Academic literature on the topic 'Allyl glycosides'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Allyl glycosides.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Allyl glycosides"

1

Pal, Rita, Anupama Das, and Narayanaswamy Jayaraman. "One-pot oligosaccharide synthesis: latent-active method of glycosylations and radical halogenation activation of allyl glycosides." Pure and Applied Chemistry 91, no. 9 (September 25, 2019): 1451–70. http://dx.doi.org/10.1515/pac-2019-0306.

Full text
Abstract:
Abstract Chemical glycosylations occupy a central importance to synthesize tailor-made oligo- and polysaccharides of functional importance. Generation of the oxocarbenium ion or the glycosyl cation is the method of choice in order to form the glycosidic bond interconnecting a glycosyl moiety with a glycosyl/aglycosyl moiety. A number of elegant methods have been devised that allow the glycosyl cation formation in a fairly stream-lined manner to a large extent. The latent-active method provides a powerful approach in the protecting group controlled glycosylations. In this context, allyl glycosides have been developed to meet the requirement of latent-active reactivities under appropriate glycosylation conditions. Radical halogenation provides a newer route of activation of allyl glycosides to an activated allylic glycoside. Such an allylic halide activation subjects the glycoside reactive under acid catalysis, leading to the conversion to a glycosyl cation and subsequent glycosylation with a number of acceptors. The complete anomeric selectivity favoring the 1,2-trans-anomeric glycosides points to the possibility of a preferred conformation of the glycosyl cation. This article discusses about advancements in the selectivity of glycosylations, followed by delineating the allylic halogenation of allyl glycoside as a glycosylation method and demonstrates synthesis of a repertoire of di- and trisaccharides, including xylosides, with varied protecting groups.
APA, Harvard, Vancouver, ISO, and other styles
2

Gibson, Robin R., Roger P. Dickinson, and Geert-Jan Boons. "Vinyl glycosides in oligosaccharide synthesis (part 4): glycosidase-catalysed preparation of substituted allyl glycosides." Journal of the Chemical Society, Perkin Transactions 1, no. 22 (1997): 3357–60. http://dx.doi.org/10.1039/a704703g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Krähmer, Ralf, Lothar Hennig, Matthias Findeisen, Dietrich Müller, and Peter Welzel. "Oxidative deprotection of allyl glycosides." Tetrahedron 54, no. 36 (September 1998): 10753–60. http://dx.doi.org/10.1016/s0040-4020(98)00640-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sherman, Andrei A., Leonid O. Kononov, Alexander S. Shashkov, Georgij V. Zatonsky, and Nikolay E. Nifant’ev. "Synthesis of spacer-armed glycosides using azidophenylselenylation of allyl glycosides." Mendeleev Communications 8, no. 1 (January 1998): 9–11. http://dx.doi.org/10.1070/mc1998v008n01abeh000887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Pengfei, Pranab Haldar, Yun Wang, and Huayou Hu. "Simple Glycosylation Reaction of Allyl Glycosides." Journal of Organic Chemistry 72, no. 15 (July 2007): 5870–73. http://dx.doi.org/10.1021/jo070512x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Timmer, Mattie S. M., Marta Vinciano Chumillas, Wilma E. Donker‐Koopman, Johannes M. F. G. Aerts, Gijsbert A. van derMarel, Herman S. Overkleeft, and Jacques H. van Boom. "Selective Cross‐Metathesis ofC‐Allyl‐Glycosides." Journal of Carbohydrate Chemistry 24, no. 4-6 (August 2005): 335–51. http://dx.doi.org/10.1080/07328300500174887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

GIBSON, R. R., R. P. DICKINSON, and G. J. BOONS. "ChemInform Abstract: Vinyl Glycosides in Oligosaccharide Synthesis. Part 4. Glycosidase-Catalyzed Preparation of Substituted Allyl Glycosides." ChemInform 29, no. 14 (June 23, 2010): no. http://dx.doi.org/10.1002/chin.199814171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hu, Yun-Jin, Romyr Dominique, Sanjoy Kumar Das, and René Roy. "A facile new procedure for the deprotection of allyl ethers under mild conditions." Canadian Journal of Chemistry 78, no. 6 (June 1, 2000): 838–45. http://dx.doi.org/10.1139/v00-073.

Full text
Abstract:
A novel isomerization of O-allyl glycosides into prop-1-enyl glycosides was observed instead of cross-metathesis during an olefin metathesis reaction using Grubbs' ruthenium benzylidene catalyst (Cy3P)2RuCl2=CHPh (1), N-allyltritylamine, and N,N-diisopropylethylamine as necessary auxiliary reagents. In the search for a better catalytic system, it has been found that dichlorotris(triphenylphosphine)ruthenium(II), [(C6H5)3P]3RuCl2, (2) was much more efficient for the isomerization of allylic ethers. The labile prop-1-enyl group was easily hydrolyzed using HgCl2-HgO and the hemiacetals (25-32) were isolated in excellent yields (ca. 90%).Key words: allyl ether, carbohydrate, Grubbs' catalyst, isomerization, metathesis, deprotection.
APA, Harvard, Vancouver, ISO, and other styles
9

KRAEHMER, R., L. HENNIG, M. FINDEISEN, D. MUELLER, and P. WELZEL. "ChemInform Abstract: Oxidative Deprotection of Allyl Glycosides." ChemInform 29, no. 50 (June 18, 2010): no. http://dx.doi.org/10.1002/chin.199850242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

SHERMAN, A. A., L. O. KONONOV, A. S. SHASHKOV, G. V. ZATONSKY, and N. E. NIFANT'EV. "ChemInform Abstract: Synthesis of Spacer-Armed Glycosides Using Azidophenylselenylation of Allyl Glycosides." ChemInform 29, no. 30 (June 20, 2010): no. http://dx.doi.org/10.1002/chin.199830240.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Allyl glycosides"

1

Cumpstey, Ian. "The stereospecific formation of 1,2-cis glycosides via allyl-mediated intramolecular aglycon delivery." Thesis, University of Oxford, 2002. http://ora.ox.ac.uk/objects/uuid:2c4e0fb3-5a43-473a-bfbb-43557f19ffe9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Foucart, Quentin. "Etude de la débenzylation régiosélective en position 2 de 1-C-allyl iminosucres pour l'introduction de diversité moléculaire." Thesis, Poitiers, 2018. http://www.theses.fr/2018POIT2318.

Full text
Abstract:
Parmi les analogues de sucres, les iminosucres constituent la classe la plus prometteuse au niveau biologique. En effet, leur structure, dans laquelle l'atome d'oxygène intracyclique est remplacé par un atome d'azote, leur confère des propriétés uniques d'inhibition de glycosidases et/ou glycosyltransférases, et en fait donc de très bons candidats thérapeutiques. L'introduction d'un substituant pseudo-anomérique carboné permet de mimer la partie aglycone du substrat de l'enzyme et d'accéder aux iminosucres C-glycosides, des composés chimiquement stables qui sont des inhibiteurs sélectifs et puissants des glycosidases.Afin d'accélérer la découverte de molécules d'intérêt thérapeutique, il est nécessaire de trouver des voies de synthèses conduisant à une plus grande diversité structurale. La méthodologie que nous avons mise au point est basée sur la débenzylation régiosélective de la position 2 de C-allyl glycosides exploitant une iodocyclisation. Cette dernière a été appliquée avec succès à la C-allyl-1-déoxynojirimycine puis étendue à plusieurs iminosucres de configurations variées en séries pipéridine et pyrrolidine.L'introduction de diversité moléculaire a été réalisée à partir de la C-allyl-1-déoxynojirimycine O-débenzylée régiosélectivement en position 2. Nous avons ainsi obtenu plusieurs iminosucres de configurations D-gluco- et D-manno- portant différentes fonctionnalités en position 2. La mise au point de cette synthèse a donc permis d'accéder à une grande variété de C-allyl iminosucres à partir d'un synthon unique. L'accès à des iminosucres bicycliques de structures inédites a également été possible en exploitant un C-allyl 2-céto iminosucre obtenu par notre méthodologie de débenzylation régiosélective
Iminosugars constitute undoubtedly the most promising class of sugar analogues, their unique glycosidase and/or glycosyltransferase inhibition profile making them promising therapeutics. To generate more potent and selective inhibitors called C-glycoside iminosugars, introduction of a stable pseudoanomeric substituent is usually performed, the improved efficacy being attributed in part to the information brought by the aglycon moiety.The main challenge associated with this class of iminosugars C-glycosides is currently the design of efficient and general routes enabling introduction of structural diversity at a late stage from advanced synthons to accelerate the discovery of biologically relevant molecules. In this context, we have explored a strategy based on a regioselective debenzylation at C-2 and a stereocontrolled nucleophilic substitution assisted by the N-benzyl group. We have successfully applied this methodology on the C-allyl-1-deoxynojirimycin and extended it to several iminosugars in the piperidine and pyrrolidine series.The introduction of molecular diversity was performed from the C-allyl-1-deoxynojirimycin selectively O-debenzylated at position 2. We obtained several iminosugars in the D-gluco- and D-manno- series bearing various functionalities at position 2. This strategy allowed us to access a wide range of C-allyl iminosugars from one single synthon. We have also described the access to unknown bicyclic iminosugars starting from a C-allyl 2-keto iminosugar obtained by our regioselective debenzylative methodology
APA, Harvard, Vancouver, ISO, and other styles
3

Bai, Yu. "A latent-active glycosylation approach for the synthesis of saccharides derived from the capsular polysaccharide of group B Streptococcus type IA." Thesis, University of Birmingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Milkereit, Götz Eckart. "Investigation of colloidal, biophysical and liquid crystalline properties of synthetic alkyl glycosides and glycolipids." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=980736676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chabaud, Laurent. "Carboazidation d'allylsilanes chiraux : application à la synthèse totale d'alcaloïdes polyhydroxyles inhibiteurs de glycosidases." Bordeaux 1, 2005. http://www.theses.fr/2005BOR13040.

Full text
Abstract:
La carboazidation radicalaire d'oléfines permet de former en une étape une liaison C-C et une liaison C-N ainsi qu'un centre asymétrique. Afin de contrôler la stéréochimie du nouveau centre stéréogène, vous avons entrepris la carboazidation d'allylsinales chiraux de complexités variées. Dans des conditions thermiques, celle-ci s'effectue avec des niveaux de stéréocontrôle élevés. La sensibilité des produits obtenus aux conditions réactionnelles peut constituer l'une des limitations de cette méthode. Cependant, la protection des hydroxysilanes permet d'éviter ce problème et d'aboutir de manière stéréocontrôlée à des substrats hautement foctionnalisés. La configuration relative syn du diastéréoisomère majoritaire a été déterminée à l'aide d'une méthode chimique, basée sur l'élimination anti-stérospécifique des β-azidosilanes et confirmée par diffraction des rayons X. Cette induction asymétrique est rationalisée par un modèle d'état de transition de type Felkin-Anh. Les différents résultats obtenus, ainsi que des études sur la conformation du radical à l'état fodamental (calculs théoriques et RPE) nous ont permis d'affiner ce modèle en considérant que le radical est pyramidalisé à l'état de transition et que les substituants (CH2)2CO2Et et SiR3 sont quasiment orthogonaux, expliquant le haut niveau de stéréocontrôle. Cette stratégie a ensuite été appliquée à la première synthèse totale énantiosélective de la hyacinthcine A1, un inhibiteur puissant de glycosidases et son épimère en C-3, établissant ainsi la configuration absolue du produit naturel. La carboazidation a par ailleurs été utilisée pour la construction d'indolizidines polyhydroxylées tel qu'un analogue de la castanospermine.
APA, Harvard, Vancouver, ISO, and other styles
6

Bayle, Corinne. "Mise au point d'une méthode d'éthérification sélective en série osidique : étude par résonance magnétique nucléaire des molécules amphiphiles synthétisées." Université Joseph Fourier (Grenoble), 1994. http://www.theses.fr/1994GRE10139.

Full text
Abstract:
L'objectif de cette these est la mise au point d'une methode d'etherification en serie osidique et l'etude des proprietes des molecules amphiphiles ainsi synthetisees. La methode d'etherification proposee est une methode indirecte qui se deroule en deux etapes: une iodation selective des positions primaires des derives osidiques est effectuee et les derives iodes obtenus sont alkyles a l'aide d'un hypochlorite d'alkyle. Cette methode nous a permis de synthetiser differents ethers osidiques tels que les methyl 6-o-methyl-, 6-o-ethyl-, 6-o-hexyl-, 6-o-octyl-, 6-o-benzyl-a-d-glucopyranoside. Toutes ces molecules sont obtenues avec de bons rendements (de l'ordre de 75%) et sont caracterisees par resonance magnetique nucleaire du proton et du carbone. Cette methode d'alkylation appliquee aux cyclodextrines a permis de synthetiser les per (6-o-methyl)-a- et -b-cyclodextrines avec de bons rendements (environ 70%). Le mecanisme et les limitations de cette methode sont discutes. Les proprietes des derives obtenus ont ensuite ete etudiees. La concentration micellaire critique du methyl 6-o-octyl-a-d-glucopyranoside a ete mesuree (10 mm). En ce qui concerne les cyclodextrines, les proprietes de complexation de la per (6-o-methyl)-b-cyclodextrine avec deux composes modeles hydrophobes (le paranitrophenol et l'anthraquinone 2-sulfonate de sodium) ont ete etudiees par resonance magnetique nucleaire. Afin de mener a bien ces etudes, la sequence 1d-cosy, technique selective de resonance magnetique nucleaire, a ete mise au point. En particulier, nous avons etudie la determination theorique et experimentale d'un des parametres de cette sequence, le delai d efficace, particulierement important dans les sequences 1d selectives. Ces constantes de complexation sont de 500 m#-#1 a 323 k pour le complexe avec le paranitrophenol et de 2000 m#-#1 pour le complexe avec l'anthraquinone 2-sulfonate de sodium
APA, Harvard, Vancouver, ISO, and other styles
7

Daskhan, Gour Chand. "C-2 And C-4 Branched Carbohydrates : (i) Synthesis And Studies Of Oligosacchardes With Expanded Glycosidic Linkage At C-4; (ii) Synthesis Of 2-Deoxy-2-C-Alkyl Glycopyranosides." Thesis, 2012. http://etd.iisc.ernet.in/handle/2005/2462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

張元軍. "Synthesis of N-alkyl Iminoalditol and pyrrolidine derivatives as Glycosidase Inhibitors." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/83759606820380930634.

Full text
Abstract:
碩士
國立彰化師範大學
化學系
97
The goals of our research are to synthesize glycosidase inhibitors. The first project is using D-ribose as starting material to synthesize the derivatives of ribopyranoside. We are successful to obtain the target compound methyl 2-C-(5-deoxy-2,3-di-O-isopropylidene-5 morpholinopropylamino-β-D-ribopyranosyl) acetate 7, methyl 2-C-(5-deoxy-2,3-di-O-isopropylidene-5-decylamino-β-Dribopyranosyl) acetate 9, 2-C-(5-deoxy-2,3-di-O-isopropylidene-5-morpholinopropyl amino-β-D-ribopyranosyl)ethanol 8, and 2-C-(5-deoxy-2,3-di-O-isopropylidene-5- decylamino -β-D-ribopyranosyl)ethanol 10 as shown in figure 1. The second project is using dimesylate as the starting materials to synthesize the derivatives of pyrrolidine. This study shows that amination reactions of dimesylate with various alkylamines can be substantially improved by microwave heating. This approach shortens reaction times from 1.5-72 h to 10-30 min and the yields are also improved. We are successful to obtain the target compound 1,2-bis-(2,3,5-tri-O-benzyl-1,4-dideoxy-1,4-imino- L-ribitol-1-yl)ethane 21, bis(2-(2,3,5-tri-O-benzyl-1,4-dideoxy-1,4-imino-L-ribitol-1-yl)ethyl)amine 22, and 1-(2-(2,3,5-Tri-O-benzyl-1,4-dideoxy-1,4-imino-L-ribitol-1- yl)ethyl)-4-((2,3,5-tri-O-benzyl-1,4-dideoxy-1,4-imino-L-ribitol-1-yl)methyl)-1H-1,2,3-triazole 26 as shown in figure 1.
APA, Harvard, Vancouver, ISO, and other styles
9

Milkereit, Götz Eckart [Verfasser]. "Investigation of colloidal, biophysical and liquid crystalline properties of synthetic alkyl glycosides and glycolipids / vorgelegt von Götz Eckart Milkereit." 2006. http://d-nb.info/980736676/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mukherjee, Arunima. "Studies On 2,3-Unsaturated Sugars : Reactivity Switching, Rearrangements And Conjugate Additions." Thesis, 2012. http://hdl.handle.net/2005/2500.

Full text
Abstract:
Unsaturated sugars constitute as an important category of carbohydrate precursors in synthesis. Specifically, 1,2- and 2,3-unsaturated glycosides are excellent intermediates to derivatize monosaccharides and as building blocks in organic synthesis. For example, a major utility of 1,2-unsaturated sugars, namely glycals, is the addition reactions to afford 2-deoxy glycosides under acidic conditions and rearrangement reactions to produce 2,3-unsaturated glycosides. Lewis acids favour the formation of 2,3-unsaturated glycosides, whereas, Brønsted acids lead to normal addition products. A mixture of both the product is obtained often, depending on the nucleophiles and the stereochemistry of glycal. Chapter 1 of the thesis describes (i) reactivities of glycals under acidic condition and (ii) a general survey of reactions involving on C2-C3 carbons of monosaccharides. Glycals are useful precursors to derive a number of functionalized monosaccharide derivatives. A well-known acid catalyzed reaction of glycals is their conversion to 2,3¬unsaturated glycosides, known as the Ferrier products. In a research programme, reactivity switching and selective activation of C-1 or C-3 of 2,3-unsaturated thioglycosides under acid catalyzed condition was undertaken. Thioglycosides are excellent glycosyl donors and can be activated easily. In identifying the reactivities of 2,3-unsaturated thioglycosides, obtained through Ce(IV)-mediated reaction of a glycal, it was intended to study the glycosylation reaction and also the reactivity control of C1-C3 carbons during a glycosylation reaction. Experiments showed that a reactivity switching was possible through activation of either C-1 or C-3. Thus, C-1 glycosylation with alcohol acceptors occurred in the presence of NIS/TfOH, without the acceptors reacting at C-3. On the other hand, reaction of 2,3-unsaturated thioglycosides with alcohols mediated by triflic acid alone led to a transposition of C-1 ethylthio-moiety to C-3 intramolecularly, to form 3-ethylthio-glycals. Resulting glycals underwent glycosylation with alcohols to afford 3-ethylthio-2-deoxy glycosides. However, when thiol was used as an acceptor, only a stereoselective addition at C-3 resulted, so as to form C-1, C-3 dithio-substituted 2-deoxypyranosides. Oxocarbenium ion is the reactive intermediate during activation of a glycosyl donor, and in the case of a 2,3-unsaturated thioglycosides, the oxocarbenium ion may stabilize further by the presence of a C2-C3 unsaturation. Reaction of a nucleophile with allylic oxocarbenium ion may lead to two regio-isomers. Initially, NIS/TfOH was attempted on 2,3–unsaturated sugar with various alcohols and it was found that C-1 was the preferred reactive centre (Scheme 1) Scheme 1 In order to optimize the reaction for selective nucleophilic attack at C-3, further study was continued by using stoichiometric TfOH, in presence of acceptors alcohols with the intension to activate the double bond. The reaction led to the formation of 2-deoxy O-glycosides with the concomitant transposition of C-1 ethylthio-moiety to C-3 (Scheme 2). Scheme 2 An important observation was that the transposition of thioethyl group from C-1 to C-3 was highly regioselective. For example, with thiocresol as the nucleophile, there was an addition across the C-2-C-3 double bond to afford C-1, C-3-dithio derivative (Scheme 2). Thus, hard-soft nature of the nucleophiles, as well as, carbon centres helped to rationalize the reactivites. It was also observed that the intramolecular transposition of thioethyl group is highly stereo-controlled by equatorial C-4 acetoxy group. Thus, thioethyl nucleophile approached selectively at C-3 and afforded trans-diequatorial products. This rationalization was further confirmed through (i) reaction of benzyl protected 2,3-unsaturated thioglycoside, wherein a C-3 epimeric mixture was observed in 1:1 ratio; (ii) galactosyl derivative under similar reaction condition afforded anomeric mixture of 3-(4-methylphenylthio)-O-glycosides, with trans-diaxial orientation of substituent at C-3 (Scheme 3). Scheme 3 These reactions confirmed the role of C-4 substituent on the carbocation at C-3, through the presence or absence of a neighbouring group participation. In summary, in Chapter 2 the selective activation of either anomeric carbon or C-3 with proper choice of activation and reactivity control at each carbon will be described. Thioglycosides are excellent glyosyl donor and their glycosylation reactions were well explored. Upon indentifying the intramolecular transposition of thioalkyl/aryl functionality from C-1 to C-3, further investigations was undertaken to utilize the newly formed carbon sulfur bonds at C-3. Realizing a potential for such 3-alkyl/aryl thio 2-deoxy sugar, the Pummerer rearrangement was investigated. For this purpose, the thioalkyl/aryl moiety at C-3 was oxidized first to a sulfoxide. The resulting sulfoxide was allowed to undergo Pummerer rearrangement to afford vinyl sulfide (Scheme 4), resulting from the elimination of HOAc in the thioacetal formed in situ. Having implemented Pummerer rearrangement on a sugar substrate, synthetic utility of the rearrangement product, namely vinyl sulfide was undertaken. An effort to implement conjugate addition reaction was undertaken, which required the conversion of vinyl sulfide to vinyl sulfoxide in the first step. The conjugate addition reactions were first conducted with alkoxide nucleophiles. The reaction showed that addition of nucleophiles occurred from axial face to furnish manno-configured derivatives as a single diastereomer at sulfinyl sulfur in a moderate yield along with O-deacetylated product. It was also found that O-benzyl protected sugar vinyl sulfoxide was totally resistant to the conjugate addition reaction (Scheme 4). Scheme 4 In order to find the influence of the substituents in sulfoxide moiety in the addition of nucleophiles, additional study was conducted in which a less hindered thioethyl moiety was installed in place of p-tolylthio moiety. To install ethylthio moiety, a similar sequence of reaction was undertaken as described previously in Scheme 4. Conjugate addition reaction with alkoxide nucleophiles was conducted and analysis of the reaction showed that the addition of alkoxides remained similar, leading to the formation of manno-configuration of substituents (Scheme 5). Scheme 5 The configuration of the Michael adducts were ascertained from 1H NMR, as well as 2D NMR spectroscopies. H-1 of all adducts appeared as an apparent singlet, consistent with very small J1,2 values. Aryl vinyl sulfoxide afforded conjugate addition product at much higher ratio than corresponding alkyl vinyl sulfoxide. Thus, among aryl and alkyl vinyl sulfoxides, conjugate addition occurred better with the aryl vinyl sulfoxide, indicating a strong electronic effect of aryl group in stabilizing the conjugate anion which would form in situ during nucleophilic addition with vinyl sulfoxide. Therefore, p-tolylthio substituted vinyl sulfoxide served as a more efficient Michael acceptor when compared to the thioethyl substituted vinyl sulfoxide. Asymmetric environment of vinyl sulfoxides play a vital role during the reaction. Vinyl sulfoxides can exist in two stereochemically distinct conformation which makes the vinyl group electronically dissimilar. In one of the conformer S-O and C-C bonds are coplanar, whereas in the other conformation, these two bonds are opposite to each other. It is agreed generally that vinyl sulfoxides generally try to adopt the most reactive conformer during the reaction in which the C-C and S-O bonds are syn to each other. Thus, the preference for an axial attack would originate from a face anti to the lone pair of electrons on the sulfur of sulfoxide functionality, leading to the formation of the product with manno-configuration. As O-deacetylated vinyl sulfoxide was obtained along with the Michael adducts, it was assumed that one of the epimers of vinyl sulfoxide appeared to be more reactive when compared to the other. Chapter 3 describes implementation of a Pummerer rearrangement in order to synthesize a sugar vinyl sulfoxide and its conjugate addition reactions with alkoxide nucleophiles. The nucleophilic addition reactions of vinyl sulfoxide with other nucleophiles were studied further. The effect of the substituents of chiral sulfoxides in conjugate addition reactions was also incorporated in the course of reactions. Reactions of amines, carbon and sulfur nucleophiles were undertaken with p-tolylthio-substituted vinyl sulfoxides. The reactions showed formation of the addition-elimination products (Scheme 6). All primary amines, carbon and sulfur nucleophiles afforded C-2 axial epimer, namely, threo-epimer exclusively, wherein secondary amines furnished the equatorial vs axial epimer in 3:1 ratio. Scheme 6 In order to assess the course of the reaction, vinyl sulfoxide presenting a p-cumenethio¬moiety was installed in place of p-tolylthio moiety. Conjugate addition reactions were performed with both primary as well as secondary amines that showed formation of the C-2 epimeric mixtures. With both the primary and secondary amines C-2 equatorial epimer was found to be as the major product (Scheme 7). Scheme 7 In conjugate addition of vinyl sulfoxides, nucleophiles approach the olefinic face preferentially, which is anti to the electron rich sulfur lone pair of electrons and syn to the bulky aryl group. Therefore, C-2 axial epimer was observed as most favourable product. However, secondary amines remarkably influenced the pattern as well as selectivity of the reaction. Steric considerations were likely to dictate the overall reactivity with secondary amines which was even more pronounced when using p-cumenethio-substituted vinyl sulfoxide. Chapter 4 describes the conjugate additions as well as remote effect of aryl substituent on the selectivity of addition of amines on sugar sulfoxide In summary, the Thesis establishes: A new reactivity of switching and a selective activation of 2,3-unsaturated thioglycoside; A Pummerer rearrangement route in order to synthesize sugar vinyl sulfide for the first time, which on selective oxidation furnish a sugar vinyl sulfoxide, a useful precursor for conjugate addition reactions; An assessment of the stereoelectronic, as well as, steric effect of the chiral vinyl sulfoxide with various nucleophiles in conjugate addition reactions; Influence of the protecting groups were also studied in conjugate addition reactions. Overall the study presented in the Thesis provides a new insight to unsaturated sugars. The salient features of the present findings also showed that the intermediates such as C-3 substituted thioalkyl/aryl glycosides, vinyl sulfides, a variety of new C-2 substituted vinyl sulfoxides are also the potential sites for many types of modifications in monosaccharides. (For structural formula pl see the pdf file)
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Allyl glycosides"

1

Hoffmann, Michael G. O-Glycosylimidate zur Synthese von funktionell substituierten Alkyl-C-glycosiden. Konstanz: Hartung-Gorre, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dieter, Balzer, and Lüders Harald, eds. Nonionic surfactants: Alkyl polyglucosides. New York: Marcel Dekker, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pantelic, Ivana. Alkyl Polyglucosides: From Natural-Origin Surfactants to Prospective Delivery Systems. Elsevier Science & Technology, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pantelic, Ivana. Alkyl Polyglucosides: From Natural-Origin Surfactants to Prospective Delivery Systems. Elsevier Science & Technology, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pantelic, Ivana. Alkyl Polyglucosides: From Natural-Origin Surfactants to Prospective Delivery Systems. Elsevier Science & Technology, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

(Editor), Dieter Balzer, and Harald Luders (Editor), eds. Nonionic Surfactants: Alkyl Polyglucosides (Surfactant Science). CRC, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Akoh, Casimir Chike. Synthesis and properties of carbohydrate and alkyl glycoside fatty acid polyesters: Low calorie oil and fat substitutes. 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Allyl glycosides"

1

Kryczka, B., J. Lewkowski, and A. Zawisza. "1--Allyl Glycosides." In Acetals: Hal/X and O/O, S, Se, Te, 1. Georg Thieme Verlag KG, 2007. http://dx.doi.org/10.1055/sos-sd-029-00964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kryczka, B., J. Lewkowski, and A. Zawisza. "Formation of 1--Allyl Glycosides." In Acetals: Hal/X and O/O, S, Se, Te, 1. Georg Thieme Verlag KG, 2007. http://dx.doi.org/10.1055/sos-sd-029-00948.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kryczka, B., J. Lewkowski, and A. Zawisza. "Isomerization of 1--Allyl Glycosides." In Acetals: Hal/X and O/O, S, Se, Te, 1. Georg Thieme Verlag KG, 2007. http://dx.doi.org/10.1055/sos-sd-029-00960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Taber, Douglass. "C-O Ring Natural Products: (-)-Serotobenine (Fukuyama-Kan), (-)-Aureonitol (Cox), Salmochelin SX (Gagné), Botcinin F (Shiina), (-)-Saliniketal B (Paterson), Haterumalide NA (Borhan)." In Organic Synthesis. Oxford University Press, 2011. http://dx.doi.org/10.1093/oso/9780199764549.003.0051.

Full text
Abstract:
Tohru Fukuyama of the University of Tokyo and Toshiyuki Kan of the University of Shizuoka devised ( J. Am. Chem. Soc. 2008, 130, 16854) the chiral auxiliary-directed Rh-mediated cyclization of 1, setting the two stereogenic centers of 2 with high stereocontrol. The ester 2 was carried on to the indole alkaloid (-)-Serotobenine 3. In the course of a synthesis of (-)-Aureonitol 6, Liam R. Cox of the University of Birmingham developed (J. Org. Chem. 2008, 73, 7616) the diastereoselective intramolecular addition of an allyl silane 4 to give the tetrahydrofuran 5. In analogy to what is known about the intramolecular ene reaction, the diastereocontrol observed for this cyclization may depend on the allyl silane being Z. Michel R. Gagné of the University of North Carolina found (J. Am. Chem. Soc. 2008, 130, 12177) that the Ni-catalyzed coupling of organozinc halides could be extended to glycosyl halides such as 7. This opened ready access to C -alkyl and C -aryl glycosides, including Salmochelin SX 10. Isamu Shiina of the Tokyo University of Science established (Organic Lett. 2008, 10, 3153) that the acid-mediated cyclization of the Sharpless-derived epoxide 10 proceeded with clean inversion, to give 11. The highly-substituted tetrahydropyran core 11 was then elaborated to the antifungal Botcinin F 12. Ian Paterson of Cambridge University optimized (Organic Lett. 2008, 10, 3295) the Pd-catalyzed spirocyclization of the ene diol 13, leading to 14, the enantiomerically-pure bicyclic core of (-)-Saliniketal B 15. Haterumalide NA 18 presented the particular challenge of assembling the geometrically-defined chloroalkene, in addition to closing the macrolide ring. Babak Borhan of Michigan State University addressed (J. Am. Chem. Soc. 2008, 130, 12228) both of these challenges together, electing to employ a chlorovinylidene chromium carbenoid, as developed by Falck and Mioskowski, to effect the macrocyclization of 16 to 17.
APA, Harvard, Vancouver, ISO, and other styles
5

Gunn, S. J., S. L. Warriner, and J. W. White. "Synthesis from -Alkyl Glycosides." In Acetals: Hal/X and O/O, S, Se, Te, 1. Georg Thieme Verlag KG, 2007. http://dx.doi.org/10.1055/sos-sd-029-00808.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"3. Alkyl et aryl glycosides. Glycosylamines." In Chimie moléculaire et supramoléculaire des sucres, 45–70. EDP Sciences, 1995. http://dx.doi.org/10.1051/978-2-7598-0267-8.c004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Postema, Maarten H. D. "Synthesis of Alkyl C-Glycoside Natural Products." In C-Glycoside Synthesis, 227–64. CRC Press, 2020. http://dx.doi.org/10.1201/9781003069249-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"Solution Behavior of Alkyl Glycosides and Related Compounds." In Sugar-Based Surfactants, 41–80. CRC Press, 2008. http://dx.doi.org/10.1201/9781420051674-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Andreozzi, Patrizia, Giacomo Gente, and Camillo La Mesa. "Solution Behavior of Alkyl Glycosides and Related Compounds." In Surfactant Science. CRC Press, 2008. http://dx.doi.org/10.1201/9781420051674.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vanaken, T., S. Foxall-Vanaken, S. Castleman, and S. Ferguson-Miller. "[3] Alkyl glycoside detergents: Synthesis and applications to the study of membrane proteins." In Methods in Enzymology, 27–35. Elsevier, 1986. http://dx.doi.org/10.1016/s0076-6879(86)25005-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography