Journal articles on the topic 'Alkaline earth metals'

To see the other types of publications on this topic, follow the link: Alkaline earth metals.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Alkaline earth metals.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hill, Michael S. "Alkaline and alkaline earth metals." Annual Reports Section "A" (Inorganic Chemistry) 108 (2012): 48. http://dx.doi.org/10.1039/c2ic90011d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hill, Michael S. "Alkaline and alkaline earth metals." Annual Reports Section "A" (Inorganic Chemistry) 106 (2010): 39. http://dx.doi.org/10.1039/b918367c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hill, Michael S. "Alkaline and alkaline earth metals." Annual Reports Section "A" (Inorganic Chemistry) 109 (2013): 18. http://dx.doi.org/10.1039/c3ic90010j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hill, Michael S. "Alkaline and alkaline earth metals." Annual Reports Section "A" (Inorganic Chemistry) 107 (2011): 43. http://dx.doi.org/10.1039/c1ic90016a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hill, Michael S. "ChemInform Abstract: Alkaline and Alkaline Earth Metals." ChemInform 43, no. 43 (September 27, 2012): no. http://dx.doi.org/10.1002/chin.201243224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hill, Michael S. "ChemInform Abstract: Alkaline and Alkaline Earth Metals." ChemInform 44, no. 52 (December 5, 2013): no. http://dx.doi.org/10.1002/chin.201352225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hopkins, Alexander D. "Alkali and alkaline-earth metals." Annual Reports Section "A" (Inorganic Chemistry) 102 (2006): 46. http://dx.doi.org/10.1039/b508351f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hill, Michael S. "Alkali and alkaline-earth metals." Annual Reports Section "A" (Inorganic Chemistry) 105 (2009): 55. http://dx.doi.org/10.1039/b818133k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Peterson, David T. "Purification of Alkaline Earth Metals." JOM 39, no. 5 (May 1987): 20–23. http://dx.doi.org/10.1007/bf03258986.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hill, Michael S. "Alkali and alkaline-earth metals." Annual Reports Section "A" (Inorganic Chemistry) 103 (2007): 39. http://dx.doi.org/10.1039/b612595f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Hill, Michael S. "Alkali and alkaline earth metals." Annual Reports Section "A" (Inorganic Chemistry) 104 (2008): 64. http://dx.doi.org/10.1039/b716559p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Chen, Y., F. Stepniak, J. H. Weaver, L. P. F. Chibante, and R. E. Smalley. "Fullerides of alkaline-earth metals." Physical Review B 45, no. 15 (April 15, 1992): 8845–48. http://dx.doi.org/10.1103/physrevb.45.8845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Gorrell, I. B. "2 Alkali and alkaline-earth metals." Annual Reports Section "A" (Inorganic Chemistry) 96 (2000): 5–22. http://dx.doi.org/10.1039/b002946g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Gorrell, I. B. "2 Alkali and alkaline-earth metals." Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem. 98 (2002): 3–22. http://dx.doi.org/10.1039/b109552h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Gorrell, I. B. "2 Alkali and alkaline-earth metals." Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem. 99 (2003): 3–19. http://dx.doi.org/10.1039/b211501h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Gorrell, I. B. "3 Alkali and alkaline-earth metals." Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem. 100 (2004): 15–33. http://dx.doi.org/10.1039/b311776f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Gorrell, I. B. "2 Alkali and alkaline-earth metals." Annual Reports Section "A" (Inorganic Chemistry) 101 (2005): 20. http://dx.doi.org/10.1039/b408039b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Karsch, Hans H., and Manfred Reisky. "Phosphane Complexes of Alkaline Earth Metals." European Journal of Inorganic Chemistry 1998, no. 7 (July 1998): 905–11. http://dx.doi.org/10.1002/(sici)1099-0682(199807)1998:7<905::aid-ejic905>3.0.co;2-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Eremyashev, Viacheslav, Leyla M. Osipova, and Ilya Shenderovich. "The Effects of Alkaline Earth Metals on the Structure of Sodium Borosilicate Glasses: 11B and 29Si NMR Study." Materials Science Forum 989 (May 2020): 192–98. http://dx.doi.org/10.4028/www.scientific.net/msf.989.192.

Full text
Abstract:
The effect of substitution of alkaline earth metals for sodium on the structure of alkali borosilicate glasses had been studied using the solid-state 11B and 29Si NMR spectroscopy. NMR spectra enable to evaluate the relative mole fractions of different silicon and boron structural units in studied samples. The obtained results demonstrate that alkaline earth metals increase the polymerization degree of the silicon structural units at the expense of de-polymerization of the boron units. The reason for these changes is preferential coordination of sodium and alkaline earth metals to the boron units, that increases strongly for the studied alkaline earth metals.
APA, Harvard, Vancouver, ISO, and other styles
20

Chalupka, Karolina, Renata Sadek, Laetitia Valentin, Yannick Millot, Christophe Calers, Magdalena Nowosielska, Jacek Rynkowski, and Stanislaw Dzwigaj. "Dealuminated Beta Zeolite Modified by Alkaline Earth Metals." Journal of Chemistry 2018 (December 2, 2018): 1–11. http://dx.doi.org/10.1155/2018/7071524.

Full text
Abstract:
Alkaline Earth metals (Mg, Sr, and Ca) were incorporated into the dealuminated mesoporous beta zeolite (DeAlBeta) by the two-step postsynthesis method. Physicochemical properties of both unmodified and alkaline Earth metal-modified DeAlBeta zeolite were characterized by XRD, DR UV-vis, FTIR, TPD of NH3 and CO2, NMR, and XPS. The dealumination of beta zeolite led to decrease of its acidity and basicity. The incorporation of alkaline Earth metals into the framework of dealuminated beta zeolite did not affect its structure. The modification of DeAlBeta with a small amount of alkaline Earth metals increases the number of acidic centers, which may be related to the formation of framework Mg (Ca or Sr) (II) Lewis acidic sites.
APA, Harvard, Vancouver, ISO, and other styles
21

Facas, Gregory G., Vineet Maliekkal, Matthew Neurock, and Paul J. Dauenhauer. "Activation of Cellulose with Alkaline Earth Metals." ACS Sustainable Chemistry & Engineering 10, no. 5 (January 28, 2022): 1943–50. http://dx.doi.org/10.1021/acssuschemeng.1c07947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Alemany, M. M. G., J. Casas, C. Rey, L. E. González, and L. J. Gallego. "Dynamic properties of liquid alkaline-earth metals." Physical Review E 56, no. 6 (December 1, 1997): 6818–28. http://dx.doi.org/10.1103/physreve.56.6818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

González, L. E., A. Meyer, M. P. Iñiguez, D. J. González, and M. Silbert. "Liquid structure of the alkaline-earth metals." Physical Review E 47, no. 6 (June 1, 1993): 4120–29. http://dx.doi.org/10.1103/physreve.47.4120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Drozdov, V. A. "Polymorphism in chalcogenides of alkaline-earth metals." Semiconductor physics, quantum electronics and optoelectronics 8, no. 4 (December 15, 2005): 115–17. http://dx.doi.org/10.15407/spqeo8.04.115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

B. Gorrell, I. "Chapter 2. Alkali and alkaline-earth metals." Annual Reports Section "A" (Inorganic Chemistry) 93 (1997): 3. http://dx.doi.org/10.1039/ic093003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

B. Gorrell, I. "Chapter 2. Alkali and alkaline-earth metals." Annual Reports Section "A" (Inorganic Chemistry) 94 (1998): 3. http://dx.doi.org/10.1039/ic094003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Gorrell, I. B. "Chapter 2. Alkali and alkaline earth metals." Annual Reports Section "A" (Inorganic Chemistry) 91 (1994): 3. http://dx.doi.org/10.1039/ic9949100003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Gorrell, I. B. "Chapter 2. Alkali and alkaline-earth metals." Annual Reports Section "A" (Inorganic Chemistry) 92 (1995): 3. http://dx.doi.org/10.1039/ic9959200003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Gorrell, I. B. "Chapter 2. Alkali and alkaline-earth metals." Annual Reports Section "A" (Inorganic Chemistry) 93 (1996): 3. http://dx.doi.org/10.1039/ic9969300003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Gorrell, I. B. "Chapter 2. Alkali and alkaline-earth metals." Annual Reports Section "A" (Inorganic Chemistry) 95 (1999): 3–22. http://dx.doi.org/10.1039/a804875d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

GORRELL, I. B. "ChemInform Abstract: Alkali and Alkaline-Earth Metals." ChemInform 29, no. 9 (June 23, 2010): no. http://dx.doi.org/10.1002/chin.199809291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Gorrell, I. B. "ChemInform Abstract: Alkali and Alkaline-Earth Metals." ChemInform 33, no. 19 (May 21, 2010): no. http://dx.doi.org/10.1002/chin.200219246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

GORRELL, I. B. "ChemInform Abstract: Alkali and Alkaline-Earth Metals." ChemInform 30, no. 2 (June 18, 2010): no. http://dx.doi.org/10.1002/chin.199902286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Gorrell, I. B. "ChemInform Abstract: Alkali and Alkaline-Earth Metals." ChemInform 32, no. 20 (May 15, 2001): no. http://dx.doi.org/10.1002/chin.200120244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Majid, Salih N., and Shuela M. Sheikh-Abdullah. "Spatial Distribution of Some Alkali and Alkaline Earth Metals of Selected Locations in Sulaimani Governorate, Kurdistan Region, Iraq." Journal of Zankoy Sulaimani - Part A 19, no. 2 (January 9, 2017): 91–108. http://dx.doi.org/10.17656/jzs.10615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Khairullina, R. R., and R. M. Khusnutdinov. "Universal Structural and Dynamic Features in Metals Near Their Melting Points." Journal of Physics: Conference Series 2270, no. 1 (May 1, 2022): 012031. http://dx.doi.org/10.1088/1742-6596/2270/1/012031.

Full text
Abstract:
Abstract The results of a comparative analysis of experimental data for the equilibrium properties and characteristics of liquid alkaline earth (magnesium, calcium, strontium), alkaline (lithium, sodium, potassium) and transition metal groups: elements of the subgroups of nickel (Ni, Pd, Pt) and copper (Cu, Ag, Au) near their melting points are presented. Reduced spatial r/rm = rkm /2π and time t / t m = t k m / m β scales, in which km is the first peak position of the static structure factor S(k) and β = 1/kBT is the inverse temperature, are introduced as the basis for the law of corresponding states. Based on these scale transformations and x-ray diffraction analysis, it was found that the groups of liquid alkaline, alkaline earth, and transition metals are described by universal r- and k- dependencies. It has been established that the dispersion law of longitudinal polarization ωc (k), given in accordance with these scale relations, for elements of groups of liquid alkaline, alkaline earth and transition metals has a single universal character. An analysis of the properties of three groups (alkaline, alkaline earth and transition) liquid metals using scale transformations shows that the law of the corresponding states is valid for these substances.
APA, Harvard, Vancouver, ISO, and other styles
37

Kazenas, E. K., N. A. Andreeva, G. K. Astakhova, V. A. Volchenkova, O. A. Ovchinnikova, T. N. Penkina, and O. N. Fomina. "Composition of vapor and thermodynamic characteristics of gaseous molecules tungstates of alkali earth metals." Physics and Chemistry of Materials Treatment 5 (2023): 72–78. http://dx.doi.org/10.30791/0015-3214-2023-5-72-78.

Full text
Abstract:
Calculated and experimental mass spectra (at temperatures region of 1600 – 2000 K) of gaseous alkaline earth metals tungstates: MgWO4(g), CaWO4(g), SrWO4(g), BaWO4(g) are given. The partial vapor pressures are determined and the equations for the temperature dependences of the partial pressures of gaseous molecules of alkaline earth metals tungstates were derived for liquid in the form (Р, atm): lgP(MgWO4(L)) = –28737/Т + 7,95 for the area 1600 – 1900 K; lgP(CaWO4(L)) = – 25265/Т + 6,913 for the area 1850 – 2000 K; lgP(SrWO4(L)) = – 25052/Т + 7,13 for the area 1800 – 1900 K; lgP(BaWO4(L)) = –20570/Т + 4,58 for the area 1770 – 1900 K. Based on experimental data on vapor pressure, the enthalpies of evaporation (DН0s,0), formation (–DН0f,0) and atomization (DН0at,0) of gaseous alkaline earth metals tungstates were calculated, which respectively amounted to (DН0, kJ/mol): MgWO4 — 652, 890, 2855; CaWO4 — 644, 974, 2968; SrWO4 — 615, 1045, 3056; BaWO4 — 548, 1045, 3095. The enthalpy of sublimation of alkaline earth metals tungstates decreases from magnesium to barium.
APA, Harvard, Vancouver, ISO, and other styles
38

Yin, Jun, Ying Hu, and Juyoung Yoon. "Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH." Chemical Society Reviews 44, no. 14 (2015): 4619–44. http://dx.doi.org/10.1039/c4cs00275j.

Full text
Abstract:
This review highlights the recent advances that have been made in the design and bioimaging applications of fluorescent probes for alkali metals, alkaline earth metal cations and for pH determination within biological systems.
APA, Harvard, Vancouver, ISO, and other styles
39

Drobyzhev, A. I., A. A. Mokrov, I. K. Kukushkin, A. M. Pyzhov, V. A. Rekshinskiy, and P. P. Purygin. "CREATION OF ARTIFICIAL CLOUDS OF ALKALINE AND ALKALINE EARTH METALS AZIDES IN THE UPPER ATMOSPHERE." Vestnik of Samara University. Natural Science Series 18, no. 3.1 (June 7, 2017): 137–44. http://dx.doi.org/10.18287/2541-7525-2012-18-3.1-137-144.

Full text
Abstract:
The results of longstanding investigation of developing and natural testing of devices for the spherical clouds creation from vaporized alkaline and alkaline earth metals azides in the upper earth atmosphere are given in the following article.
APA, Harvard, Vancouver, ISO, and other styles
40

Dunyushkina, L. A. "Electrophysical properties of titanates of alkaline-earth metals." Russian Journal of Electrochemistry 43, no. 8 (August 2007): 894–900. http://dx.doi.org/10.1134/s1023193507080071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Söderlund, Mervi, Heini Ervanne, Eveliina Muuri, and Jukka Lehto. "The sorption of alkaline earth metals on biotite." GEOCHEMICAL JOURNAL 53, no. 4 (2019): 223–34. http://dx.doi.org/10.2343/geochemj.2.0561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Gordienko, S. D. "Thermodynamic properties of silicides of alkaline-earth metals." Powder Metallurgy and Metal Ceramics 36, no. 9-10 (September 1997): 502–4. http://dx.doi.org/10.1007/bf02680502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ito, Akihiko, Hiroshi Masumoto, Takashi Goto, and Shunichi Sato. "Characterization of alkaline earth metals ruthenate thin films." Journal of the European Ceramic Society 30, no. 2 (January 2010): 435–40. http://dx.doi.org/10.1016/j.jeurceramsoc.2009.06.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Michel, Olaf, Hiroshi Kaneko, Hayato Tsurugi, Koji Yamamoto, Karl W. Törnroos, Reiner Anwander, and Kazushi Mashima. "Diene Dissolution of the Heavier Alkaline Earth Metals." European Journal of Inorganic Chemistry 2012, no. 6 (January 13, 2012): 998–1003. http://dx.doi.org/10.1002/ejic.201101342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Onwuagba, B. N. "Lattice dynamics of b.c.c. alkaline-earth metals: Barium." Il Nuovo Cimento D 15, no. 7 (July 1993): 937–44. http://dx.doi.org/10.1007/bf02482483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Breitzmann, Martin, Hans-Jürgen Engell, and Dieter Janke. "Refining of steel melts using alkaline earth metals." Steel Research 59, no. 7 (July 1988): 289–94. http://dx.doi.org/10.1002/srin.198801505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Zurek, Eva. "Hydrides of the Alkali Metals and Alkaline Earth Metals Under Pressure." Comments on Inorganic Chemistry 37, no. 2 (June 6, 2016): 78–98. http://dx.doi.org/10.1080/02603594.2016.1196679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Spigun, O. A., O. D. Choporova, and Yu A. Zolotov. "Ion chromatographic determination of alkaline earth metals and some heavy metals." Analytica Chimica Acta 172 (1985): 341–46. http://dx.doi.org/10.1016/s0003-2670(00)82627-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Takesue, Naohisa, and Jun-ichi Saito. "Molecular Orbital Calculation of Lead-Free Perovskite Compounds for Efficient Use of Alkaline and Alkaline Earth Metals." Crystals 10, no. 11 (October 22, 2020): 956. http://dx.doi.org/10.3390/cryst10110956.

Full text
Abstract:
The effective ionic charges of lead-free perovskite dielectric complex compounds were investigated with molecular orbital calculation. The base model was a double perovskite cluster that consisted of octahedral oxygen cages with a transition metal ion of titanium, niobium, or zirconium located at each of their centers, and alkali and/or alkaline earth metal ions located at the body center, corners, edge centers, or face centers of the cluster. The results showed significant covalent bonds between the transition metals and the oxygens, and the alkali metals, especially sodium and oxygen. On the other hand, the alkaline earth metals have weak covalency. Calculation was also performed with the replacement of some of the oxygens with chlorine or fluorine; such replacement enhances the covalency of the transition metals. These trends provide good guidelines for the design properties of lead-free perovskite piezoelectrics based on ubiquitous sodium use.
APA, Harvard, Vancouver, ISO, and other styles
50

Drobyzhev, Anatoly I., Alexander M. Pyzhov, and Dmitry A. Sinitsyn. "Azide Method for Generating Metal Vapors in Space." Aerospace Sphere Journal, no. 3 (September 30, 2020): 102–8. http://dx.doi.org/10.30981/2587-7992-2020-104-3-102-108.

Full text
Abstract:
Modern methods of rocket research of the upper layers of the atmosphere and near-Earth space cannot be imagined without the use of glowing artificial clouds (GAC). Traditional pyrotechnic methods for generating vapors of alkali and alkaline earth metals, used for the formation of GAC in space, are ineffective and require, as a rule, the use of metals with high chemical activity. The article presents the results of studies on the development of an alternative method for generating vapors of alkali and alkaline earth metals to create GAC in near-Earth space using inorganic azides of the corresponding metals. The long-term use of pyrotechnic metal vapor generators to create GAC in the upper atmosphere, equipped with azide pyrotechnic compositions, confirmed their high efficiency, reliability and safety of use.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography