Academic literature on the topic 'Alternating direction methods of multipliers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Alternating direction methods of multipliers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Alternating direction methods of multipliers"
Suzuki, Taiji. "STOCHASTIC ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR STRUCTURED REGULARIZATION." Journal of the Japanese Society of Computational Statistics 28, no. 1 (2015): 105–24. http://dx.doi.org/10.5183/jjscs.1502004_218.
Full textHager, William W., and Hongchao Zhang. "Inexact alternating direction methods of multipliers for separable convex optimization." Computational Optimization and Applications 73, no. 1 (2019): 201–35. http://dx.doi.org/10.1007/s10589-019-00072-2.
Full textMa, Shiqian, Lingzhou Xue, and Hui Zou. "Alternating Direction Methods for Latent Variable Gaussian Graphical Model Selection." Neural Computation 25, no. 8 (2013): 2172–98. http://dx.doi.org/10.1162/neco_a_00379.
Full textYu, Siting, Jingjing Peng, Zengao Tang, and Zhenyun Peng. "Iterative methods to solve the constrained Sylvester equation." AIMS Mathematics 8, no. 9 (2023): 21531–53. http://dx.doi.org/10.3934/math.20231097.
Full textLi, Min, Li-Zhi Liao, and Xiaoming Yuan. "Inexact Alternating Direction Methods of Multipliers with Logarithmic–Quadratic Proximal Regularization." Journal of Optimization Theory and Applications 159, no. 2 (2013): 412–36. http://dx.doi.org/10.1007/s10957-013-0334-4.
Full textHuang, Chunlin, and Dongbo Bu. "Predicting human contacts through alternating direction method of multipliers." International Journal of Modern Physics C 30, no. 07 (2019): 1940014. http://dx.doi.org/10.1142/s012918311940014x.
Full textAbeynanda, Hansi K., and G. H. J. Lanel. "A Study on Distributed Optimization over Large-Scale Networked Systems." Journal of Mathematics 2021 (April 29, 2021): 1–19. http://dx.doi.org/10.1155/2021/5540262.
Full textChao, Miantao, Caozong Cheng, and Haibin Zhang. "A Linearized Alternating Direction Method of Multipliers with Substitution Procedure." Asia-Pacific Journal of Operational Research 32, no. 03 (2015): 1550011. http://dx.doi.org/10.1142/s0217595915500116.
Full textWang, Si, Ting-Zhu Huang, Xi-le Zhao, and Jun Liu. "An Alternating Direction Method for Mixed Gaussian Plus Impulse Noise Removal." Abstract and Applied Analysis 2013 (2013): 1–11. http://dx.doi.org/10.1155/2013/850360.
Full textLiu, Yang, and Yazheng Dang. "Convergence Analysis of Multiblock Inertial ADMM for Nonconvex Consensus Problem." Journal of Mathematics 2023 (March 28, 2023): 1–12. http://dx.doi.org/10.1155/2023/4316267.
Full textDissertations / Theses on the topic "Alternating direction methods of multipliers"
Selvatici, Elena. "Variational formulation for Granular Contact Dynamics simulation via the Alternating Direction Method of Multipliers." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Find full textGu, Yan. "STUDIES ON ALTERNATING DIRECTION METHOD OF MULTIPLIERS WITH ADAPTIVE PROXIMAL TERMS FOR CONVEX OPTIMIZATION PROBLEMS." Kyoto University, 2020. http://hdl.handle.net/2433/259758.
Full textFécamp, Vivien. "Recalage/Fusion d'images multimodales à l'aide de graphes d'ordres supérieurs." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLC005/document.
Full textTang, Shuhan. "Spectral Analysis Using Multitaper Whittle Methods with a Lasso Penalty." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1586863604571678.
Full textAl, Sarray Basad. "Estimation et choix de modèle pour les séries temporelles par optimisation convexe." Besançon, 2016. http://www.theses.fr/2016BESA2084.
Full textOjha, Abhi. "Coupled Natural Gas and Electric Power Systems." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/78666.
Full textVelay, Maxime. "Méthodes d’optimisation distribuée pour l’exploitation sécurisée des réseaux électriques interconnectés." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAT063/document.
Full textGuiducci, Martina. "Metodo delle Direzioni Alternate per la ricostruzione di immagini Poissoniane." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19501/.
Full textRecupero, Giuseppe Antonio. "Un modello variazionale non convesso per il denoising di superfici." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23210/.
Full textScrivanti, Gabriele Luca Giovanni. "Nonsmooth Nonconvex Variational Reconstruction for Electrical Impedance Tomography." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20700/.
Full textBooks on the topic "Alternating direction methods of multipliers"
Lin, Zhouchen, Huan Li, and Cong Fang. Alternating Direction Method of Multipliers for Machine Learning. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9840-8.
Full textUnited States. National Aeronautics and Space Administration., ed. Multi-partitioning for ADI-schemes on message passing architectures. MCAT Institute, 1994.
Find full textUnited States. National Aeronautics and Space Administration., ed. Multi-partitioning for ADI-schemes on message passing architectures. MCAT Institute, 1994.
Find full textUnited States. National Aeronautics and Space Administration., ed. Multi-partitioning for ADI-schemes on message passing architectures. MCAT Institute, 1994.
Find full textBaysal, Oktay. Efficient gradient-based shape optimization methodology using inviscid/viscous CFD: Summary of research report for the period of March 9, 1995 to March 8, 1997, grant# NCC-1-211. Dept. of Aerospace Engineering, College of Engineering and Technology, Old Dominion University, 1997.
Find full textUnited States. National Aeronautics and Space Administration., ed. Efficient gradient-based shape optimization methodology using inviscid/viscous CFD: Summary of research report for the period of March 9, 1995 to March 8, 1997, grant# NCC-1-211. Dept. of Aerospace Engineering, College of Engineering and Technology, Old Dominion University, 1997.
Find full textUnited States. National Aeronautics and Space Administration., ed. Efficient gradient-based shape optimization methodology using inviscid/viscous CFD: Summary of research report for the period of March 9, 1995 to March 8, 1997, grant# NCC-1-211. Dept. of Aerospace Engineering, College of Engineering and Technology, Old Dominion University, 1997.
Find full textD, Salas M., and Langley Research Center, eds. Three-dimensional simulation of vortex breakdown. National Aeronautics and Space Administration, Langley Research Center, 1990.
Find full textD, Salas M., and Langley Research Center, eds. Three-dimensional simulation of vortex breakdown. National Aeronautics and Space Administration, Langley Research Center, 1990.
Find full textKuruvila, G. Three-dimensional simulation of vortex breakdown. National Aeronautics and Space Administration, Langley Research Center, 1990.
Find full textBook chapters on the topic "Alternating direction methods of multipliers"
Glowinski, Roland. "On Alternating Direction Methods of Multipliers: A Historical Perspective." In Computational Methods in Applied Sciences. Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9054-3_4.
Full textYan, Ming, and Wotao Yin. "Self Equivalence of the Alternating Direction Method of Multipliers." In Splitting Methods in Communication, Imaging, Science, and Engineering. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41589-5_5.
Full textLin, Zhouchen, Huan Li, and Cong Fang. "Derivations of ADMM." In Alternating Direction Method of Multipliers for Machine Learning. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9840-8_2.
Full textLin, Zhouchen, Huan Li, and Cong Fang. "ADMM for Nonconvex Optimization." In Alternating Direction Method of Multipliers for Machine Learning. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9840-8_4.
Full textLin, Zhouchen, Huan Li, and Cong Fang. "ADMM for Distributed Optimization." In Alternating Direction Method of Multipliers for Machine Learning. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9840-8_6.
Full textLin, Zhouchen, Huan Li, and Cong Fang. "ADMM for Deterministic and Convex Optimization." In Alternating Direction Method of Multipliers for Machine Learning. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9840-8_3.
Full textLin, Zhouchen, Huan Li, and Cong Fang. "Introduction." In Alternating Direction Method of Multipliers for Machine Learning. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9840-8_1.
Full textLin, Zhouchen, Huan Li, and Cong Fang. "Practical Issues and Conclusions." In Alternating Direction Method of Multipliers for Machine Learning. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9840-8_7.
Full textLin, Zhouchen, Huan Li, and Cong Fang. "Stochastic ADMM." In Alternating Direction Method of Multipliers for Machine Learning. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9840-8_5.
Full textKhakhutskyy, Valeriy, and Dirk Pflüger. "Alternating Direction Method of Multipliers for Hierarchical Basis Approximators." In Lecture Notes in Computational Science and Engineering. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04537-5_9.
Full textConference papers on the topic "Alternating direction methods of multipliers"
Kadkhodaie, Mojtaba, Konstantina Christakopoulou, Maziar Sanjabi, and Arindam Banerjee. "Accelerated Alternating Direction Method of Multipliers." In KDD '15: The 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2015. http://dx.doi.org/10.1145/2783258.2783400.
Full textRoutray, Chinmay, and Soumya Ranjan Sahoo. "Emulation Alternating Direction Method of Multipliers." In 2022 Eighth Indian Control Conference (ICC). IEEE, 2022. http://dx.doi.org/10.1109/icc56513.2022.10093531.
Full textZhang, Guoqiang, and Richard Heusdens. "Bi-alternating direction method of multipliers." In ICASSP 2013 - 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2013. http://dx.doi.org/10.1109/icassp.2013.6638272.
Full textWei, Ermin, and Asuman Ozdaglar. "Distributed Alternating Direction Method of Multipliers." In 2012 IEEE 51st Annual Conference on Decision and Control (CDC). IEEE, 2012. http://dx.doi.org/10.1109/cdc.2012.6425904.
Full textLing, Qing, and Alejandro Ribeiro. "Decentralized linearized alternating direction method of multipliers." In ICASSP 2014 - 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2014. http://dx.doi.org/10.1109/icassp.2014.6854644.
Full textRoutray, Chinmay, and Soumya Ranjan Sahoo. "Decentralizing Consensus-Alternating Direction Method of Multipliers." In 2023 European Control Conference (ECC). IEEE, 2023. http://dx.doi.org/10.23919/ecc57647.2023.10178331.
Full textMokhtari, Aryan, Wei Shi, Qing Ling, and Alejandro Ribeiro. "Decentralized quadratically approximated alternating direction method of multipliers." In 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2015. http://dx.doi.org/10.1109/globalsip.2015.7418306.
Full textMakhdoumi, Ali, and Asuman Ozdaglar. "Broadcast-based distributed alternating direction method of multipliers." In 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2014. http://dx.doi.org/10.1109/allerton.2014.7028466.
Full textZhang, Guoqiang, and Richard Heusdens. "Bi-alternating direction method of multipliers over graphs." In ICASSP 2015 - 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015. http://dx.doi.org/10.1109/icassp.2015.7178636.
Full textCerone, V., S. M. Fosson, S. Pirrera, and D. Regruto. "Alternating direction method of multipliers for polynomial optimization." In 2023 European Control Conference (ECC). IEEE, 2023. http://dx.doi.org/10.23919/ecc57647.2023.10178190.
Full textReports on the topic "Alternating direction methods of multipliers"
Ouyang, Yuyuan, Yumei Chen, Guanghui Lan, Jr Pasiliao, and Eduardo. An Accelerated Linearized Alternating Direction Method of Multipliers. Defense Technical Information Center, 2014. http://dx.doi.org/10.21236/ada595588.
Full textYan, Ming, and Wotao Yin. Self Equivalence of the Alternating Direction Method of Multipliers. Defense Technical Information Center, 2014. http://dx.doi.org/10.21236/ada610274.
Full textDeng, Wei, and Wotao Yin. On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers. Defense Technical Information Center, 2012. http://dx.doi.org/10.21236/ada567407.
Full textJohnsson, S. L., Youcef Saad, and Martin H. Schultz. Alternating Direction Methods on Multiprocessors. Defense Technical Information Center, 1985. http://dx.doi.org/10.21236/ada161973.
Full textLambert, Michael Allen. Field simulation of axisymmetric plasma screw pinches by alternating-direction-implicit methods. Office of Scientific and Technical Information (OSTI), 1996. http://dx.doi.org/10.2172/410408.
Full text