Academic literature on the topic 'All-solid batteries'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'All-solid batteries.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "All-solid batteries"

1

HAYASHI, Akitoshi, and Atsushi SAKUDA. "Development of All-solid-state Batteries." Journal of The Institute of Electrical Engineers of Japan 141, no. 9 (September 1, 2021): 579–82. http://dx.doi.org/10.1541/ieejjournal.141.579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Notten, Peter H. L. "3D-integrated all-solid-state batteries." Europhysics News 42, no. 3 (May 2011): 24–29. http://dx.doi.org/10.1051/epn/2011303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bhardwaj, Ravindra Kumar, and David Zitoun. "Recent Progress in Solid Electrolytes for All-Solid-State Metal(Li/Na)–Sulfur Batteries." Batteries 9, no. 2 (February 3, 2023): 110. http://dx.doi.org/10.3390/batteries9020110.

Full text
Abstract:
Metal–sulfur batteries, especially lithium/sodium–sulfur (Li/Na-S) batteries, have attracted widespread attention for large-scale energy application due to their superior theoretical energy density, low cost of sulfur compared to conventional lithium-ion battery (LIBs) cathodes and environmental sustainability. Despite these advantages, metal–sulfur batteries face many fundamental challenges which have put them on the back foot. The use of ether-based liquid electrolyte has brought metal–sulfur batteries to a critical stage by causing intermediate polysulfide dissolution which results in poor cycling life and safety concerns. Replacement of the ether-based liquid electrolyte by a solid electrolyte (SEs) has overcome these challenges to a large extent. This review describes the recent development and progress of solid electrolytes for all-solid-state Li/Na-S batteries. This article begins with a basic introduction to metal–sulfur batteries and explains their challenges. We will discuss the drawbacks of the using liquid organic electrolytes and the advantages of replacing liquid electrolytes with solid electrolytes. This article will also explain the fundamental requirements of solid electrolytes in meeting the practical applications of all solid-state metal–sulfur batteries, as well as the electrode–electrolyte interfaces of all solid-state Li/Na-S batteries.
APA, Harvard, Vancouver, ISO, and other styles
4

Amaresh, S., K. Karthikeyan, K. J. Kim, Y. G. Lee, and Y. S. Lee. "Aluminum based sulfide solid lithium ionic conductors for all solid state batteries." Nanoscale 6, no. 12 (2014): 6661–67. http://dx.doi.org/10.1039/c4nr00804a.

Full text
Abstract:
The ionic conductivity of a Li–Al–Ge–P–S based thio-LISICON solid electrolyte is equivalent to that of a conventional organic liquid electrolyte used in lithium secondary batteries. The usage of aluminum brings down the cost of the solid electrolyte making it suitable for commercial solid state batteries.
APA, Harvard, Vancouver, ISO, and other styles
5

HAYASHI, Akitoshi, Atsushi SAKUDA, and Masahiro TATSUMISAGO. "Development of Solid Electrolytes for All-Solid-State Batteries." NIPPON GOMU KYOKAISHI 92, no. 11 (2019): 430–34. http://dx.doi.org/10.2324/gomu.92.430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dirican, Mahmut, Chaoyi Yan, Pei Zhu, and Xiangwu Zhang. "Composite solid electrolytes for all-solid-state lithium batteries." Materials Science and Engineering: R: Reports 136 (April 2019): 27–46. http://dx.doi.org/10.1016/j.mser.2018.10.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Smdani, Gulam, Md Wahidul Hasan, Amir Abdul Razzaq, and Weibing Xing. "A Novel Solid State Polymer Electrolyte for All Solid State Lithium Batteries." ECS Meeting Abstracts MA2024-01, no. 1 (August 9, 2024): 113. http://dx.doi.org/10.1149/ma2024-011113mtgabs.

Full text
Abstract:
All-solid-state lithium batteries (ASSLBs) have gained enormous interest due to their potential high energy density, high performance, and inherent safety characteristics for advanced energy storage systems.1 Currently, solid-state ceramic (inorganic) electrolytes (SSCEs), solid-state polymer electrolytes (SSPEs), and a combination of the two (e.g., SSCE fillers in SSPEs) are being developed for ASSLBs.2 Although SSCEs have high ionic conductivity and high electrochemical stability,3 they experience some significant drawbacks, such as poor electrolyte/electrode interfacial properties and poor mechanical characteristics (brittle, fragile),4 which can hinder their adoption to commercialization. Typically, SSCE-based ASSLBs require high cell stack pressures exerted by heavy fixtures for regular operations, which can reduce the energy density of the overall battery packages.5 One promising solution to circumvent the aforementioned issues of SSCE-based ASSLBs is to develop SSPE-based AASLBs, since SSPEs can provide inherently good interfacial contacts with the electrodes that do not require high cell stack pressures. In addition, SSPEs are advantageous in making flexible batteries due to their elastic nature.6 In this study, a novel method was developed to prepare a high-performance SSPE-based ASSLB, where a π-conjugated polymer was incorporated into a baseline polymer backbone, resulting in an improvement in ionic conductivity, thermal stability, and electrochemical stability. The novel SSPE demonstrated a superior electrochemical performance than the baseline when used in ASSLBs. The strategy developed in this study may lead to a new direction for the research and development of next-generation SSPE-based ASSLBs. References: (1) Chiu, K.-C.; Chang, J.-K.; Su, Y.-S. Recent Configurational Advances for Solid-State Lithium Batteries Featuring Conversion-Type Cathodes. Molecules 2023, 28 (12), 4579. (2) Chen, A.; Qu, C.; Shi, Y.; Shi, F. Manufacturing strategies for solid electrolyte in batteries. Frontiers in Energy Research 2020, 8, 571440. (3) Li, S.; Zhang, S. Q.; Shen, L.; Liu, Q.; Ma, J. B.; Lv, W.; He, Y. B.; Yang, Q. H. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Advanced Science 2020, 7 (5), 1903088. (4) Yu, X.; Manthiram, A. A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Materials 2021, 34, 282-300. (5) Hayashi, A.; Sakuda, A.; Tatsumisago, M. Development of sulfide solid electrolytes and interface formation processes for bulk-type all-solid-state Li and Na batteries. Frontiers in Energy Research 2016, 4, 25. (6) Jiang, Y.; Yan, X.; Ma, Z.; Mei, P.; Xiao, W.; You, Q.; Zhang, Y. Development of the PEO based solid polymer electrolytes for all-solid state lithium ion batteries. Polymers 2018, 10 (11), 1237. Acknowledgment This work was supported by the Larry and Linda Pearson Endowed Chair at the Department of Mechanical Engineering, South Dakoda School of Mines and Technology and by the South Dakota Governor’s Research Center for Electrochemical Energy Storage.
APA, Harvard, Vancouver, ISO, and other styles
8

Hatzell, Kelsey. "Chemo-Mechanics in All Solid State Composite Cathodes." ECS Meeting Abstracts MA2022-02, no. 4 (October 9, 2022): 469. http://dx.doi.org/10.1149/ma2022-024469mtgabs.

Full text
Abstract:
Decarbonization of transportation systems will require a suite of battery technologies depending on the mode and scale. Solid state batteries are an energy dense and non-flammable alternative to conventional batteries and is currently being explored for passenger vehicles and portable electronics1,2. While there is considerable interest in understanding lithium metal anodes for solid state batteries, many significant challenges still exist in solid state cathodes. Solid state cathodes are composites and usually include a combination of active material, solid electrolyte and binder3. The composition, microstructure, and properties of the cathode has significant implications for rate performance, energy density, and lifetime of these systems. Here we examine composite solid state cathodes comprised of argyrodite Li6PS5Cl and LiNi0.8Co0.1Mn0.1O2. We examine how composition and structure influences performance with a specific lens on understanding how chemo-mechanical transformations and buried solid-solid interfaces evolved during cycle operation. In addition we show how external operating conditions (temperature/pressure) influence stress generation in these systems. In this talk we will discuss how we combine novel bench-top experiments with advanced operando x-ray characterization tools to quantify stress and correlate it to structure. [1]Shen, F., Dixit, M. B., Zaman, W., Hortance, N., Rogers, B., & Hatzell, K. B. (2019). Composite electrode ink formulation for all solid-state batteries. Journal of The Electrochemical Society, 166(14), A3182. [2]Hatzell, K. B., & Zheng, Y. (2021). Prospects on large-scale manufacturing of solid state batteries. MRS Energy & Sustainability, 8(1), 33-39. [3]Ren, Y., Hortance, N., & Hatzell, K. (2022). Mitigating Chemo-Mechanical Failure in Li-S Solid State Batteries with Compliant Cathodes. Journal of The Electrochemical Society.
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Zonghai. "(Invited) Formation of Solid/Solid Interface for All Solid State Batteries." ECS Meeting Abstracts MA2020-01, no. 2 (May 1, 2020): 290. http://dx.doi.org/10.1149/ma2020-012290mtgabs.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sun, Zhouting, Mingyi Liu, Yong Zhu, Ruochen Xu, Zhiqiang Chen, Peng Zhang, Zeyu Lu, Pengcheng Wang, and Chengrui Wang. "Issues Concerning Interfaces with Inorganic Solid Electrolytes in All-Solid-State Lithium Metal Batteries." Sustainability 14, no. 15 (July 25, 2022): 9090. http://dx.doi.org/10.3390/su14159090.

Full text
Abstract:
All-solid-state batteries have attracted wide attention for high-performance and safe batteries. The combination of solid electrolytes and lithium metal anodes makes high-energy batteries practical for next-generation high-performance devices. However, when a solid electrolyte replaces the liquid electrolyte, many different interface/interphase issues have arisen from the contact with electrodes. Poor wettability and unstable chemical/electrochemical reaction at the interfaces with lithium metal anodes will lead to poor lithium diffusion kinetics and combustion of fresh lithium and active materials in the electrolyte. Element cross-diffusion and charge layer formation at the interfaces with cathodes also impede the lithium ionic conductivity and increase the charge transfer resistance. The abovementioned interface issues hinder the electrochemical performance of all-solid-state lithium metal batteries. This review demonstrates the formation and mechanism of these interface issues between solid electrolytes and anodes/cathodes. Aiming to address the problems, we review and propose modification strategies to weaken interface resistance and improve the electrochemical performance of all-solid-state lithium metal batteries.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "All-solid batteries"

1

Johnson, D. R. "The microstructure of all-solid-state batteries." Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Geiß, Matthias [Verfasser]. "Sacrificial interlayers for all-solid-state batteries / Matthias Geiß." Gießen : Universitätsbibliothek, 2021. http://d-nb.info/1230476318/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Quemin, Elisa. "Exploring solid-solid interfaces in Li6PS5Cl-based cathode composites for all solid state batteries." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS501.

Full text
Abstract:
Les technologies de stockage énergétiques jouent un rôle crucial en accommodant le caractère intermittent des énergies renouvelable. Actuellement, les batteries lithium-ion prédominent le marché des appareils portables. Cependant, pour les véhicules électriques, des avancées sont nécessaires en termes de sécurité et de densité énergétique, conduisant à l'exploration de nouvelles technologies de batterie, notamment les batteries tout-solide. Cette thèse se concentre sur les obstacles entravant l'application pratique de ces batteries tout-solide, en mettant particulièrement en lumière le rôle des composites cathodes. L'attention s'est portée sur un composite couramment utilisé, composé de Li6PS5Cl comme électrolyte solide (SE) associé à un matériau actif de type NMC. Les mécanismes de dégradation se révèlent être influencés par deux interfaces : SE/additif carbone et SE/AM (matériau actif). Le cyclage en dessous de 3,6 V par rapport au Li-In/In montrent que la dégradation prédominante provient de l'interface SE/additif carbone, tandis qu'à 3,9 V, l'interface SE/AM devient le principal foyer de dégradation. A partir de là, l'effet des additifs de carbone dans le composite a été minutieusement étudié. Ainsi, une concentration de plus de 2 % en poids de VGCF a un impact négatif sur la conduction ionique des composites. De plus, une analyse in situ de la conductivité électronique des composites sans carbone révèle des changements induits par l'insertion/désinsertion du lithium dans le transport électronique, avec une réduction de la conductivité électronique à états de charge élevés, en particulier dans les NMC riches en nickel. Globalement, les résultats indiquent qu'une faible quantité d'additif carbone peut avoir des avantages significatifs, à condition que les réactions chimiques soient maitrisées. Ainsi, des stratégies minimisant les pertes de capacité à long terme ont été explorées, en examinant des paramètres tels que la pression d'assemblage, le loading, les cycles de formation, la température et les coating carbonate. En fusionnant les conditions optimales, un composite de cathode optimisé est présenté, ouvrant la voie à des avancées prometteuses dans la technologie des batteries tout-solide
While Lithium-ion batteries dominate portable devices, growing safety and energy density demands in electric vehicle batteries have led to the exploration of "beyond Li-ion" technology. All-Solid-State Batteries (ASSBs) have emerged as a promising alternative to Li-ion batteries. Thus, this doctoral research focuses on overcoming challenges hindering the practical implementation of ASSBs, with a specific emphasis on cathode composites. The investigation revolves around a common composite comprising Li6PS5Cl solid electrolyte (SE) and NMC active material (AM). The research unveils the degradation mechanisms within ASSBs, governed by SE/Carbon additive and SE/AM interfaces. It is observed that capacity deterioration, occurring below 3.6 V vs. Li-In/In, is primarily attributed to SE/Carbon interfaces. Conversely, elevating the voltage to 3.9 V shifts the primary degradation source to SE/AM interfaces. Then, the adverse effects of carbon additives on the ionic conduction of composites are demonstrated, particularly when exceeding 2 wt. % VGCF. Moreover, the study delves into the electronic conductivity of carbon-free composites using innovative in situ monitoring. This reveals Li-induced alterations hindering electronic conductivity, especially at high charge levels, notably in high Ni-content NMC. Furthermore, the influence of particle size and morphology on electronic percolation is extensively examined, advocating for minimal VGCF to enhance kinetics and stability. Strategies for effectively incorporating carbon additives while mitigating long-term capacity loss are explored, encompassing assembly pressure, loading, formation cycles, temperature, and carbonate coating. By mixing these optimal conditions, an enhanced cathode composite is introduced, holding promising potential for the progression of All-Solid-State Battery technology
APA, Harvard, Vancouver, ISO, and other styles
4

Yada, Chihiro. "Studies on electrode/solid electrolyte interface of all-solid-state rechargeable lithium batteries." 京都大学 (Kyoto University), 2006. http://hdl.handle.net/2433/144024.

Full text
Abstract:
Kyoto University (京都大学)
0048
新制・課程博士
博士(工学)
甲第12338号
工博第2667号
新制||工||1377(附属図書館)
24174
UT51-2006-J330
京都大学大学院工学研究科物質エネルギー化学専攻
(主査)教授 小久見 善八, 教授 江口 浩一, 教授 田中 功
学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
5

Sun, Bing. "Functional Polymer Electrolytes for Multidimensional All-Solid-State Lithium Batteries." Doctoral thesis, Uppsala universitet, Strukturkemi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-248084.

Full text
Abstract:
Pressing demands for high power and high energy densities in novel electrical energy storage units have caused reconsiderations regarding both the choice of battery chemistry and design. Practical concerns originating in the conventional use of flammable liquid electrolytes have renewed the interests of using solvent-free polymer electrolytes (SPEs) as solid ionic conductors for safer batteries. In this thesis work, SPEs developed from two polymer host structures, polyethers and polycarbonates, have been investigated for all-solid-state Li- and Li-ion battery applications. In the first part, functional polyether-based polymer electrolytes, such as poly(propylene glycol) triamine based oligomer and poly(propylene oxide)-based acrylates, were investigated for 3D-microbattery applications. The amine end-groups were favorable for forming conformal electrolyte coatings onto 3D electrodes via self-assembly. In-situ polymerization methods such as UV-initiated and electro-initiated polymerization techniques also showed potential to deposit uniform and conformal polymer coatings with thicknesses down to nano-dimensions. Moreover, poly(trimethylene carbonate) (PTMC), an alternative to the commonly investigated polyether host materials, was synthesized for SPE applications and showed promising functionality as battery electrolyte. High-molecular-weight PTMC was first applied in LiFePO4-based batteries. By incorporating an oligomeric PTMC as an interfacial mediator, enhanced surface contacts at the electrode/SPE interfaces and obvious improvements in initial capacities were realized. In addition, room-temperature functionality of PTMC-based SPEs was explored through copolymerization of ε-caprolactone (CL) with TMC. Stable cycling performance at ambient temperatures was confirmed in P(TMC/CL)-based LiFePO4 half cells (e.g., around 80 and 150 mAh g-1 at 22 °C and 40 °C under C/20 rate, respectively). Through functionalization, hydroxyl-capped PTMC demonstrated good surface adhesion to metal oxides and was applied on non-planar electrodes. Ionic transport behavior in polycarbonate-SPEs was examined by both experimental and computational approaches. A coupling of Li ion transport with the polymer chain motions was demonstrated. The final part of this work has been focused on exploring the key characteristics of the electrode/SPE interfacial chemistry using PEO and PTMC host materials, respectively. X-ray photoelectron spectroscopy (XPS) was used to get insights on the compositions of the interphase layers in both graphite and LiFePO4 half cells.
APA, Harvard, Vancouver, ISO, and other styles
6

Shao, Yunfan. "Highly electrochemical stable quaternary solid polymer electrolyte for all-solid-state lithium metal batteries." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1522332577785545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Koç, Tuncay. "In search of the best solid electrolyte-layered oxide pair in all-solid-state batteries." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS535.

Full text
Abstract:
Les batteries à l'état solide (ASSB) qui reposent sur l'utilisation d'électrolytes solides (SE) à conductivité ionique élevée sont le Saint-Graal de la future technologie des batteries, car elles pourraient théoriquement permettre une augmentation de près de 70 et 40 % des densités d'énergie volumétrique (Wh/l) et gravimétrique (Wh/kg), respectivement, ainsi qu'une sécurité accrue par rapport à la technologie des batteries au lithium-ion. À cette fin, la dernière décennie a vu le développement des ASSB, principalement grâce à des SE à base de sulfure, en raison de leurs propriétés intrinsèques favorables. Toutefois, ces progrès n'ont pas permis de mettre au point des ASSB pratiques et performants en raison des réactions complexes de décomposition interfaciale qui se produisent aux électrodes négative et positive et qui entraînent une détérioration de la durée de vie des cycles. En se concentrant sur l'électrode positive, cela nécessite une meilleure compréhension de la compatibilité électrochimique/chimique des SE qui est cruellement nécessaire pour les applications du monde réel.Ce travail vise à fournir des réponses concernant la meilleure paire d'oxyde en couche SE dans la cathode composite pour les ASSB. En menant une étude systématique sur l'effet de la nature des SE sur les performances des batteries, nous montrons que les performances de Li6PS5Cl rivalisent avec celles de Li3InCl6, surpassant toutes deux celles de β-Li3PS4 et ce, indépendamment de la voie de synthèse. Ces performances sont préservées lors de l'assemblage de piles à l'état solide, puisque l'appariement de Li6PS5Cl avec une cathode en oxyde stratifié présente la meilleure rétention en cas de cyclage. Cette étude révèle également que les halogénures réagissent avec les sulfures dans les cellules hétérostructurées, ce qui entraîne une diminution rapide de la capacité en cas de cyclage en raison de réactions de décomposition interfaciales. Pour éliminer ce processus de dégradation interfaciale, nous proposons une stratégie d'ingénierie de surface qui permet d'atténuer la détérioration de la surface et de débloquer des ASSB très performants. Enfin, l'analyse électrochimique, structurelle et spectroscopique combinée démontre que Li3InCl6 ne peut pas résister à des potentiels d'oxydation plus élevés, ce qui entraîne des produits de décomposition contrairement à ce que les calculs théoriques prévoyaient
All-solid-state batteries (ASSBs) that rely on the use of solid electrolytes (SEs) with high ionic conductivity are the holy grail for future battery technology, since it could theoretically enable achieving nearly 70 and 40 % increase in volumetric (Wh/l) and gravimetric (Wh/kg) energy densities, respectively, as well as enhanced safety compared to lithium-ion battery technology. To this end, the last decade has witnessed the development of ASSBs mainly through sulfide-based SEs pertaining to their favorable intrinsic properties. However, such advancements were not straightforward to unlock high-performing practical ASSBs because of complex interfacial decomposition reactions taking place at both negative and positive electrodes, leading to a worsening cycling life. Focusing on the positive electrode, this calls for a better understanding of electrochemical/chemical compatibility of SEs that is sorely needed for real-world applications.This work aims to provide answers regarding the best SE-layered oxide pair in composite cathode for ASSBs. By conducting a systematic study on the effect of nature of SEs in battery performances, we show that Li6PS5Cl performances rival that of Li3InCl6, both outperforming β-Li3PS4 and this, independently of the synthesis route. This is preserved when assembling solid-state cells since Li6PS5Cl pairing with layered oxide cathode shows the best retention upon cycling. This study also unravels that halides react with sulfides in hetero-structured cell design, hence resulting in a rapid capacity decay upon cycling stemming from interfacial decomposition reactions. To eliminate such interfacial degradation process, we suggest a surface engineering strategy that helps to alleviate the surface deterioration, unlocking highly performing ASSBs. Eventually, combined electrochemical, structural and spectroscopic analysis demonstrate that Li3InCl6 cannot withstand at higher oxidation potentials, resulting in decomposition products in contrast to what the theoretical calculations predicted
APA, Harvard, Vancouver, ISO, and other styles
8

Su, Zhongyi. "Performance enhancement of all-solid-state batteries by optimizing the electrolyte through advanced microscopy and tomography techniques." Thesis, The University of Sydney, 2020. https://hdl.handle.net/2123/22112.

Full text
Abstract:
NASICON-structured electrolytes of Li1+xAlxGe2−x(PO4)3, abbreviated as LAGP, are relatively stable in ambient air, also show good performance regarding Li+ conductivity (up to10-3 S·cm-1 at room temperature), thus are promising applications in ASSLIBs. To understand the ion transport mechanism of LAGP and the Al/Ge exchange system, a detailed study of SEM, Nano-SIMS, TEM and APT characterization applied for LGP and LAGP(X=0.1,0.3,0.5).It was confirmed that, by doping aluminum, the substitution: LiGe2(PO4)3 → Li1+xAlxGe2−x(PO4)3, can be accomplished. Al3+ ions partially substitute Ge4+ ions, introducing extra Li+ ions inside the grain. Moreover, an amorphous phase forms along the grain boundaries as LiAlPO4, which contributes to the increase of the density and the improvement of the lithium ion mobility along the grain boundary. Doping extra aluminum enhances the electrochemical performance of the lithium battery by providing more lithium ion channels both inside the grain and along the grain boundaries. We also proved the feasibility of applying atom probe tomography for the ceramic solid electrolyte to study their atomic scale chemical composition.
APA, Harvard, Vancouver, ISO, and other styles
9

Naboulsi, Agathe. "Composite organic-inorganic membrane as new electrolyte in all solid-state battery." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS451.

Full text
Abstract:
Le développement de batteries tout solide est essentiel pour réussir la transition écologique et le déploiement de véhicules tout électriques. Le développement de cette filière pourra se faire, entre autres, par l'élaboration d’un électrolyte tout solide (SE). Les SE polymères à base de poly(éthylène glycol) présentent l'avantage d'être adaptables aux procédés actuels de fabrication des batteries Li-ion. Malheureusement, leur conductivité reste limitée (10-6 – 10-9 S.cm-1) à température ambiante. Les SE inorganiques, comme le Li7La3Zr2O12, sont en revanche de bons conducteurs ioniques (10-3 S.cm-1), mais ils nécessitent des procédés de mise en forme coûteux et énergivores. L’objectif de cette thèse était le développement de SE composites qui combinent les avantages de ces deux matériaux. Les travaux ont porté sur la conception d'un SE composite performant et l’étude des mécanismes de transport à l'interface de ces deux matériaux. Une étude approfondie sur un SE polymère a été menée afin d'optimiser sa synthèse à partir de monomères, liquides et commerciaux. En utilisant cette approche de synthèse, il a été possible de mettre en œuvre différents procédés de mise en forme de SE composite (frittage basse température, extrusion électro-assistée, coulée évaporation) afin de contrôler le mélange des deux matériaux et leur interface. La spectroscopie d'impédance électrochimique a été largement mise en œuvre pour comprendre les phénomènes de transport dans les SE composites
The development of all-solid-state batteries is essential if we are to make a success of the ecological transition and the deployment of all-electric vehicles. One way of developing this sector is to produce an all-solid electrolyte (SE). Poly(ethylene glycol)-based polymer SEs have the advantage of being adaptable to current Li-ion battery manufacturing processes. Unfortunately, their conductivity remains limited (10-6 - 10-9 S.cm-1) at ambient temperature. Interestingly, inorganic SEs, such as Li7La3Zr2O12, are good ionic conductors (10-3 S.cm-1), but they require costly and energy-intensive shaping processes. This thesis aimed to develop composite SEs that combine the advantages of these two materials. The work focused on the design of a high-performance composite SE and the study of transport mechanisms at the interface of these two materials. An in-depth study of a polymer SE was carried out in order to optimize its synthesis from liquid and commercial monomers. Taking advantage of this synthesis design, various composite SE shaping processes (low-temperature sintering, electro-assisted extrusion, evaporation casting) were explored in order to control the mixing of the two materials and their interface. Electrochemical impedance spectroscopy has been widely used to understand transport phenomena in composite SEs
APA, Harvard, Vancouver, ISO, and other styles
10

Saha, Sujoy. "Exploration of ionic conductors and Li-rich sulfides for all-solid-state batteries." Electronic Thesis or Diss., Sorbonne université, 2020. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2020SORUS041.pdf.

Full text
Abstract:
Les besoins croissants en stockage de l’énergie exigent une amélioration continue des batteries lithium-ion. Le mécanisme de redox anionique qui permet d’augmenter la densité d’énergie des électrodes positives mais est associé à divers inconvénients (hystérésis et décroissance de tension, cinétique lente, etc.) qui restent à résoudre. De plus, la sécurité des batteries lithium-ion peut être améliorée en concevant des batteries tout-solide. Dans cette thèse, nous nous sommes d'abord concentrés sur le développement de nouveaux électrolytes solides à base d'oxydes pour des applications dans les batteries tout-solide. Nous avons exploré l’influence du désordre structural sur conductivité ionique des électrolytes solides et montré comment il était possible d’augmenter la conductivité en stabilisant à température ambiante les phases désordonnées présentes à haute température. Ensuite, nous avons conçu des électrodes à base de sulfures riches en Li présentant du rédox anionique, qui en outre présentent une excellente réversibilité. Ainsi, les matériaux d'électrode nouvellement conçus ouvrent une direction possible pour atténuer les problèmes liés au rédox anionique. Enfin, nous avons utilisé les sulfures comme électrode positive dans des batteries tout-solide avec des électrolytes solides à base de sulfures; ces systèmes montrent une excellente cyclabilité, soulignant ainsi l’importance de la compatibilité interfaciale dans les batteries tout-solide
Growing needs for energy storage applications require continuous improvement of the lithium ion batteries (LIB). The anionic redox chemistry has emerged recently as a new paradigm to design high-energy positive electrodes of LIBs, however with some issues (i.e., voltage hysteresis and fading, sluggish kinetics, etc.) that remained to be solved. In addition, the safety of the LIBs can be improved by designing all-solid-state batteries (ASSB). In this thesis, we first focused on the development of new oxide-based solid electrolytes (SE) for applications in ASSBs. We explored the influence of disorder on the ionic conductivity of SEs and demonstrated how to increase the conductivity by stabilizing disordered high-temperature phases. Furthermore, we designed Li-rich layered sulfide electrodes that undergo anionic sulfur redox, with excellent reversibility. Thus, the newly designed electrode materials show a possible direction to mitigate the issues related to anionic redox. Lastly, we used the Li-rich sulfides as positive electrode in ASSB with sulfide-based SEs that demonstrate excellent cyclability, thereby highlighting the importance of interfacial compatibility in ASSBs
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "All-solid batteries"

1

Kulova, Tatiana. All-Solid-state Thin-film Lithium-ion Batteries. Taylor & Francis Group, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kotobuki, Masashi. Ceramic Electrolytes for All-Solid-State Li Batteries. World Scientific Publishing Co Pte Ltd, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

AL. Ceramic Electrolytes All-Solid-state L: Ceramic Electrolytes for All-Solid-state Li Batteries. World Scientific Publishing Co Pte Ltd, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

All Solid State Thin-Film Lithium-Ion Batteries: Materials, Technology, and Diagnostics. Taylor & Francis Group, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Skundin, Alexander, Tatiana Kulova, Alexander Rudy, and Alexander Miromemko. All Solid State Thin-Film Lithium-Ion Batteries: Materials, Technology, and Diagnostics. Taylor & Francis Group, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Skundin, Alexander, Tatiana Kulova, Alexander Rudy, and Alexander Miromemko. All Solid State Thin-Film Lithium-Ion Batteries: Materials, Technology, and Diagnostics. Taylor & Francis Group, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Skundin, Alexander, Tatiana Kulova, Alexander Rudy, and Alexander Miromemko. All Solid State Thin-Film Lithium-Ion Batteries: Materials, Technology, and Diagnostics. Taylor & Francis Group, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kulova, Tatiana. All Solid State Thin-Film Lithium-Ion Batteries: Materials, Technology, and Diagnostics. CRC Press LLC, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "All-solid batteries"

1

Tofield, Bruce C. "Future Prospects for All-Solid-State Batteries." In Solid State Batteries, 423–41. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5167-9_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ilango, P. Robert, Jeevan Kumar Reddy Modigunta, Abhilash Karuthedath Parameswaran, Zdenek Sofer, G. Murali, and Insik In. "Novel Design Aspects of All-Solid-State Batteries." In Solid State Batteries, 157–91. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12470-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ajith, K., P. Christopher Selvin, K. P. Abhilash, Nithyadharseni Palaniyandy, P. Adlin Helen, and G. Somasundharam. "Recycling of All-Solid-State Lithium-Ion Batteries." In Solid State Batteries, 245–74. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12470-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ratsoma, M. S., K. Makgopa, K. D. Modibane, and K. Raju. "Prospective Cathode Materials for All-Solid-State Batteries." In Solid State Batteries, 83–125. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12470-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Priyanka, P., B. Nalini, and P. Nithyadharseni. "Basic Aspects of Design and Operation of All-Solid-State Batteries." In Solid State Batteries, 1–29. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12470-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Abhilash, K. P., P. Nithyadharseni, P. Sivaraj, D. Lakshmi, Seema Agarwal, Bhekie B. Mamba, and Zdenek Sofer. "Future Challenges to Address the Market Demands of All-Solid-State Batteries." In Solid State Batteries, 275–95. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12470-9_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nakamura, Hideya, and Satoru Watano. "Dry Coating of Electrode Particle with Solid Electrolyte for Composite Electrode of All-Solid-State Battery." In Next Generation Batteries, 93–105. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6668-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Asakura, Ryo, Arndt Remhof, and Corsin Battaglia. "Hydroborate-Based Solid Electrolytes for All-Solid-State Batteries." In ACS Symposium Series, 353–93. Washington, DC: American Chemical Society, 2022. http://dx.doi.org/10.1021/bk-2022-1413.ch014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Abhilash, K. P., P. Sivaraj, Bhupendar Pal, P. Nithyadharseni, B. Nalini, Sudheer Kumar Yadav, Robert Illango, and Zdenek Sofer. "Advanced Characterization Techniques to Unveil the Dynamics of Challenging Nano-scale Interfaces in All-Solid-State Batteries." In Solid State Batteries, 219–44. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12470-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Okumura, Toyoki. "Powder-Process-Based Fabrication of Oxide-Based Bulk-Type All-Solid-State Batteries." In Next Generation Batteries, 221–30. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6668-8_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "All-solid batteries"

1

Ferreira, Patryck, and Shu-Xia Tang. "Quintuple Thermal Model for All-Solid-State Batteries and Temperature Estimation through a Cascaded Thermal-Electrochemical Model." In 2024 IEEE Conference on Control Technology and Applications (CCTA), 716–21. IEEE, 2024. http://dx.doi.org/10.1109/ccta60707.2024.10666604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Maohua, Chen, Rayavarapu Prasada Rao, and Stefan Adams. "All-Solid-State Lithium Batteries Using Li6PS5Br Solid Electrolyte." In 14th Asian Conference on Solid State Ionics (ACSSI 2014). Singapore: Research Publishing Services, 2014. http://dx.doi.org/10.3850/978-981-09-1137-9_154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Beutl, Alexander, Ningxin Zhang, Marcus Jahn, and Maria Nestoridi. "All-solid state batteries for space exploration." In 2019 European Space Power Conference (ESPC). IEEE, 2019. http://dx.doi.org/10.1109/espc.2019.8931978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

THANGADURAI, V., J. SCHWENZEI, and W. WEPPNER. "DEVELOPMENT OF ALL-SOLID-STATE LITHIUM BATTERIES." In Proceedings of the 10th Asian Conference. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773104_0084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Finsterbusch, Martin. "Oxide-Electrolyte Based All-Solid-State Batteries." In Materials for Sustainable Development Conference (MAT-SUS). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.nfm.2022.088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Song, Taeseup, Jehyun Lee, Jiwoon Kim, Minsung Kim, Myungju Woo, Seungwoo Lee, Jaeik Kim, et al. "Electrode Structure Engineering for All Solid State Batteries." In MATSUS Spring 2024 Conference. València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2023. http://dx.doi.org/10.29363/nanoge.matsus.2024.216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sousa, R., J. F. Ribeiro, J. A. Sousa, L. M. Goncalves, and J. H. Correia. "All-solid-state batteries: An overview for bio applications." In 2013 IEEE 3rd Portuguese Meeting in Bioengineering (ENBENG). IEEE, 2013. http://dx.doi.org/10.1109/enbeng.2013.6518400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hu, Zhixiong, Huangqing Ye, Jiahui Chen, Xian-Zhu Fu, Rong Sun, and Ching-Ping Wong. "Li0.43La0.56Ti0.95Ge0.05O3/PEO composite solid electrolytes for flexible all-solid-state lithium batteries." In 2018 19th International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2018. http://dx.doi.org/10.1109/icept.2018.8480741.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Hongru, and Ceng Li. "Recent Developments of Solid-State Electrolytes for All-Solid-State Lithium Metal Batteries." In 2022 3rd International Conference on Clean and Green Energy Engineering (CGEE). IEEE, 2022. http://dx.doi.org/10.1109/cgee55282.2022.9976528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Liu, Wei, Ryan Milcarek, Kang Wang, and Jeongmin Ahn. "Novel Structured Electrolyte for All-Solid-State Lithium Ion Batteries." In ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2015 Power Conference, the ASME 2015 9th International Conference on Energy Sustainability, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/fuelcell2015-49384.

Full text
Abstract:
In this study, a multi-layer structure solid electrolyte (SE) for all-solid-state electrolyte lithium ion batteries (ASSLIBs) was fabricated and characterized. The SE was fabricated by laminating ceramic electrolyte Li1.3Al0.3Ti1.7(PO4)3 (LATP) with polymer (PEO)10-Li(N(CF3SO2)2 electrolyte and gel-polymer electrolyte of PVdF-HFP/ Li(N(CF3SO2)2. It is shown that the interfacial resistance is generated by poor contact at the interface of the solid electrolytes. The lamination protocol, material selection and fabrication method play a key role in the fabrication process of practical multi-layer SEs.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "All-solid batteries"

1

Zhang, Pu. All Solid State Batteries Enabled by Multifunctional Electrolyte Materials. Office of Scientific and Technical Information (OSTI), December 2022. http://dx.doi.org/10.2172/1906484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ye, Jianchao. Printing of All Solid-State Lithium Batteries (BMR FY20Q1 Task 4). Office of Scientific and Technical Information (OSTI), January 2020. http://dx.doi.org/10.2172/1631527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Doeff, Marca. Flexible All Solid State Lithium Batteries Made by Roll-to-Roll Freeze-Casting. Office of Scientific and Technical Information (OSTI), July 2019. http://dx.doi.org/10.2172/1569485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ye, J. FY24Q1 VTO Quarter Report on 3D Printing of All-Solid-State Lithium Batteries. Office of Scientific and Technical Information (OSTI), February 2024. http://dx.doi.org/10.2172/2429648.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ye, J., and M. Wood. VTO FY23Q4 Quarterly Report on 3D Printing of All-Solid-State Lithium Batteries. Office of Scientific and Technical Information (OSTI), November 2023. http://dx.doi.org/10.2172/2429659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ye, J., A. Orhan, and E. Ramos. VTO FY23Q3 Quarterly Report on 3D Printing of All-Solid-State Lithium batteries. Office of Scientific and Technical Information (OSTI), November 2023. http://dx.doi.org/10.2172/2429657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yersak, Thomas. Hot Pressing of Reinforced Li-NMC All-Solid State Batteries with Sulfide Glass Electrolyte. Office of Scientific and Technical Information (OSTI), September 2023. http://dx.doi.org/10.2172/2246589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ye, J., A. Orhan, M. Wood, and E. Ramos. VTO FY23 Annual Progress Report on 3D Printing of All-Solid-State Lithium Batteries. Office of Scientific and Technical Information (OSTI), November 2023. http://dx.doi.org/10.2172/2429655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Narayanan, Badri, Hui Wang, Gamini Sumanasekera, and Jacek Jasinski. Predictive Engineering of Interfaces and Cathodes for High-Performance All Solid-State Lithium-Sulfur Batteries. Office of Scientific and Technical Information (OSTI), May 2023. http://dx.doi.org/10.2172/1971763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Doeff, Marca. Composite Cathode Architectures Made By Freeze-Casting for All Solid State Lithium Batteries: CRADA Final Report. Office of Scientific and Technical Information (OSTI), February 2023. http://dx.doi.org/10.2172/1923547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography