Journal articles on the topic 'ALS pathogenesis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'ALS pathogenesis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Silani, V. "ALS: Current theories of pathogenesis." Electroencephalography and Clinical Neurophysiology 103, no. 1 (July 1997): 17–18. http://dx.doi.org/10.1016/s0013-4694(97)87981-7.
Full textMcCauley, Madelyn E., and Robert H. Baloh. "Inflammation in ALS/FTD pathogenesis." Acta Neuropathologica 137, no. 5 (November 21, 2018): 715–30. http://dx.doi.org/10.1007/s00401-018-1933-9.
Full textAbe, Koji. "Clinical Features, Pathogenesis, and Therapy for ALS." Spinal Surgery 26, no. 3 (2012): 270–77. http://dx.doi.org/10.2531/spinalsurg.26.270.
Full textBeal, M. F. "Mitochondria and the pathogenesis of ALS." Brain 123, no. 7 (July 1, 2000): 1291–92. http://dx.doi.org/10.1093/brain/123.7.1291.
Full textOnodera, Osamu. "Molecular pathogenesis of ALS in TDP43 era." Rinsho Shinkeigaku 53, no. 11 (2013): 1077–79. http://dx.doi.org/10.5692/clinicalneurol.53.1077.
Full textLi, Yun R., Oliver D. King, James Shorter, and Aaron D. Gitler. "Stress granules as crucibles of ALS pathogenesis." Journal of Cell Biology 201, no. 3 (April 29, 2013): 361–72. http://dx.doi.org/10.1083/jcb.201302044.
Full textChoi, Hyun-Jun, Sun Joo Cha, Jang-Won Lee, Hyung-Jun Kim, and Kiyoung Kim. "Recent Advances on the Role of GSK3β in the Pathogenesis of Amyotrophic Lateral Sclerosis." Brain Sciences 10, no. 10 (September 26, 2020): 675. http://dx.doi.org/10.3390/brainsci10100675.
Full textRossi, Simona, Mauro Cozzolino, and Maria Teresa Carrì. "OldversusNew Mechanisms in the Pathogenesis of ALS." Brain Pathology 26, no. 2 (March 2016): 276–86. http://dx.doi.org/10.1111/bpa.12355.
Full textCarrì, Maria Teresa, Nadia D’Ambrosi, and Mauro Cozzolino. "Pathways to mitochondrial dysfunction in ALS pathogenesis." Biochemical and Biophysical Research Communications 483, no. 4 (February 2017): 1187–93. http://dx.doi.org/10.1016/j.bbrc.2016.07.055.
Full textYang, Xiaoming, Yanan Ji, Wei Wang, Lilei Zhang, Zehao Chen, Miaomei Yu, Yuntian Shen, Fei Ding, Xiaosong Gu, and Hualin Sun. "Amyotrophic Lateral Sclerosis: Molecular Mechanisms, Biomarkers, and Therapeutic Strategies." Antioxidants 10, no. 7 (June 24, 2021): 1012. http://dx.doi.org/10.3390/antiox10071012.
Full textPerrot, Rodolphe, and Jean-Pierre Julien. "Maldistribution of Neurofilaments, Disease Pathogenesis, and Amyotrophic Lateral Sclerosis." US Neurology 05, no. 02 (2010): 30. http://dx.doi.org/10.17925/usn.2010.05.02.30.
Full textMunoz, D. G. "FUS mutations in sporadic juvenile ALS: Another step toward understanding ALS pathogenesis." Neurology 75, no. 7 (July 28, 2010): 584–85. http://dx.doi.org/10.1212/wnl.0b013e3181ed9ee4.
Full textLualdi, Marta, Adeena Shafique, Edoardo Pedrini, Luisa Pieroni, Viviana Greco, Massimo Castagnola, Giorgia Cucina, et al. "C9ORF72 Repeat Expansion Affects the Proteome of Primary Skin Fibroblasts in ALS." International Journal of Molecular Sciences 22, no. 19 (September 27, 2021): 10385. http://dx.doi.org/10.3390/ijms221910385.
Full textRentzos, Michael, Maria Elepthera Evangelopoulos, Eleni Sereti, Vassiliki Zouvelou, Styliani Marmara, Theodoros Alexakis, and Ioannis Evdokimidis. "Humoral immune activation in amyotrophic lateral sclerosis patients." Neurology International 5, no. 1 (February 11, 2013): 3. http://dx.doi.org/10.4081/ni.2013.e3.
Full textLiu, Dingsheng, Xiaojia Zuo, Peng Zhang, Rui Zhao, Donglin Lai, Kaijie Chen, Yuru Han, et al. "The Novel Regulatory Role of lncRNA-miRNA-mRNA Axis in Amyotrophic Lateral Sclerosis: An Integrated Bioinformatics Analysis." Computational and Mathematical Methods in Medicine 2021 (April 15, 2021): 1–12. http://dx.doi.org/10.1155/2021/5526179.
Full textNowicka, Natalia, Kamila Szymańska, Judyta Juranek, Kamila Zglejc-Waszak, Agnieszka Korytko, Michał Załęcki, Małgorzata Chmielewska-Krzesińska, Krzysztof Wąsowicz, and Joanna Wojtkiewicz. "The Involvement of RAGE and Its Ligands during Progression of ALS in SOD1 G93A Transgenic Mice." International Journal of Molecular Sciences 23, no. 4 (February 16, 2022): 2184. http://dx.doi.org/10.3390/ijms23042184.
Full textSanhueza, Mario, Andrea Chai, Colin Smith, Brett A. McCray, T. Ian Simpson, J. Paul Taylor, and Giuseppa Pennetta. "Network Analyses Reveal Novel Aspects of ALS Pathogenesis." PLOS Genetics 11, no. 3 (March 31, 2015): e1005107. http://dx.doi.org/10.1371/journal.pgen.1005107.
Full textMcCombe, Pamela A., Robert D. Henderson, Aven Lee, John D. Lee, Trent M. Woodruff, Restuadi Restuadi, Allan McRae, Naomi R. Wray, Shyuan Ngo, and Frederik J. Steyn. "Gut microbiota in ALS: possible role in pathogenesis?" Expert Review of Neurotherapeutics 19, no. 9 (May 29, 2019): 785–805. http://dx.doi.org/10.1080/14737175.2019.1623026.
Full textTANAKA, F., J. I. NIWA, S. ISHIGAKI, M. KATSUNO, M. WAZA, M. YAMAMOTO, M. DOYU, and G. SOBUE. "Gene Expression Profiling toward Understanding of ALS Pathogenesis." Annals of the New York Academy of Sciences 1086, no. 1 (November 1, 2006): 1–10. http://dx.doi.org/10.1196/annals.1377.011.
Full textRavits, John. "Focality, stochasticity and neuroanatomic propagation in ALS pathogenesis." Experimental Neurology 262 (December 2014): 121–26. http://dx.doi.org/10.1016/j.expneurol.2014.07.021.
Full textEisen, Andrew, Bhanu Pant, and Heather Stewart. "Cortical Excitability in Amyotrophic Lateral Sclerosis: A Clue to Pathogenesis." Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques 20, no. 1 (February 1993): 11–16. http://dx.doi.org/10.1017/s031716710004734x.
Full textMenounos, Spiro, Philip M. Hansbro, Ashish D. Diwan, and Abhirup Das. "Pathophysiological Correlation between Cigarette Smoking and Amyotrophic Lateral Sclerosis." NeuroSci 2, no. 2 (April 20, 2021): 120–34. http://dx.doi.org/10.3390/neurosci2020008.
Full textSun, Hualin, Ming Li, Yanan Ji, Jianwei Zhu, Zehao Chen, Lilei Zhang, Chunyan Deng, et al. "Identification of Regulatory Factors and Prognostic Markers in Amyotrophic Lateral Sclerosis." Antioxidants 11, no. 2 (February 1, 2022): 303. http://dx.doi.org/10.3390/antiox11020303.
Full textGambino, Caterina Maria, Anna Maria Ciaccio, Bruna Lo Sasso, Rosaria Vincenza Giglio, Matteo Vidali, Luisa Agnello, and Marcello Ciaccio. "The Role of TAR DNA Binding Protein 43 (TDP-43) as a Candi-Date Biomarker of Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-Analysis." Diagnostics 13, no. 3 (January 23, 2023): 416. http://dx.doi.org/10.3390/diagnostics13030416.
Full textDodge, James C., Christopher M. Treleaven, Joshua Pacheco, Samantha Cooper, Channa Bao, Marissa Abraham, Mandy Cromwell, et al. "Glycosphingolipids are modulators of disease pathogenesis in amyotrophic lateral sclerosis." Proceedings of the National Academy of Sciences 112, no. 26 (June 8, 2015): 8100–8105. http://dx.doi.org/10.1073/pnas.1508767112.
Full textHosaka, Takashi, Hiroshi Tsuji, and Shin Kwak. "Roles of Aging, Circular RNAs, and RNA Editing in the Pathogenesis of Amyotrophic Lateral Sclerosis: Potential Biomarkers and Therapeutic Targets." Cells 12, no. 10 (May 22, 2023): 1443. http://dx.doi.org/10.3390/cells12101443.
Full textTrojsi, Francesca, Giulia D’Alvano, Simona Bonavita, and Gioacchino Tedeschi. "Genetics and Sex in the Pathogenesis of Amyotrophic Lateral Sclerosis (ALS): Is There a Link?" International Journal of Molecular Sciences 21, no. 10 (May 21, 2020): 3647. http://dx.doi.org/10.3390/ijms21103647.
Full textVonk, Willianne I. M., and Leo W. J. Klomp. "Role of transition metals in the pathogenesis of amyotrophic lateral sclerosis." Biochemical Society Transactions 36, no. 6 (November 19, 2008): 1322–28. http://dx.doi.org/10.1042/bst0361322.
Full textDuranti, Elisa, and Chiara Villa. "Molecular Investigations of Protein Aggregation in the Pathogenesis of Amyotrophic Lateral Sclerosis." International Journal of Molecular Sciences 24, no. 1 (December 31, 2022): 704. http://dx.doi.org/10.3390/ijms24010704.
Full textJulien, Jean-Pierre. "A role for neurofilaments in the pathogenesis of amyotrophic lateral sclerosis." Biochemistry and Cell Biology 73, no. 9-10 (September 1, 1995): 593–97. http://dx.doi.org/10.1139/o95-064.
Full textLe Gall, L., W. J. Duddy, J. Lainé, S. Roquevière, F. Ratti, Z. G. Ouandaogo, L. Robelin, et al. "Secretion of toxic exosomes by muscle cells of ALS patients: role in ALS pathogenesis." Neuromuscular Disorders 27 (March 2017): S32. http://dx.doi.org/10.1016/s0960-8966(17)30313-9.
Full textAlessenko, Alisa V., Uliana A. Gutner, and Maria A. Shupik. "Involvement of Lipids in the Pathogenesis of Amyotrophic Lateral Sclerosis." Life 13, no. 2 (February 12, 2023): 510. http://dx.doi.org/10.3390/life13020510.
Full textZhang, Yi, Jiayu Gu, and Qiming Sun. "Aberrant Stress Granule Dynamics and Aggrephagy in ALS Pathogenesis." Cells 10, no. 9 (August 30, 2021): 2247. http://dx.doi.org/10.3390/cells10092247.
Full textCheng, Ching-Wei, Meng-Jau Lin, and Che-Kun James Shen. "Rapamycin alleviates pathogenesis of a newDrosophilamodel of ALS-TDP." Journal of Neurogenetics 29, no. 2-3 (July 3, 2015): 59–68. http://dx.doi.org/10.3109/01677063.2015.1077832.
Full textKawahara, Yukio. "Implications of microRNA dysfunction in the pathogenesis of ALS." Rinsho Shinkeigaku 50, no. 11 (2010): 979–81. http://dx.doi.org/10.5692/clinicalneurol.50.979.
Full textHirano, M. "VAPB: New genetic clues to the pathogenesis of ALS." Neurology 70, no. 14 (March 31, 2008): 1161–62. http://dx.doi.org/10.1212/01.wnl.0000307756.15383.fc.
Full textYerbury, Justin J., Natalie E. Farrawell, and Luke McAlary. "Proteome Homeostasis Dysfunction: A Unifying Principle in ALS Pathogenesis." Trends in Neurosciences 43, no. 5 (May 2020): 274–84. http://dx.doi.org/10.1016/j.tins.2020.03.002.
Full textSwarup, Vivek, and Jean-Pierre Julien. "ALS pathogenesis: Recent insights from genetics and mouse models." Progress in Neuro-Psychopharmacology and Biological Psychiatry 35, no. 2 (March 2011): 363–69. http://dx.doi.org/10.1016/j.pnpbp.2010.08.006.
Full textVatsavayai, Sarat C., Alissa L. Nana, Jennifer S. Yokoyama, and William W. Seeley. "C9orf72-FTD/ALS pathogenesis: evidence from human neuropathological studies." Acta Neuropathologica 137, no. 1 (October 27, 2018): 1–26. http://dx.doi.org/10.1007/s00401-018-1921-0.
Full textFerri, Alberto, and Roberto Coccurello. "What is “Hyper” in the ALS Hypermetabolism?" Mediators of Inflammation 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/7821672.
Full textAndrew, Eisen, and Krieger Charles. "Pathogenic Mechanisms in Sporadic Amyotrophic Lateral Sclerosis." Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques 20, no. 4 (November 1993): 286–96. http://dx.doi.org/10.1017/s0317167100048198.
Full textOtomo, Asako, Lei Pan, and Shinji Hadano. "Dysregulation of the Autophagy-Endolysosomal System in Amyotrophic Lateral Sclerosis and Related Motor Neuron Diseases." Neurology Research International 2012 (2012): 1–12. http://dx.doi.org/10.1155/2012/498428.
Full textTurnbull, John. "Why is ALS so Difficult to Treat?" Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques 41, no. 2 (March 2014): 144–55. http://dx.doi.org/10.1017/s0317167100016516.
Full textCarmine, Ungaro, and Sprovieri Teresa. "Mercury toxicity and amyotrophic lateral sclerosis." Journal of Neuroscience and Neurological Disorders 7, no. 1 (March 23, 2023): 011–13. http://dx.doi.org/10.29328/journal.jnnd.1001074.
Full textBerrone, Elena, Giovanna Chiorino, Francesca Guana, Valerio Benedetti, Claudia Palmitessa, Marina Gallo, Andrea Calvo, et al. "SOMAscan Proteomics Identifies Novel Plasma Proteins in Amyotrophic Lateral Sclerosis Patients." International Journal of Molecular Sciences 24, no. 3 (January 18, 2023): 1899. http://dx.doi.org/10.3390/ijms24031899.
Full textMarc, Gotkine, Rozenstein Leah, Einstein Ofira, Abramsky Oded, Argov Zohar, and Rosenmann Hanna. "Presymptomatic Treatment with Acetylcholinesterase Antisense Oligonucleotides Prolongs Survival in ALS (G93A-SOD1) Mice." BioMed Research International 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/845345.
Full textDe Marchi, Fabiola, Giacomo Tondo, Lucia Corrado, Federico Menegon, Davide Aprile, Matteo Anselmi, Sandra D’Alfonso, Cristoforo Comi, and Letizia Mazzini. "Neuroinflammatory Pathways in the ALS-FTD Continuum: A Focus on Genetic Variants." Genes 14, no. 8 (August 21, 2023): 1658. http://dx.doi.org/10.3390/genes14081658.
Full textCai, Qing, Mengya Li, and Qifang Li. "Sleep‐based therapy: A new treatment for amyotrophic lateral sclerosis." Brain Science Advances 7, no. 3 (September 2021): 155–62. http://dx.doi.org/10.26599/bsa.2021.9050010.
Full textGros-Louis, François, Roxanne Larivière, Geneviève Gowing, Sandra Laurent, William Camu, Jean-Pierre Bouchard, Vincent Meininger, Guy A. Rouleau, and Jean-Pierre Julien. "A Frameshift Deletion in Peripherin Gene Associated with Amyotrophic Lateral Sclerosis." Journal of Biological Chemistry 279, no. 44 (August 17, 2004): 45951–56. http://dx.doi.org/10.1074/jbc.m408139200.
Full textRey, Federica, Stefania Marcuzzo, Silvia Bonanno, Matteo Bordoni, Toniella Giallongo, Claudia Malacarne, Cristina Cereda, Gian Vincenzo Zuccotti, and Stephana Carelli. "LncRNAs Associated with Neuronal Development and Oncogenesis Are Deregulated in SOD1-G93A Murine Model of Amyotrophic Lateral Sclerosis." Biomedicines 9, no. 7 (July 13, 2021): 809. http://dx.doi.org/10.3390/biomedicines9070809.
Full text