essential components that were common to both pathways. As a further means to understanding ALT repression, a series of experiments was performed to determine the chromosomal localisation of ALT repressor(s) by microcell mediated chromosome transfer. This was done to facilitate the eventual isolation of repressors. A repressor of ALT in the chemically immortalised fibroblast cell line SUSM-1, had been reported to be localised to chromosome 7. This result could not be repeated in the GM847 cell line, but ALT repression was evident in GM847 cells upon transfer of chromosome 6. Another important question regarding the nature of ALT is the structure and sequence of the long heterogeneous telomeres generated by ALT specific recombination, which is the focus of the final series of data that is presented. ALT telomere length heterogeneity was detected under denaturing conditions, ruling out the possibility that it was an artefact of electrophoresis conditions due to novel secondary structure. Although the hybridisation signal intensity of TTAGGG increases at the onset of immortalisation in ALT cells, it had been demonstrated by restriction digests that degenerate repeats did exist at the telomeres of some ALT cell lines. Sequences containing telomere repeats were cloned from the ALT cell line WI38 VA13/2RA (SV40 immortalised fibroblasts) and these were found to be interspersed with a number of other sequence fragments. The significance of these sequences in relation to the mechanism of ALT is discussed.
APA, Harvard, Vancouver, ISO, and other styles
4

Perrem, Kilian Thomas. "Molecular Studies of an alternative lengthening of telomeres (ALT) mechanism." University of Sydney. Children's Medical Research Institute, 2001. http://hdl.handle.net/2123/793.

Full text
Abstract:
Telomeres are specialised structures, consisting of TTAGGG DNA repeats and binding proteins, that cap the ends of human chromosomes and maintain chromosome integrity. It has been shown that telomeres shorten with each round of cell division in most normal human somatic cells. It has become generally accepted that this shortening is due, in part, to the inability of DNA polymerases to replicate the extreme ends of chromosomes which is a phenomenon known as the �end replication problem�. An intriguing hypothesis that has emerged from these observations is that critically shortened telomeres trigger growth arrest and senescence. This is regarded as a key determining factor in the limited lifespan of normal cells in culture and is commonly known as the �Telomere Hypothesis of Senescence�. In support of this hypothesis it has been demonstrated that immortalised human cells, that have an unlimited lifespan in culture, maintain stable telomere lengths and do not undergo progressive telomere shortening. In most cases this is due to the ribonucleoprotein enzyme telomerase, the activation of which is as a key step in the immortalisation process. Telomerase compensates for sequential telomere shortening by utilising an RNA template to catalyse the addition of repeat sequences by reverse transcription. It is absent from most normal tissue but is present in the germline and is presumably downregulated during development. Significantly, analysis of human tumour cells has shown that a majority also have active telomerase, which supports the importance of immortalisation in tumourigenesis. Previous work in this laboratory has shown that, although the majority of in vitro immortalised cells and tumour cells that have been studied maintain telomeres by reactivation of telomerase, a proportion do not have detectable telomerase activity. These telomerase-negative cells still maintain telomeres, however, and this is via a mechanism(s) yet to be fully elucidated known as Alternative Lengthening of Telomeres (ALT). ALT is characterised, in addition to lack of telomerase activity, by extreme telomere length heterogeneity with telomere lengths ranging from over 50 kilobases (kb) of DNA to almost undetectable. This phenotype is evident, by Southern analysis and fluorescent in situ hybridisation (FISH), in all ALT cells. Alternative mechanisms of telomere maintenance, via retrotransposition and recombination, had already been characterised in lower eukaryotes. It has been shown in this laboratory that ALT cell lines and tumours contain a novel type of PML body, referred to as ALT-associated PML bodies (APBs). APBs have been found in all of the ALT cell lines so far tested and also in archival tumour sections, and contain a number of factors which co-localise. These include PML, TTAGGG repeats, TRF 1 & TRF 2 telomere binding proteins and proteins involved in homologous recombination: RAD51 & RAD52. More recently, it has been shown that the RAD50/Mre11/Nbs1 complex, which is involved in cell cycle checkpoint control and repair of DNA damage, is also present in APBs. The presence of these RAD proteins in APBs is of great interest as a recombination between telomeres has been proposed as the central mechanism by which ALT lengthens telomeres. Studies in yeast have identified such a mechanism and it was proposed that a similar process occurred in human immortal cells that utilise ALT. It has now been shown by this laboratory that a recombination mechanism is indeed evident at the telomeres of ALT cells. To date all in vitro immortalised cell lines and most tumour cell types that have been studied have a telomere maintenance mechanism either via telomerase or ALT. Targeting telomerase has become a major focus of anti-cancer research as inhibitors have the potential to treat a wide variety of different tumour types. An understanding of ALT and its regulation is likely to be important in such therapeutic strategies, as selective pressure due to telomerase inhibition may result in ALT revertants within the tumour mass. Development of inhibitors of both telomerase and ALT may therefore be required when targeting telomere maintenance. The main focus of this thesis is the understanding of ALT repression in the SV40 immortalised skin fibroblast cell line GM847, as a means to further understanding the mechanism of ALT. The data presented provide new insights into the repression of ALT and also the relationship between telomerase and ALT which is important for our understanding of telomere maintenance in human cancer. Hybrids formed by fusion of normal cells and ALT cells underwent rapid telomere loss followed by senescence, indicating that normal cells contain factors that repress ALT. This strongly suggests that ALT is recessive and is activated in part by loss or mutation of repressors. Similar experiments were performed with ALT cells and telomerasepositive cells, and the resulting hybrids were all telomerase-positive and ALT repressed. It is possible that the same negative regulators are involved as additional data show that telomerase does not act as an ALT inhibitor. Exogenous expression of telomerase in ALT cells did not repress ALT, but both mechanisms co-existed in these transfected cells. This result provides a further argument for targeting both ALT and telomerase in any future treatments of tumours as it demonstrates in principle that these mechanisms are not mutually exclusive. A serendipitous finding was that a dominant-negative telomerase catalytic subunit caused telomere shortening in ALT cells, had not been reported elsewhere, and indeed was in contrast to previous findings. This provided further evidence for a link between telomerase and ALT as it suggested that there were essential components that were common to both pathways. As a further means to understanding ALT repression, a series of experiments was performed to determine the chromosomal localisation of ALT repressor(s) by microcell mediated chromosome transfer. This was done to facilitate the eventual isolation of repressors. A repressor of ALT in the chemically immortalised fibroblast cell line SUSM-1, had been reported to be localised to chromosome 7. This result could not be repeated in the GM847 cell line, but ALT repression was evident in GM847 cells upon transfer of chromosome 6. Another important question regarding the nature of ALT is the structure and sequence of the long heterogeneous telomeres generated by ALT specific recombination, which is the focus of the final series of data that is presented. ALT telomere length heterogeneity was detected under denaturing conditions, ruling out the possibility that it was an artefact of electrophoresis conditions due to novel secondary structure. Although the hybridisation signal intensity of TTAGGG increases at the onset of immortalisation in ALT cells, it had been demonstrated by restriction digests that degenerate repeats did exist at the telomeres of some ALT cell lines. Sequences containing telomere repeats were cloned from the ALT cell line WI38 VA13/2RA (SV40 immortalised fibroblasts) and these were found to be interspersed with a number of other sequence fragments. The significance of these sequences in relation to the mechanism of ALT is discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Eid, Rita. "A la recherche des effets de l'inactivation génétique d'ATRX dans le déclenchement de la voit ALT (télomérase-indépendante) de maintenance des télomères dans les cellules cancéreuses." Thesis, Tours, 2015. http://www.theses.fr/2015TOUR4021/document.

Full text
Abstract:
Des mutations dans ATRX, une protéine de remodelage de la chromatine, ont été associées, dans plusieurs études cliniques, avec la voie télomérase-indépendante de maintenance des télomères (voie ALT) dans plusieurs types de cancer. Grâce à des expériences d’immunoprécipitation de chromatine (ChIP), nous avons montré qu’ATRX était localisée au niveau subtélomérique de cellules tumorales humaines en culture. Nous avons également montré, par ChIP, que l’inactivation génétique d’ATRX provoquait une diminution des quantités de cohésine/SMC1 présentes dans les régions subtélomériques. L’inactivation d’ATRX a conduit en outre à une diminution des quantités de TERRA, transcrits non codants de l’ADN télomérique. Nos données suggèrent qu’ATRX pourrait établir des interactions fonctionnelles avec la cohésine au niveau de la chromatine subtelomérique afin de contrôler les niveaux de TERRA et que l’un ou l’autre de ces évènements pourrait avoir un rapport avec la voie ALT
Mutations in ATRX, a chromatin remodeling protein, have been found, in several clinical studies, associated with the telomerase-independent ALT pathway of telomere maintenance in several types of cancer. Using chromatin immunoprecipitation (ChIP), we have shown that ATRX localized to subtelomeric regions of human tumor cells in culture. Cohesin has recently been shown to be part of telomeric chromatin. Here, using ChIP, we showed that genetic inactivation of ATRX provoked a diminution in the amount of cohesin in subtelomeric regions of telomerase-positive glioma cells. Moreover, inactivation of ATRX also led to a diminution in the amount of TERRAs, non-coding RNAs resulting from transcription of telomeric DNA. Our data suggest that ATRX might establish functional interactions with cohesin on subtelomeric chromatin in order to control TERRA levels and that one or the other or both of these events might be important for ALT mechanisms
APA, Harvard, Vancouver, ISO, and other styles
6

Mangosh, Tawna L. "SLX4 Interacting Protein (SLX4IP): A Vital Primer for Alternative Lengthening of Telomere (ALT)-like Processes Promoting Replicative Immortality in Castration-resistant Prostate Cancer with Androgen Receptor Loss." Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1623255136624147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cabuy, Erik. "Investigations of telomere maintenance in DNA damage response defective cells and telomerase in brain tumours." Thesis, Brunel University, 2005. http://bura.brunel.ac.uk/handle/2438/5157.

Full text
Abstract:
Telomeres are nucleoprotein complexes located at the end of chromosomes. They have an essential role in protecting chromosome ends. Telomerase or ALT (alternative lengthening of telomeres) mechanisms maintain telomeres by compensating natural telomeric loss. We have set up a flow-FISH method and using mouse lymphoma cell lines we identified unexpectedly the presence of subpopulations of cells with different telomere lengths. Subpopulations of cells with different telomere lengths were also observed in a human ALT and non-ALT cell line. Differences in telomere length between subpopulations of cells were significant and we term this phenomenon TELEFLUCS (TElomere LEngth FLUctuations in Cell Subpopulations). By applying flow-FISH we could successfully measure telomere lengths during replicative senescence in human primary fibroblasts with different genetic defects that confer sensitivity to ionising radiation (IR). The results from this study, based on flow-FISH and Southern hybridisation measurements, revealed an accelerated rate of telomere shortening in radiosensitive fibroblasts. We also observed accelerated telomere shortening in murine BRCA1 deficient cells, another defect conferring radiosensitivity, in comparison with a BRCA1 proficient cell line. We transiently depleted BRCA1 by siRNAs in two human mammary epithelial cell lines but could not find changes in telomere length in comparison with control cells. Cytological evidence of telomere dysfunction was observed in all radiosensitive cell lines. These results suggest that mechanisms that confer sensitivity to IR may be linked with mechanisms that cause telomere dysfunction. Furthermore, we have been able to show that human ALT positive cell lines show dysfunctional telomeres as detected by either the presence of DSBs at their telomeres or cytogenetic analysis and usually cells with dysfunctional telomeres are sensitive to IR. Finally, we assessed hTERT mRNA splicing variants and telomerase activity in brain tumours, which exhibit considerable chromosome instability suggesting that DNA repair mechanisms may be impaired. We demonstrated that high levels of hTERT mRNAs and telomerase activity correlate with proliferation rate. The presence of hTERT splice variants did not strictly correlate with absence of telomerase activity but hTERT spliced transcripts were observed in some telomerase negative brain tumours suggesting that hTERT splicing may contribute to activation of ALT mechanisms.
APA, Harvard, Vancouver, ISO, and other styles
8

Bakhos, Al Douaihy Dalal. "Implication des lysines acétyl transférases dans les mécanismes ALTernatifs de maintenance des télomères Opposite effects of GCN5 and PCAF knockdowns on the alternative mechanism of telomere maintenance ALT cancer cells are specifically sensitive to lysine acetyl transferase inhibition." Thesis, Sorbonne Paris Cité, 2018. https://wo.app.u-paris.fr/cgi-bin/WebObjects/TheseWeb.woa/wa/show?t=2322&f=12888.

Full text
Abstract:
Certaines cellules cancéreuses peuvent utiliser un mécanisme indépendant de la télomérase, connu sous le nom ALT (Alternative Lengthening of Telomeres) pour allonger leurs télomères. Les cellules ALT sont caractérisées par des télomères hétérogènes extrêmement longs et d’autres très courts voire indétectables qui co-localisent avec les corps PML pour former des structures nucléaires appelées APB (ALT-associated PML Bodies), et une fréquence élevée d'échange entre les télomères des chromatides sœurs appelées T- SCE (Telomeric Sister Chromatid Exchange). Bien qu'il soit concevable que la recombinaison homologue soit le mécanisme clé pour le maintien des télomères par la voie ALT, les acteurs moléculaires ne sont pas très bien connus. Nous avons identifié de nouveaux régulateurs potentiellement impliqués dans le mécanisme ALT: PCAF (P300/CBP-associated factor) et GCN5 (General Control Non-derepressible 5), deux lysines acétyl transférases homologues. Elles représentent généralement des facteurs de transcription, cependant, elles peuvent aussi acétyler des protéines non histones. Elles sont mutuellement exclusives dans de multiples complexes y compris le complexe SAGA. Nous avons montré que l’inhibition de ces deux protéines induit des effets opposés sur le phénotype ALT. Bien que l’absence de GCN5 augmentait l'instabilité des télomères et la fréquence des T-SCE et, la sous-expression de PCAF diminuait les T-SCE, la formation des APB et l'instabilité des télomères. Nos résultats suggèrent que dans les cellules ALT GCN5 est présent au niveau de l’ADN télomérique il inhibe la recombinaison entre les télomères et n’affecte pas la formation des APB, contrairement à PCAF qui peut indirectement les favoriser et stimuler aussi la formation des APB. Ensuite, nous avons cherché les mécanismes par lesquels PCAF et GCN5 contribuent au maintien des télomères dans les cellules ALT. Nous avons proposé que la participation de ces deux protéines consiste à réguler le turnover de la protéine télomérique TRF1 via USP22, une déubiquitinase identifiée pour la première fois comme un constituant des APB. En outre, l'intérêt de cibler l’activité de ces lysines acétyl transférase dans les cellules ALT a été testé in vitro en utilisant des inhibiteurs seuls ou combinés à l’irradiation. Nous avons montré que les cellules ALT sont particulièrement sensibles à l'inhibition de l'activité lysine acétyl transférase par l'acide anacardique (AA). Le traitement par cette molécule récapitule l'effet de la sous-expression de PCAF sur le phénotype ALT, suggérant que l’AA défavorise le mécanisme ALT en inhibant l'activité lysine acétyl transférase de PCAF, et non pas celle du GCN5. De plus, l'AA sensibilise spécifiquement les cellules ALT humaines à l’irradiation en comparant aux cellules télomérase-positives, prouvant que l'inhibition de l'activité des lysines acétyl transférases peut être un outil pour traiter les cellules ALT en augmentant l'efficacité de la radiothérapie
Some cancer cells can use a telomerase-independent mechanism, known as alternative lengthening of telomeres (ALT), to elongate their telomeres. ALT cells present unusual characteristics: extremely long and heterogeneous telomeres that colocalize with PML bodies to form nuclear structures called ALT-associated PML Bodies (APB), and high frequency of exchange events between sisters chromatid telomere referred to as Telomeric Sister Chromatid Exchange (T-SCE). Although it is agreed that homologous recombination is the key mechanism allowing the maintenance of the telomeres of ALT cells, the molecular actors involved are not yet known. We identified new actors potentially involved in the ALT mechanism: general control non-derepressible 5 (GCN5) and P300/CBP-associated factor (PCAF). Although they represent transcription factors, they can also acetylate non-histone proteins. They are mutually exclusive subunits in SAGA-like complexes. Here, we reveal that down regulation of GCN5 and PCAF had differential effects on some phenotypic characteristics of ALT cells. While GCN5 knockdown increased T-SCE and telomere instability, PCAF knockdown decreased T-SCE, APBs formation and telomere instability. GCN5 and PCAF knockdowns had thus differential effects on ALT, up-regulating it or down-regulating it respectively. Our results suggest that in ALT cells GCN5 is present at telomeres and opposes telomere recombination and does not affect the formation of APBs, unlike PCAF which may indirectly favour them and stimulate the APB formation. Then we evaluate the mechanisms by which PCAF and GCN5 contribute to the maintenance of telomeres in ALT cells. We have proposed that the participation of these two proteins should involve regulating the turnover of the telomeric protein TRF1 via USP22, a deubiquitinase identified for the first time as a component of APBs. In addition, the interest of targeting lysine acetyl transferase activities in ALT cells to oppose the maintenance of telomeres was subsequently tested in vitro using inhibitors alone or combined to irradiation. We have shown that ALT cells are particularly sensitive to the inhibition of acetyltransferases activities using Anacardic Acid (AA). AA treatment recapitulates the effect of PCAF knockdown on several ALT features, suggesting that AA decreased the ALT mechanism through the inhibition of lysine transferase activity of PCAF, but not that of GCN5. Furthermore, AA specifically sensitizes human ALT cells to radiation as compared to telomerase-positive cells suggesting that the inhibition of lysine acetyltransferases activity may be used to increase the radiotherapy efficiency against ALT cancers
APA, Harvard, Vancouver, ISO, and other styles
9

LILLARD, KATHERINE L. "THE BLM HELICASE FUNCTIONS IN ALTERNATIVE LENGTHENING OF TELOMERES." University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1097164165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lee, Joyce Hiu Yan. "Detection of Alternative Lengthening of Telomeres in Telomerase-Positive Cancers." Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/17252.

Full text
Abstract:
Immortalisation is a hallmark of cancer and requires activation of a telomere lengthening mechanism (TLM) to counteract natural telomere shortening. There are two TLMs: telomerase, reported in 85% of cancers, and Alternative Lengthening of Telomeres (ALT), reported in 13% of cancers. Because most somatic tissues do not have TLM activity, TLMs are widely regarded as targets for the development of anti-cancer therapies. Preliminary data from the Reddel laboratory indicated that in non-small cell lung carcinoma (NSCLC), ALT was more common than previously reported but mostly at very low levels, and together with telomerase activity. A panel of NSCLCs were examined for ALT and telomerase activity by the C-Circle Assay (CCA) and TRAP assay, respectively. ALT (at least a low level) and telomerase coexisted in 18% of the panel, suggesting that ALT is a more important therapeutic target in NSCLC than previously appreciated. ALT+/telomerase+ tumours could result from intratumoral heterogeneity, or from individual cancer cells being dual-positive. It was hypothesised that ALT and telomerase may be activated spontaneously in the same cancer cell. As functional studies are not possible in human tumours, a panel of 384 cancer cell lines was examined to determine whether some telomerase+ lines have ALT markers. Three cell lines positive for CCA and TRAP activity were subcloned, each of which were positive for both TLMs, indicating that both TLMs may occur spontaneously in a cancer cell. One of the dual-positive lines (LOX IMVI) was used for functional studies. A DNA tag inserted into one of its telomeres was copied on to other telomeres; this is regarded as the most definitive empirical evidence for the presence of a functional ALT mechanism. Therefore, telomere lengthening is occurring via ALT activity. The functional significance of telomerase activity was also addressed by CRISPR/Cas9-mediated knockout of the TERC gene. A blood-based diagnostic for ALT could be important for patient management and could be provided by the CCA because C-Circles have been reported in the blood of patients with ALT+ osteosarcomas. It was demonstrated that C-Circles are secreted by cancer cells in vesicles, which may be lost during plasma isolation. This knowledge may allow correct implementation of the CCA as a blood-based diagnostic for ALT activity.
APA, Harvard, Vancouver, ISO, and other styles
11

Lu, Robert. "The FANCM-BLM-TOP3A-RMI1/2 complex suppresses telomere replication stress and Alternative Lengthening of Telomeres." Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23414.

Full text
Abstract:
In humans, telomeres consist of ′TTAGGG′ repeats, which form a nucleoprotein complex that caps the ends of chromosomes. Telomeres are constitutively bound by a six-member protein complex called shelterin. The telomere nucleoprotein structure is essential for preventing the recognition of chromosome ends as DNA double-strand breaks, and for suppressing aberrant repair processes, including end-joining and recombination. When telomeres become critically short, they can initiate a DNA damage response, thereby triggering replicative senescence. Cancer cells are able to overcome this proliferative barrier and immortalise through the reactivation of a telomere maintenance mechanism. The majority (85-90%) of cancers utilise a ribonucleoprotein reverse-transcriptase complex called telomerase to extend telomere repeats, while the remaining 10-15%, especially several paediatric cancers, utilise a recombination-based mechanism termed Alternative Lengthening of Telomeres (ALT). ALT cancers tend to have poor prognosis and ALT activity is enriched in several paediatric cancers. ALT activity can also be activated as an adaptive response to treatment therapies that inhibit telomerase. Consequently, there is a need to develop therapies that inhibit or exploit the mechanistic weaknesses of ALT. We sought to study the role of FANCM, a DNA fork translocase that remodels and protects stalled replication forks, at ALT telomeres. FANCM canonically functions as the key sensor and fork remodeller in the Fanconi Anaemia (FA) pathway of inter-strand crosslink (ICL) repair. Its canonical function is to recruit the FA core complex and facilitate ID2 complex (FANCI/FANCD2) mono-ubiquitination at ICL-stalled forks. Yet FANCM has broader roles in preventing replication defects induced by non-ICL sources. We found that FANCM depletion dramatically induces ALT phenotypes, including extrachromosomal telomeric DNA species such as C-circles, large APBs, and break-induced replication events resulting from damaged telomeres. This induction was dependent on the key break-induced replication proteins POLD3 and BLM, the telomeric G-strand-binding shelterin component POT1, and the replication fork translocase SMARCAL1. We then determined which functional domains of FANCM were required to suppress ALT activity, and whether known domains required for ICL repair were necessary. We found that the K117R mutant and, to a lesser extent, the MID and ERCC4 domain mutants were defective at suppressing several ALT phenotypes and telomere dysfunction. Overall, the MM2 domain mutant produced the most striking results, indicating that the MM2 domain was the most important domain required for the suppression of ALT activity. This suggests that the role of FANCM in suppressing ALT requires its interaction with the BLM/TOP3A/RMI1/2 (BTR) complex. We then demonstrated the therapeutic potential of inhibiting the MM2 domain interaction with the BTR complex using a small molecule inhibitor and an inducible fusion peptide construct. While the drug was moderately selective towards ALT cells, the fusion peptide displayed remarkable inhibition specifically of ALT-cells. Overall, we demonstrate that ALT telomeres are particularly dependent on FANCM to prevent excessive ALT activity, which is ultimately detrimental for viability. Therefore, we present a means to selectively kill ALT cells via disruption of the MM2 domain of FANCM.
APA, Harvard, Vancouver, ISO, and other styles
12

Braun, Delia [Verfasser], and Karsten [Akademischer Betreuer] Rippe. "Inducing and suppressing the alternative lengthening of telomeres mechanism in cancer cells / Delia Braun ; Betreuer: Karsten Rippe." Heidelberg : Universitätsbibliothek Heidelberg, 2018. http://d-nb.info/1199939382/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Misino, Stefano [Verfasser]. "Towards a mechanistic understanding of the role of TERRA in the alternative lengthening mechanism of telomeres / Stefano Misino." Mainz : Universitätsbibliothek der Johannes Gutenberg-Universität Mainz, 2021. http://d-nb.info/1241739560/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Novo, Clara Patrícia Lopes. "Investigation of the mechanism that underlies MS32 minisatellite instability in cells that use the alternative lengthening of telomeres pathway." Thesis, University of Leicester, 2010. http://hdl.handle.net/2381/10211.

Full text
Abstract:
Cancer cells escape senescence by activating a telomere maintenance mechanism (TMM) to elongate telomeres and continue dividing. The most common TMM is the enzyme telomerase that adds telomeric repeats. However, some cancer cells activate the Alternative Lengthening of Telomeres (ALT), a recombination-based mechanism to extend shortened telomeres. One of the most peculiar features of ALT+ cells is the instability at the MS32 minisatellite (D1S8), especially as six other minisatellites remained stable in these cells. As MS32 instability correlates with activation of the ALT mechanism, it is likely that the underlying process depends, at least in part, on the same proteins. Thus, a better understanding of the molecular mechanism that underlies ALT may be gained through knowing how and why the MS32 minisatellite becomes unstable in ALT+ cells. Several hypotheses that might explain MS32 instability in ALT+ cells were investigated. In this study it was shown that the instability is restricted to the minisatellite itself and no transcriptional or copy-number changes distinguish this region between ALT+ and non-ALT cells. Interestingly, changes in the DNA methylation-status adjacent to one end of the minisatellite were found, which might indicate that ALT+ cells have a different chromatin conformation around the MS32 minisatellite. Additionally, the mutant molecules arising at MS32 in ALT+ cells seem to derive from intra-allelic processes. Also, EXO1 expression was higher in ALT+ compared to ALT- cells. Thus, our current model proposes that a protein (perhaps hEXO1) involved in lagging-strand synthesis and DNA repair is preferentially recruited to the telomeres in ALT+ cells and this may cause the accumulation of unprocessed 5’ DNA flaps at MS32 during replication. Subsequent DNA repair at MS32, by error-prone processes, may underlie the instability seen in ALT+ cells.
APA, Harvard, Vancouver, ISO, and other styles
15

Martinez, Alaina R. "Variant requirements for DNA repair proteins in cancer cell lines that use alternative lengthening of telomere mechanisms of elongation." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1479924417740462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Anjomani, Virmouni Sara. "Genotype and phenotype characterisation of Friedreich ataxia mouse models and cells." Thesis, Brunel University, 2013. http://bura.brunel.ac.uk/handle/2438/7831.

Full text
Abstract:
Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder, caused by a GAA repeat expansion mutation within intron 1 of the FXN gene, resulting in reduced level of frataxin protein. Normal individuals have 5 to 40 GAA repeat sequences, whereas affected individuals have approximately 70 to more than 1000 GAA triplets. Frataxin is a mitochondrial protein involved in iron-sulphur cluster and heme biosynthesis. The reduction in frataxin expression leads to oxidative stress, mitochondrial iron accumulation and consequential cell death with the primary sites of neurons of the dorsal root ganglia and the dentate nucleus of the cerebellum. FRDA, which is the most common inherited ataxia, affecting 1:50,000 Caucasians, is characterised by neurodegeneration, cardiomyopathy, diabetes mellitus and skeletal deformities. To investigate FRDA molecular disease mechanisms and therapy, several human FXN YAC transgenic mouse models have been established: Y47R, containing normal-sized (GAA)9 repeats; YG8R and YG22R, which initially contained expanded GAA repeats of 90-190 units and 190 units, respectively, but which have subsequently been bred to now contain expanded GAA repeats of 120-220 units and 170-260 units, respectively, and YG8sR (YG8R with a small GAA band) that was recently generated from YG8R breeding. To determine the FXN transgene copy number in the enhanced GAA repeat expansion-based FRDA mouse lines, a TaqMan qPCR assay was developed. The results demonstrated that the YG22R and Y47R lines had a single copy of the FXN transgene while the YG8R line had two copies. The YG8s lines showed less than one copy of the target gene, suggesting potential deletion of the FXN gene. Single integration sites of all transgenes were confirmed by fluorescence in situ hybridisation (FISH) analysis of metaphase and interphase chromosomes. However, in the YG8s line, at least 25% of the YG8s cells had no signals, while the remaining cells showed one signal corresponding to the transgenic FXN gene. In addition, the analysis of FXN exons in YG8s rescue mice by PCR confirmed the presence of all FXN exons in these lines, suggesting the incidence of somatic mosaicism in these lines. Extended functional analysis was carried out on these mice from 4 to 12 months of age. Coordination ability of YG8R, YG8sR and YG22R ‘FRDA-like’ mice, together with Y47R and C57BL6/J wild-type control mice, was assessed using accelerating rotarod analysis. The results indicated a progressive decrease in the motor coordination of YG8R, YG22R and YG8sR mice compared to Y47R or C57BL6/J controls. Locomotor activity was also assessed using an open field beam-breaker apparatus followed by four additional functional analyses including beam-walk, hang wire, grip strength and foot print tests. The results indicated significant functional deficits in the FRDA mouse models. Glucose and insulin tolerance tests were also conducted in the FRDA mouse models, indicating glucose intolerance and insulin hypersensitivity in the aforementioned lines. To investigate the correlation between the FRDA-like pathological phenotype and frataxin deficiency in the FRDA mouse models, frataxin mRNA and protein levels as well as somatic GAA repeat instability were examined. The results indicated that somatic GAA repeats increased in the cerebellum and brain of YG22R, YG8R and YG8sR mice, together with significantly reduced levels of FXN mRNA and protein in the liver of YG8R and YG22R compared to Y47R. However, YG8sR lines showed a significant decrease in FXN mRNA in all of the examined tissues compared to Y47R human FXN and C57BL6/J mouse Fxn mRNA. Protein expression levels were also considerably reduced in all the tissues of YG8sR mice compared to Y47R. Subsequently, the telomere length of human and mouse FRDA and control fibroblasts was assessed using qPCR and Q-FISH. The results indicated that the FRDA cells had chromosomes with relatively longer telomeric repeats in comparison to the controls. FRDA cells were screened for expression of telomerase activity using the TRAP assay and a quantitative assay for hTERT mRNA expression using TaqMan qRT-PCR. The results indicated that telomerase activity was not present in the FRDA cells. To investigate whether FRDA cells maintained their telomeres by ALT associated PML bodies (APBs), co-localisation of PML bodies with telomeres was assessed in these cells using combined immunofluorescence to PML and Q-FISH for telomere detection. The results demonstrated that the FRDA cells had significantly higher co-localised PML foci with telomeric DNA compared to the normal cells. Moreover, telomere sister chromatid exchange (T-SCE) frequencies were analysed in the human FRDA cell lines using chromosome orientation FISH (CO-FISH). The results indicated a significant increase in T-SCE levels of the FRDA cell lines relative to the controls. Furthermore, growth curve and population doubling analysis of the human FRDA and control fibroblasts was carried out. The results showed that the FRDA fibroblast cell cultures underwent growth arrest with higher cumulative population doubling compared to the controls. Though, further analysis of telomere length at different passage numbers revealed that the FRDA cells lost telomeres faster than the controls. Finally, the telomere dysfunction-induced foci (TIF) assay was performed to detect DNA damage in the human FRDA fibroblast cells using an antibody against DNA damage marker γ-H2AX and a synthetic PNA probe for telomeres. The frequency of γ-H2AX foci was significantly higher in the FRDA cells compared to the controls. Similarly, the FRDA cells had greater frequencies of TIFs in comparison to the controls, suggesting induced telomere dysfunction in the FRDA cells.
APA, Harvard, Vancouver, ISO, and other styles
17

Neumayer, Bettina [Verfasser], and Bence [Akademischer Betreuer] Sipos. "Loss of DAXX/ATRX expression and alternative lengthening of telomeres in insulinomas and neuroendocrine tumours of the small intestine / Bettina Neumayer ; Betreuer: Bence Sipos." Tübingen : Universitätsbibliothek Tübingen, 2015. http://d-nb.info/1163462187/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Jeitany, Maya. "Les mécanismes ALTernatifs de maintenance des télomères dans les cellules souches de gliome." Thesis, Paris 5, 2014. http://www.theses.fr/2014PA05T010/document.

Full text
Abstract:
Les cellules souches de gliomes (CSG), une sous-population de cellules tumorales, seraient en partie responsables de l’échec des traitements des gliomes de par leur résistance et leur capacité régénérative. Le mécanisme alternatif (ALT) de maintenance des télomères, basé sur la recombinaison homologue et non pas sur la télomérase, est détecté dans environ 30% des gliomes humains suggérant que des stratégies thérapeutiques spécifiquement dirigées contre ALT pourraient avoir un intérêt thérapeutique. Dans ce travail, nous avons poursuivi la caractérisation du premier exemple de CSG humaines ayant un phénotype ALT, les cellules TG20. Nous avons montré que malgré leur très fort taux de recombinaison, les télomères de ces cellules continuaient à assurer leur fonction de protection des chromosomes. Nous avons vérifié que les cellules TG20 conservaient leur capacité à générer des tumeurs intracérébrales après des transplantations sériées chez les souris immunodéprimées tout en gardant un phénotype ALT. Ces résultats confirment à la fois les propriétés de cellules souches cancéreuses des cellules TG20 et la capacité de ALT à assurer la maintenance des télomères nécessaire à l’autorenouvellement et au fort taux de prolifération des CSG in vivo. La greffe intracérébrale de cellules TG20 chez des souris immunodéprimées représente donc un bon modèle d’étude préclinique des gliomes ALT. Nous avons ainsi montré qu’un traitement précoce par un ligand des G-quadruplexes télomériques, 360B, juste après la greffe de cellules TG20, était capable d’inhiber le développement tumoral suggérant l’intérêt de l’utilisation de ligands des G-quadruplexes pour cibler spécifiquement les CSG ALT. Une étude des profils d'expression transcriptomique des cellules TG20 et de plusieurs lignées de CSG humaines exprimant la télomérase, nous a conduit à nous intéresser aux rôles de deux lysine acétyl transférases homologues, PCAF (P300/CBP Associated Factor) et GCN5 (General Control Nonderepressible 5) dans la régulation de la recombinaison télomérique des cellules ALT. Nous avons montré que les inhibitions de ces deux protéines ont des effets opposés sur le mécanisme ALT. Nous proposons qu’une balance d’expression de PCAF et GCN5 régule la maintenance des télomères dans les cellules ALT via le contrôle du turnover de TRF1 ce qui pourrait constituer la base d’une nouvelle stratégie thérapeutique vis-à-vis des gliomes ayant un phénotype ALT
Glioma stem cells (GSC), a subpopulation of tumor cells, are partly responsible for the failure of treatment of gliomas because of their resistance and regenerative capacity. The mechanism of alternative lengthening of telomere (ALT), based on homologous recombination, is detected in approximately 30 % of human gliomas. Therefore, therapeutic strategies directed specifically against ALT may have a therapeutic value. In this work, we further characterized the first model of human ALT GSC, the TG20 cells. We showed that despite their very high rate of recombination, the telomeres were still capable of fulfilling their protective function of chromosomes. We verified that the TG20 cells retained their ability to generate intracerebral tumors after serial transplantations in immunocompromised mice, while preserving an ALT phenotype. These results confirm the cancer stem properties of TG20 cells and the ability of ALT to ensure telomeres maintenance, which is required for the self-renewal and the high proliferation rate of GSC in vivo. Intracerebral grafts of TG20 cells in immunocompromised mice represent thus a good preclinical model for studying ALT gliomas. We have shown that treatment with a ligand of telomeric G-quadruplexes, the 360B, at an early stage of TG20 tumor engraftment, was able to inhibit tumor growth, showing the interest of the use of G-quadruplex ligands to specifically target ALT GSC. Transcriptomic profiling of TG20 cells and several other GSC telomerase-positive lines, incited us to study the roles of two homologous lysine acetyl transferases, PCAF (p300/CBP Associated Factor) and GCN5 (General Control Nonderepressible 5), in the regulation of telomeric recombination in ALT cells. We showed that the inhibition of these two proteins has opposite effects on the ALT mechanism. We propose that a balance of expression of PCAF and GCN5 regulates the telomere maintenance in ALT cells by controlling the turnover of TRF1. This model could serve for the development of new therapeutic strategies targeting ALT gliomas
APA, Harvard, Vancouver, ISO, and other styles
19

Burkert, Christian Martin. "Cis-regulation and genetic control of gene expression in neuroblastoma." Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/23008.

Full text
Abstract:
Genregulation beeinflusst Phänotypen im Kontext von Gesundheit und Krankheit. In Krebszellen regulieren genetische und epigenetische Faktoren die Genexpression in cis. Das Neuroblastom ist eine Krebserkrankung, die häufig im Kindesalter auftritt. Es ist gekennzeichnet durch eine geringe Anzahl exonischer Mutationen und durch häufige Veränderungen der somatischen Kopienzahl, einschließlich Genamplifikationen auf extrachromosomaler zirkulärer DNA. Bisher ist wenig darüber bekannt, wie lokale genetische und epigenetische Faktoren Gene im Neuroblastom regulieren. In dieser Arbeit kombiniere ich die allelspezifische Analyse ganzer Genome (WGS), Transkriptome und zirkulärer DNA von Neuroblastom-Patienten, um genetische und cis-regulatorische Effekte zu charakterisieren. Ich zeige, dass somatische Dosis-Effekte der Kopienzahl andere lokale genetische Effekte dominieren und wichtige Signalwege regulieren. Genamplifikationen zeigen starke Dosis-Effekte und befinden sich häufig auf großen extrachromosomalen zirkulären DNAs. Die vorgestellte Analyse zeigt, dass der Verlust von 11q zu einer Hochregulation von Histonvarianten H3.3 und H2A in Tumoren mit alternativer Verlängerung der Telomere (ALT) führt, und dass erhöhte somatische Kopienzahl die Expression der TERT Gens verstärken können. Weitere Erkenntnisse sind, dass 17p-Ungleichgewichte und die damit verbundene Herunterregulierung neuronaler Gene sowie die Hochregulierung des genomisch geprägten Gens RTL1 durch Kopienzahl-unabhängige allelische Dosis-Effekte mit einer ungünstigen Prognose verbunden sind. Die cis-QTL-Analyse bestätigt eine zuvor beschriebene Regulation des LMO1 Gens durch einen Enhancer-Polymorphismus und charakterisiert das regulatorische Potenzial weiterer GWAS-Risiko-Loci. Die Arbeit unterstreicht die Bedeutung von Dosis-Effekten im Neuroblastom und liefert eine detaillierte Übersicht regulatorischer Varianten, die in dieser Krankheit aktiv sind.
Gene regulation controls phenotypes in health and disease. In cancer, the interplay between germline variation, genetic aberrations and epigenetic factors modulate gene expression in cis. The childhood cancer neuroblastoma originates from progenitor cells of the sympathetic nervous system. It is characterized by a sparsity of recurrent exonic mutations but frequent somatic copy-number alterations, including gene amplifications on extrachromosomal circular DNA. So far, little is known on how local genetic and epigenetic factors regulate genes in neuroblastoma to establish disease phenotypes. I here combine allele-specific analysis of whole genomes, transcriptomes and circular DNA from neuroblastoma patients to characterize genetic and cis-regulatory effects, and prioritize germline regulatory variants by cis-QTLs mapping and chromatin profiles. The results show that somatic copy-number dosage dominates local genetic effects and regulates pathways involved in telomere maintenance, genomic stability and neuronal processes. Gene amplifications show strong dosage effects and are frequently located on large but not small extrachromosomal circular DNAs. My analysis implicates 11q loss in the upregulation of histone variants H3.3 and H2A in tumors with alternative lengthening of telomeres and cooperative effects of somatic rearrangements and somatic copy-number gains in the upregulation of TERT. Both 17p copy-number imbalances and associated downregulation of neuronal genes as well as upregulation of the imprinted gene RTL1 by copy-number-independent allelic dosage effects is associated with an unfavorable prognosis. cis-QTL analysis confirms the previously reported regulation of the LMO1 gene by a super-enhancer risk polymorphism and characterizes the regulatory potential of additional GWAS risk loci. My work highlights the importance of dosage effects in neuroblastoma and provides a detailed map of regulatory variation active in this disease.
APA, Harvard, Vancouver, ISO, and other styles
20

Terranova, Katherine. "Defining RAD54 function in the alternative lengthening of telomeres pathway." Thesis, 2020. https://hdl.handle.net/2144/41737.

Full text
Abstract:
BACKGROUND: Telomeres are the DNA sequences at the end of chromosomes that are made up of highly repetitive sequences to protect the ends of chromosomes from damage. Telomeres shorten with each round of DNA replication eventually causing cellular senescence. Many cancer cells are able to overcome or evade senescence by elongating their telomeres. Alternative lengthening of telomeres (ALT) is a recombination based mechanism used by cancer cells to maintain telomere length. Evidence supports that unresolved replication stress at telomeric DNA promotes telomere elongation. Given the role of RAD54 in recombination genome wide, we were interested in investigating whether RAD54 is contributing to ALT telomere maintenance. OBJECTIVE: To define the role of RAD54 in ALT telomere maintenance. METHODS: Several different known ALT cell lines and non-ALT cell lines were examined using wet-lab techniques. Combined immunofluorescence and DNA FISH (IF-FISH) was used to visualize co-localization between RAD54 and telomeres, siRNA was used to deplete specific mRNA, and western blots were used to confirm these knockdowns. RESULTS: IF-FISH showed enrichment of RAD54 at the telomeres in ALT cells as compared to non-ALT cells. There was a decrease in incorporation of the synthetic nucleotide EdU in the absence of RAD54, indicating a decrease in DNA synthesis. No change was seen in the recruitment of RAD51, a recombinase, to telomeres in the absence of RAD54. There was a significant increase in MUS81 colocalization to ALT telomeres in the absence of RAD54 and an increase in the number of ultra-fine anaphase bridges. CONCLUSIONS: Using combined immunofluorescence and DNA FISH, we found enrichment of RAD54 at the telomeres in ALT cells as compared to non-ALT cell lines. Furthermore, RAD54 is predominantly found at ALT telomeres in ALT-associated promyelocytic leukemia (PML) bodies (APBs), which are nuclear condensates containing telomeres and many repair proteins. APBs are thought to be sites of active recombination, mediated by the recombinase RAD51. We can monitor recombination using EdU incorporation events at telomeres. RAD54 promotes DNA synthesis events at ALT telomeres, as measured through EdU incorporation. No change was found in RAD51 recruitment to telomeres in the absence of RAD54, indicating that RAD54 is not required for RAD51 mediated synapsis. By over-expressing RAD54 mutants, we found that sites of DNA synthesis, that are thought to be elongation events at ALT telomeres, are dependent on the ATPase and branch migration activities of RAD54. These results suggest that RAD54 is promoting telomere elongation by mediating the migration of the branched DNA structures formed at telomeres during recombination. When RAD54 is depleted, we found an increase in recruitment of the nuclease MUS81 to ALT telomeres, suggesting that in the absence of branch migration, ALT telomeres are cleaved to resolve recombination intermediates. Together, these data demonstrate a crucial role for RAD54 in promoting ALT mediated telomere elongation through resolving homologous recombination intermediates via branch migration.
APA, Harvard, Vancouver, ISO, and other styles
21

Cox, Kelli. "Replication stress and the alternative lengthening of telomeres pathway." Thesis, 2016. https://hdl.handle.net/2144/16743.

Full text
Abstract:
In an effort to achieve replicative immortality, human cancer cells must avoid the constant telomere attrition that accompanies DNA replication. Cancer cells accomplish this by employing mechanisms to lengthen their telomeres. Approximately 10 percent of all cancers utilize the Alternative Lengthening of Telomeres (ALT) pathway to maintain telomere length. Although ALT is known to rely on homologous recombination between two telomeric sequences, the exact mechanism and regulators of the ALT pathway remain elusive. As common fragile sites, telomeres pose a challenge to the replication machinery. This replication challenge is exacerbated in ALT cells due to defects in nucleosome assembly, suggesting the importance of managing replication stress at telomeres in these cells. ATR (ataxia telangiectasia and Rad3-related) is an important kinase in the response to replication stress. The work in this thesis demonstrates that ATR is also a key mediator of ALT activity. Due to the highly recombinogenic state of ALT telomeres, these cells depend on ATR activity. In fact, we illustrate that small molecule inhibition and siRNA mediated loss of ATR disrupts ALT activity and promotes cell death specifically in ALT positive cancer cells. Although we establish ATR as a critical regulator and effective therapeutic target in ALT cancers, the exact mechanism of ATR in this pathway remains elusive. Recently, the chromatin remodeling enzyme SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily A-like protein 1) was identified as one of the most abundant proteins bound to sites of replication stress. We demonstrate by combined immunofluorescence-FISH and chromatin immunoprecipitation that SMARCAL1 associates with ALT telomeres to resolve replication stress and maintain telomere stability. Specifically, we illustrate that siRNA mediated loss of SMARCAL1 in ALT cancer cells results in persistently stalled replication forks that collapse into DNA double strand breaks, which promotes the formation of chromosome fusions. Ultimately, we illustrate that loss of SMARCAL1 in ALT cancer cells promotes genomic instability through telomere dysfunction. Although great strides have been made in defining the ALT mechanism, the drivers of this pathway remain elusive. These studies highlight the importance of replication stress in both activation and maintenance of the ALT pathway. Our data demonstrate chronic replication stress as a key feature at ALT telomeres. Importantly, we were able to exploit this feature to identify a novel therapeutic avenue for ALT positive cancers.
APA, Harvard, Vancouver, ISO, and other styles
22

Al, Murshedi Fathiya. "Role of FANCM in Alternative Lengthening of Telomeres (ALT) Human Cells." Thesis, 2010. http://hdl.handle.net/1807/24237.

Full text
Abstract:
Most immortal human cells maintain their telomeres by up-regulating the enzyme telomerase. Approximately 10-15% of immortal cells maintain their telomere lengths by a recombination-based mechanism termed alternative lengthening of telomeres (ALT). Human ALT cells are characterized by ALT associated promyelocytic bodies (APBs) that contain proteins involved in DNA damage response and repair. Our lab has found significant colocalization of several components of the Fanconi Anemia (FA) pathway with telomeres and demonstrated that knockdown of FANCD2 leads to ALT-specific increase in the amount of telomeric DNA as well as increased aneuploidy and cell death. In this study, we examined the role of FANCM in telomere maintenance in ALT cells. We found a significant colocalization of FANCM with telomeres in two ALT cell lines. Knockdown of FANCM was associated with reduced growth, increases in the size of TRF2 foci and in the amount of telomeric DNA. These data suggest that FANCM plays a role in telomere length regulation and maintenance.
APA, Harvard, Vancouver, ISO, and other styles
23

Salgado, Sara Barros. "Exploring the roles of PC4 in the Alternative Lengthening of Telomeres pathway." Master's thesis, 2022. http://hdl.handle.net/10362/130700.

Full text
Abstract:
Telomeres are nucleic acids-protein complexes located at the ends of linear eukaryotic chromosomes comprising 5’-TTAGGG-3’ tandem repeats, the multiprotein complex shelterin and the long non-coding RNA TERRA. Telomeres act both as molecular clocks and capping structures supporting chromosome integrity. Due to the end-replication problem, telomeres progressively shorten with each cell division and ultimately trigger cellular senescence. Cancer cells bypass senescence and divide indefinitely by activating mechanisms that buffer telomere shortening. Most cancers reactivate the reverse transcriptase telomerase, yet about 15% elongate their telomeres through the Alternative Lengthening of Telomeres (ALT) pathway. ALT cells rely on break-induced replication (BIR), a homology-directed repair mechanism activated at damaged telomeric DNA. This damage is induced by replication stress (ALT-specific Telomeric Replication Stress; ATRS) and must be kept at a level that induces enough BIR yet without strongly activating DNA damage checkpoints that would cause cell death. This balance is attained by the counteracting activities of molecular triggers and alleviators of ATRS. The Azzalin laboratory has recently identified the transcriptional regulator positive cofactor 4 (PC4), a multifunctional nuclear protein capable of binding to dsDNA, ssDNA, G-quadruplex structures and RNA, as essential for ALT cell survival. PC4 was shown to localize at telomeres of ALT cells by indirect immunofluorescence, being recruited in response to replication stress. This study aims at elucidating the role played by PC4 at ALT telomeres. I confirmed by chromatin immunoprecipitation that PC4 associates with telomeres and this association increases when cells are treated with drugs inducing replication stress. Furthermore, PC4 depletion exacerbates ATRS and ALT features. TERRA levels in PC4-depleted cells showed no consistent alterations, suggesting that the effects observed upon PC4 depletion are unlikely to derive from changes in telomere transcription. Moreover, loss of PC4 did not substantially alter ssDNA and total telomeric DNA levels and ectopic expression of a PC4 mutant unable to bind ssDNA only partially rescued the defects due to PC4 loss; this indicates that the function played by PC4 at ALT telomeres is not majorly relying on its ability to bind ssDNA. This work strengthens the notion that PC4 is an ATRS alleviator capable of restricting telomeric replication stress and ALT features. In light of this, PC4 emerges as an attractive target for the development of novel therapeutic protocols against ALT cancers.
Os telómeros são complexos de ácidos nucleicos e proteínas localizados nas extremidades dos cromossomas das células eucarióticas constituídos pela sequência repetitiva 5’-TTAGGG-3’, pelo complexo proteico shelterin e pelo RNA não-codificante TERRA. Os telómeros funcionam como relógios celulares e estruturas protectoras que mantêm a integridade dos cromossomas. Devido à incapacidade de replicar totalmente as extremidades cromossómicas, os telómeros são encurtados a cada divisão celular até ser atingido um estado de senescência replicativa. As células de cancro conseguem dividir-se de forma ilimitada ao activarem mecanismos que contrariam o encurtamento dos telómeros. Na maior parte dos cancros a enzima telomerase é reactivada, porém cerca de 15% alonga os seus telómeros através de um mecanismo alternativo de alongamento dos telómeros (alternative lengthening of telomeres, ALT). O mecanismo de ALT baseia-se num processo de reparação homóloga de DNA (break-induced replication, BIR) onde é necessário que os telómeros se encontrem fisiologicamente danificados para serem alongados. Assim, as células ALT acumulam stress replicativo nos telómeros (ALT-specific telomeric replication stress, ATRS) que tem de ser mantido num nível que assegure o seu alongamento sem que desencadeie mecanismos de morte celular, um equilíbrio mantido por proteínas que despoletam ou mitigam este ATRS. Recentemente, o regulador transcricional PC4 (positive cofactor 4), uma proteína multifuncional com capacidade de ligação a DNA de cadeia simples e dupla (ssDNA e dsDNA, respectivamente), a RNA e a estruturas secundárias de ácidos nucleicos (G-quadruplexes) foi identificado pelo Laboratório Azzalin como sendo essencial para a sobrevivência de células ALT, sendo recrutado em resposta a stress replicativo. Este estudo tem como objetivo elucidar o papel desempenhado por PC4 nos telómeros de células ALT. Através de imunoprecipitação de cromatina, eu confirmei que PC4 se associa a DNA telomérico e que esta associação aumenta quando as células são tratadas com compostos que induzem stress replicativo. Demonstrei ainda que a depleção de PC4 leva ao aumento de ATRS e marcadores característicos de células ALT. Os níveis de TERRA em células desprovidas de PC4 não apresentaram alterações consistentes, sugerindo que os efeitos causados pela depleção de PC4 não derivam de alterações na transcrição telomérica. Além disso, a ausência de PC4 não alterou substancialmente os níveis de DNA telomérico de cadeia simples e a expressão ectópica de um mutante de PC4 com incapacidade de ligação a ssDNA reverteu apenas de forma parcial os efeitos causados pela perda de PC4 endógeno, indicando que a função desempenhada por PC4 nos telómeros de células ALT não está restrita à sua capacidade de ligação a ssDNA. Este estudo reforça a noção de que PC4 é um mitigador de ATRS capaz de restringir o stress replicativo nos telómeros de células ALT, sendo por isso um alvo interessante para novas abordagens terapêuticas contra cancros ALT.
APA, Harvard, Vancouver, ISO, and other styles
24

Root, Heather. "The Fanconi Anaemia Protein D2 has an Essential Role in Telomere Maintenance in Cells that Utilize the Alternative Lengthening of Telomeres Pathway." Thesis, 2010. http://hdl.handle.net/1807/26231.

Full text
Abstract:
Fanconi anaemia (FA) is an inherited disorder characterized by bone marrow failure, cancer predisposition and congenital abnormalities. The 12 known FA genes have been implicated in homologous recombination (HR), a process involved in telomere maintenance. A complex of at least 7 FA proteins promotes FANCD2 monoubiquitination and nuclear foci formation. FANCD2 colocalizes and interacts with HR proteins, however the role of FANCD2 in HR is unclear. Telomeres in dividing human somatic cells shorten until they reach a critical length, triggering most cells to undergo senescence or apoptosis. Rare immortal cells escape this crisis by expressing telomerase, or activating the Alternative Lengthening of Telomeres (ALT) pathway, which involves HR. FA core complex proteins and FANCD2 colocalize with telomeric foci in ALT, but not telomerase positive cells. Localization of FANCD2 to ALT telomeric foci requires monoubiquitination by the FA core complex, but is independent of ATM and ATR. FANCD2 primarily colocalizes with ALT telomeric DNA within ALT-associated PML bodies (APBs). Electron spectroscopic imaging and FISH experiments show that APBs contain extra-chromosomal telomeric repeat (ECTR) DNA that is non-nucleosomal. Depletion of FANCD2 causes marked increases in ECTR in ALT, but not telomerase positive cells. Overexpression of BLM, the helicase mutated in Bloom syndrome, also causes an ALT-specific increase in ECTR DNA. FANCD2 coimmunoprecipitates with BLM in ALT cells, and FANCD2 localization to ALT telomeric foci requires BLM expression. FANCD2-depleted ALT cells have reduced viability, signs of mitotic catastrophe, and multiple types of telomeric abnormalities, including increases in telomeric recombination, entanglements, colocalization with DNA repair proteins, and expression of fragile site characteristics. SiRNA depletion of FANCD2 does not cause overexpression of BLM, however codepletion of BLM with FANCD2 suppresses the telomere phenotypes caused by FANCD2 knockdown. Together this suggests that FANCD2 regulates BLM-dependent recombination and amplification of telomeric DNA within ALT cells.
APA, Harvard, Vancouver, ISO, and other styles
25

Komosa, Martin. "The Fanconi Anaemia Protein FANCJ is Involved in the Alternative Lengthening of Telomeres (ALT) Mechanism in Human Cells." Thesis, 2011. http://hdl.handle.net/1807/29580.

Full text
Abstract:
Approximately 15% of human cancers utilize a recombination-based mechanism termed Alternative Lengthening of Telomeres (ALT) to maintain the lengths of their telomeres. The Fanconi anaemia protein FANCJ localizes to telomeric foci in human ALT cells, but not in telomerase-positive or primary cells. Telomere-associated FANCJ frequently localizes with FANCD2 and BRCA1, and primarily localizes to ALT-associated PML nuclear bodies. Depletion of FANCJ in human ALT cells causes the loss of BRCA1 at telomeric foci and a decrease in telomeric repeat DNA content primarily as a result of the loss of the brightest telomeric repeat DNA foci. In contrast, depletion of the FANCD2 results in increased telomeric repeat DNA synthesis and this is suppressed upon the codepletion of FANCJ. Together, data from this study suggest that FANCJ is required for telomeric repeat DNA synthesis in human ALT cells, which may or may not be dependent on BRCA1, and FANCD2 restrains this synthesis.
APA, Harvard, Vancouver, ISO, and other styles
26

Mason-Osann, Emily. "Defining mechanisms that regulate the alternative lengthening of telomeres." Thesis, 2020. https://hdl.handle.net/2144/39411.

Full text
Abstract:
Telomeres are repetitive DNA sequences found at the ends of eukaryotic chromosomes that help maintain genome stability. Telomeres shorten every time a cell divides, eventually inducing replicative senescence. To gain replicative immortality cancer cells establish mechanisms to maintain telomere length over many cell divisions. Around 10% of cancers do this using a recombination-based pathway called the Alternative Lengthening of Telomeres (ALT). ALT resembles a specific type of homology-directed repair called break-induced replication (BIR). Through this body of work, we aimed to better understand both the genetics underlying ALT positive cancers and the mechanistic basis of ALT. ALT positive cancers frequently carry loss of function mutations in the genes for ATRX/DAXX, which function to regulate heterochromatin. Recently, we identified a novel chromosomal fusion event in ALT positive osteosarcoma causing defects in DAXX function. Additionally, we identified several osteosarcoma tumors with wild-type ATRX/DAXX that had abnormalities in SLX4IP or SMARCAL1, proteins recently shown to regulate the ALT pathway. These data suggest that a more thorough understanding of the ALT mechanism may reveal additional factors that are defective in ALT positive tumors. Building on this, we aimed to further define the mechanism of ALT by investigating the DNA translocase RAD54 in the ALT pathway. During BIR, a broken DNA strand invades a homologous template, forming a structure called a displacement loop (D-loop) where a strand of template DNA is displaced to allow base pairing between the broken DNA strand and the homologous template. The D-loop recruits DNA polymerases, leading to extension and repair of the broken DNA strand. RAD54 is known to regulate both the formation and resolution of D-loops. In this work, we found that RAD54 promotes elongation at ALT telomeres by mediating branch migration and dissolution of the D-loop. D-loops formed at ALT telomeres must be resolved before mitosis to prevent the formation of ultra-fine anaphase bridges. These data demonstrate that by mediating D-loop migration RAD54 plays an important role in both promoting telomere elongation and maintaining genome stability in ALT cells. Together this body of work represents advances in defining both the genetic and mechanistic basis of ALT.
2021-01-30T00:00:00Z
APA, Harvard, Vancouver, ISO, and other styles
27

Liau, Jau-Yu, and 廖肇裕. "Alternative Lengthening of Telomeres and Loss of ATRX/DAXX Expression in Sarcomas with Clinicopathological Features." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/k88g63.

Full text
Abstract:
博士
國立臺灣大學
病理學研究所
106
Alternative lengthening of telomeres (ALT) is a telomerase-unrelated telomere maintenance mechanism that maintain the cell division ability in cancer cells. Currently it is supposed that homologous recombination and DNA repair are utilized in this mechanism, which copy the telomeres and other DNA sequences from other chromosomes to maintain the telomere length. ALT positive cells are characterized by telomere length heterogeneity and some chromosomes may have extremely long telomeres. These phenomena can be visualized by Southern blotting or telomere fluorescent in situ hybridization (FISH). Among the cancers, soft tissue sarcomas and gliomas are frequently ALT positive. In previous studies ALT has been shown to be highly correlated with loss of ATRX or DAXX in pancreatic neuroendocrine tumors. We used telomere FISH and ATRX/DAXX immunohistochemistry to determine the frequencies of this mechanism in different sarcoma types, its correlation with ATRX/DAXX expression, and potential clinicopathological features. In total, we analyzed 535 soft tissue tumors, including 456 soft tissue sarcomas (including 23 gastrointestinal stromal tumors [GIST] and 20 Kaposi sarcoma) and 79 cases of uterine smooth muscle tumors that exhibit atypical histological features but fall short of the diagnosis of leiomyosarcoma. Loss of ATRX expression was seen in 67 tumors (15%) of the 456 soft tissue sarcomas, and partial loss of DAXX was observed in 2 ATRX-deficient tumors (both were angiosarcomas). By the histological subtype, undifferentiated sarcoma (12/35, 34%), leiomyosarcoma (30/92, 33%), osteosarcoma (4/18, 22%) and angiosarcoma (16/88, 18%) were the major tumor types most frequently exhibited loss of ATRX. Loss of ATRX expression was also seen in small proportions of embryonal rhabdomyosarcoma (1/9, 11%), epithelioid hemangioendothelioma (1/11, 9%), malignant peripheral nerve sheath tumor (MPNST, 1/17, 6%) and myxofibrosarcoma (1/27, 4%). One GIST exhibited focal loss of ATRX expression (1/23, 4%). In non-leiomyosarcomatous smooth muscle tumors, loss of ATRX expression was observed in 1 smooth muscle tumor of uncertain malignant potential (STUMP). Other tumors exhibited retained ATRX/DAXX expression. Interpretable telomere FISH was obtained in 405 tumors, including 334 soft tissue sarcomas and 71 non-leiomyosarcomatous smooth muscle tumors. The results showed that 123 tumors were positive for ALT, including 118 soft tissue sarcomas (118/334, 35%), 4 STUMPs (4/12, 33%) and 1 atypical leiomyoma (1/25, 4%). By the histological subtype, ALT was most commonly seen in undifferentiated sarcoma (22/34, 65%), leiomyosarcoma (51/86, 59%) and myxofibrosarcoma (19/25, 76%). ALT was also observed in subsets of angiosarcoma (17/70, 24%), post-irradiation sarcoma (3/15, 20%), MPNST (3/14, 21%), embryonal rhabdomyosarcoma (1/8, 13%), epithelioid hemangioendothelioma (1/7, 14%) and GIST (1/16, 6%). Except for 2 leiomyosarcomas, all ATRX-deficient tumors were ALT positive (P < 0.001). In 321 cytogenetically complex sarcomas, 65 cases were ATRX deficient (20%), and 116 cases were ALT positive (46%). Both features were much more commonly seen than in gene fusion-associated sarcomas (both P < 0.001). We also studied the clinicopathological significance of ALT and loss of ATRX in leiomyosarcomas and angiosarcomas. We found that ALT was an unfavorable prognostic factor in leiomyosarcomas, and in angiosarcomas these two features were particularly common in primary hepatic tumors. We also attempted to investigate the diagnostic and prognostic values of telomere FISH in non-leiomyosarcomatous uterine smooth muscle tumors. Among the 4 ALT positive STUMPs, 3 exhibited tumor recurrence and/or metastasis. Our results demonstrated that this method has potential utilities in the diagnosis and prognostication. In summary, our results showed that ALT is an important telomere maintenance mechanism in soft tissue sarcomas, particularly in cytogenetically complex sarcomas. This mechanism was highly associated with loss of ATRX and was an unfavorable prognostic factor in smooth muscle tumors. Recent studies have shown that inhibition of ATR can selectively kill the ALT positive cells. This therapy may be promising in the future to treat these tumors.
APA, Harvard, Vancouver, ISO, and other styles
28

Larsen, Andrew. "Characterizing the Organization within Alternative Lengthening of Telomere Associated-promyelocytic Leukemia Nuclear Bodies." Thesis, 2010. http://hdl.handle.net/1807/25743.

Full text
Abstract:
In the absence of telomerase activity, a subset of cancerous and immortalized cells maintain telomere length by means of a poorly understood mechanism, termed alternative lengthening of telomeres (ALT). Many details of telomere maintenance in ALT positive cells remain unclear, but significant evidence implicates a homologous recombination mechanism. ALT specific nuclear structures, known as ALT-associated promyelocytic leukemia nuclear bodies (APBs), are thought to serve as the site of telomere extension. Using electron spectroscopic imaging we have demonstrated that APBs contain substantial amounts of nucleic acid sequestered within the bodies. In contrast, promyelocytic leukemia nuclear bodies in non-ALT cell lines contain no significant nucleic acid. We show that the nucleic acid found in APBs is not RNA and provide evidence that it is in fact telomeric repeat DNA. This evidence supports a role for APBs to sequester extrachromosomal telomeric DNA in order to suppress the activation of DNA repair.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography