Journal articles on the topic 'Alkali metal'

To see the other types of publications on this topic, follow the link: Alkali metal.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Alkali metal.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ogihara, Wataru, Masahiro Yoshizawa, and Hiroyuki Ohno. "Novel Alkali Metal Ionic Liquids:N-Ethylimidazolium Alkali Metal Sulfates." Chemistry Letters 31, no. 9 (September 2002): 880–81. http://dx.doi.org/10.1246/cl.2002.880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kiselev, A. I. "Metal-nonmetal transition in indium-alkali metal and aluminum-alkali metal melts." Russian Metallurgy (Metally) 2012, no. 2 (February 2012): 102–8. http://dx.doi.org/10.1134/s0036029512020103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Back, Oliver, Christoph Förster, Thomas Basché, and Katja Heinze. "Alkali Blues: Blue‐Emissive Alkali Metal Pyrrolates." Chemistry – A European Journal 25, no. 26 (March 28, 2019): 6542–52. http://dx.doi.org/10.1002/chem.201806103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kubota, K., and H. Matsumoto. "Electrochemical Deposition of Alkali Metal in Low-Melting Alkali Metal Perfluorosulfonylamides." ECS Transactions 64, no. 4 (August 15, 2014): 319–22. http://dx.doi.org/10.1149/06404.0319ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yu, Pei, Yong Shen Chua, Hujun Cao, Zhitao Xiong, Guotao Wu, and Ping Chen. "Hydrogen storage over alkali metal hydride and alkali metal hydroxide composites." Journal of Energy Chemistry 23, no. 4 (July 2014): 414–19. http://dx.doi.org/10.1016/s2095-4956(14)60166-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yang, Rui Juan, Ying Hui Wang, and Shi Quan Liu. "The Crystallization of Lithium-Iron-Phosphate Glasses Containing Alkali and Alkali-Earth Metal Oxides." Key Engineering Materials 636 (December 2014): 69–72. http://dx.doi.org/10.4028/www.scientific.net/kem.636.69.

Full text
Abstract:
The crystallization activation energies and crystalline phases of lithium-iron-phosphate (LIP) glasses with alkali and alkali-earth metal oxides have been studied and compared. The results indicate that the alkali and alkali-earth metal oxides reduce the glass crystallization. Moreover, the alkali metal oxides result in the changes in the crystalline phase, while the alkali-earth metal oxides make the glass crystallization more sensitive to the thermal treatment conditions.
APA, Harvard, Vancouver, ISO, and other styles
7

Ruschewitz, Uwe. "Ternary Alkali Metal Transition Metal Acetylides." Zeitschrift für anorganische und allgemeine Chemie 632, no. 5 (April 2006): 705–19. http://dx.doi.org/10.1002/zaac.200600017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Xu, Bo, and Larry Kevan. "Formation of alkali metal particles in alkali metal cation exchanged X zeolite exposed to alkali metal vapor: control of metal particle identity." Journal of Physical Chemistry 96, no. 6 (March 1992): 2642–45. http://dx.doi.org/10.1021/j100185a046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wu, Pengfei, Zhen Cui, Xinmei Wang, and Yingchun Ding. "Tunable optical absorption of WS2 monolayer via alkali metal modulation." Modern Physics Letters B 34, no. 10 (January 31, 2020): 2050089. http://dx.doi.org/10.1142/s021798492050089x.

Full text
Abstract:
The electronic and optical absorption behaviors of alkali-metal atoms doped WS2 monolayer were systematically investigated by employing density functional theory based on first-principles calculations. The observed all alkali-metal-doped WS2 monolayer present metal behaviors, whereas the intrinsic WS2 monolayer exhibits semiconductor behavior. Charge density difference demonstrates that the large charge transfer occurs between the alkali metal and WS2 layer. The work function of WS2 can be adjusted from 5.12 eV to 5.52 eV. Importantly, the absorption spectrums of alkali-metal-doped WS2 appear with some absorption peaks at the 405 nm, 512 nm and 575 nm in the visible light range, which demonstrate the alkali-metal-doped WS2 can be used for photovoltaic and visible photocatalytic devices. Furthermore, the absorption spectrum of WS2 is generally redshifted through alkali metal doping. This indicates that alkali metal doping can broaden its application in optoelectronic devices.
APA, Harvard, Vancouver, ISO, and other styles
10

Slobodin, B. V., and L. L. Surat. "Alkali metal zinc vanadates." Russian Journal of Inorganic Chemistry 51, no. 9 (September 2006): 1345–48. http://dx.doi.org/10.1134/s0036023606090026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Ju, Guanzhi, and Ernest R. Davidson. "Alkali-metal dihalide molecules." Journal of Physical Chemistry 96, no. 9 (April 1992): 3683–88. http://dx.doi.org/10.1021/j100188a024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Shuster, Nicholas. "5525442 Alkali metal battery." Journal of Power Sources 67, no. 1-2 (July 1997): 353. http://dx.doi.org/10.1016/s0378-7753(97)82182-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Matsumoto, Rika, Yoichi Takahashi, Takayuki Yoshioka, Maya Osaki, Isei Kumamoto, and Noboru Akuzawa. "Alkali-Metal Effect on Ternarization of Alkali Metal-GICs (AMC24) with Ethylene." TANSO 1998, no. 184 (1998): 194–98. http://dx.doi.org/10.7209/tanso.1998.194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Smith, William, Timothy R. Forester, G. Neville Greaves, Stephen Hayter, and Mike J. Gillan. "Molecular dynamics simulation of alkali-metal diffusion in alkali-metal disilicate glasses." Journal of Materials Chemistry 7, no. 2 (1997): 331–36. http://dx.doi.org/10.1039/a606185k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Freyland, W. "Electron Localization and Metal-Nonmetal Transition in Alkali-Metal/Alkali-Halide Solutions." ECS Proceedings Volumes 1986-1, no. 1 (January 1986): 1–11. http://dx.doi.org/10.1149/198601.0001pv.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Freyland, W. "Electron Localization and Metal — Nonmetal Transition in Alkali Metal — Alkali Halide Melts." Zeitschrift für Physikalische Chemie 184, Part_1_2 (January 1994): 139–55. http://dx.doi.org/10.1524/zpch.1994.184.part_1_2.139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ronghua Wan, Ronghua Wan, Zhiguo Song Zhiguo Song, Yongjin Li Yongjin Li, Qun Liu Qun Liu, Yuting Zhou Yuting Zhou, Jianbei Qiu Jianbei Qiu, Zhengwen Yang Zhengwen Yang, Zhaoyi Yin Zhaoyi Yin, Qi Wang Qi Wang, and Dacheng Zhou Dacheng Zhou. "Influence of alkali metal ions on thermal stability of Bi-activated NIR-emitting alkali-aluminoborosilicate glasses." Chinese Optics Letters 12, no. 11 (2014): 111601–5. http://dx.doi.org/10.3788/col201412.111601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

XU, B., and L. KEVAN. "ChemInform Abstract: Formation of Alkali Metal Particles in Alkali Metal Cation Exchanged X Zeolite Exposed to Alkali Metal Vapor: Control of Metal Particle Identity." ChemInform 23, no. 26 (August 21, 2010): no. http://dx.doi.org/10.1002/chin.199226030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

MIZUNO, Seigi, and Hiroshi TOCHIHARA. "Structures of Alkali-Metal Adsorbed Metal-Surfaces." Hyomen Kagaku 18, no. 12 (1997): 789–95. http://dx.doi.org/10.1380/jsssj.18.789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Shang, Huining, Sheng Zou, Wei Quan, Binquan Zhou, Shun Li, Weiyong Zhou, and Fengwen Zhao. "Design of a Measuring Device and Experimental Study into the Relationship between Temperature and the Density of Alkali Metal-Vapor." Photonics 10, no. 2 (January 21, 2023): 112. http://dx.doi.org/10.3390/photonics10020112.

Full text
Abstract:
The temperature of the alkali metal cell, which affects the density of the alkali-metal vapor and the gas pressure, is usually difficult to measure directly. However, the temperature of the alkali-metal cell and the density of the alkali-metal vapor are important parameters that affect the performance of the atomic sensor. In this paper, a device that can directly measure the internal temperature of an alkali metal cell in real time is designed for the first time to explore the relationship between alkali-metal vapor density and temperature. Alkali-metal vapor density is measured using the absorption spectrum. The pressure broadening model, combined with the transition of four hyperfine levels, was used to fit the absorption line of 87Rb D1 under the action of 700 Torr N2, and a good fitting effect was obtained. The experimental results show that the density of 87Rb is less than the value calculated by the empirical formula. Based on the experimental results, we give the calculation formula of 87Rb density with an uncertainty of only 4% and obtain the temperature dependence index of the line width and linear displacement of 87Rb in N2 by analyzing the absorption spectrum.
APA, Harvard, Vancouver, ISO, and other styles
21

Sunny, Sanjay, Shruti Suriyakumar, Aswadh S. Sajeevan, and Manikoth M. Shaijumon. "Strategies to develop stable alkali metal anodes for rechargeable batteries." Journal of Physics: Energy 6, no. 2 (April 1, 2024): 022004. http://dx.doi.org/10.1088/2515-7655/ad3fe8.

Full text
Abstract:
Abstract Alkali metal anodes are among the most promising candidates for next-generation high-capacity batteries like metal–air, metal–sulphur and all-solid-state metal batteries. The underlying interfacial mechanism of dendrite formation is not yet fully understood, preventing the practical implementation of metal batteries, particularly lithium, despite decades of research. Parallelly, there is an equal significance to the other alkali metal candidates viz sodium and potassium. The major challenges of alkali metal batteries, including dendrite formation, huge volume change, and unstable solid–electrolyte interface, are highlighted. Here, we also present an overview of the recent developments toward improving the anode interfaces. Given the enormous practical potential of alkali metal anodes as next-generation battery electrodes, we discuss some advanced probing techniques that enable a more complete understanding of the complex plating/stripping mechanism. Finally, perspectives and suggestions are provided on the remaining challenges and future directions in alkali metal battery research.
APA, Harvard, Vancouver, ISO, and other styles
22

Enoki, Toshiaki, Seiichi Miyajima, Mizuka Sano, and Hiroo Inokuchi. "Hydrogen-alkali-metal-graphite ternary intercalation compounds." Journal of Materials Research 5, no. 2 (February 1990): 435–66. http://dx.doi.org/10.1557/jmr.1990.0435.

Full text
Abstract:
Alkali-metal-graphite intercalation compounds (alkali-metal-GIC's) absorb hydrogen in two ways: physisorption and chemisorption. Hydrogen uptake through the physisorption process occurs at low temperatures below about 200 K in higher stage alkali-metal-GIC's, where hydrogen molecules are stabilized to form a two-dimensional condensed phase in the galleries of the graphite sheets. The concentration of absorbed hydrogen molecules is saturated at a rate of H2/alkali metal atom ∼2. The hydrogen physisorption shows a strong isotope effect and a swelling effect on c-axis lattice expansion. In the case of hydrogen uptake through the chemisorption process, dissociated hydrogen species are stabilized in the intercalate spaces. The activity of the chemisorption increases in the order Cs < Rb < K. The introduction of hydrogen generates a charge transfer from the host alkali metal GIC's to the hydrogen since hydrogen has strong electron affinity. The hydrogenated potassium-GIC's have intercalates consisting of K+-H−-K+ triple atomic layer sandwiches which are inserted between metallic graphite sheets. The inserted two-dimensional hydrogen layer is suggested to consist of H ions with a weakly metallic nature. The superconductivity of the hydrogenated potassium-GIC is also discussed in terms of the change in the electronic and lattice dynamical properties by hydrogen uptake. The hydrogen-absorption in alkali-metal-GIC's is an interesting phenomenon in comparison with that in transition metal hydrides from the point of hydrogen storage. The hydrogen-alkali-metal-ternary GIC's obtained from hydrogen absorption have novel electronic properties and lattice structures which provide attractive problems for GIC research. The studies of hydrogen-alkali-metal ternary GIC's are reviewed in this article.
APA, Harvard, Vancouver, ISO, and other styles
23

Ban, Kazuhiro, Yoshikazu Hirai, Kazuya Tsujimoto, Akira Terao, Natsuhiko Mizutani, Tetsuo Kobayashi, and Osamu Tabata. "Characterization of alkali-metal vapor cells fabricated with an alkali-metal source tablet." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 34, no. 6 (November 2016): 061601. http://dx.doi.org/10.1116/1.4963108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Jedlinski, Z., A. Misioìek, W. Gìowkowski, H. Janeczek, and A. Wolinska. "Reactions of alkali metal anions. xv. Reaction of ketones with alkali metal anions." Tetrahedron 46, no. 10 (January 1990): 3547–58. http://dx.doi.org/10.1016/s0040-4020(01)81523-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Akdeniz, Z., and M. P. Tosi. "Electron localization and the non-metal-metal transition in alkali-alkali-halide solutions." Il Nuovo Cimento D 18, no. 5 (May 1996): 613–20. http://dx.doi.org/10.1007/bf02453252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Boyle, Timothy J., Michael L. Neville, Jeremiah M. Sears, and Roger Cramer. "Alkali Metal Yttriumneo-Pentoxide Double Alkoxide Precursors to Alkali Metal Yttrium Oxide Nanomaterials." ChemistrySelect 1, no. 3 (March 2016): 473–81. http://dx.doi.org/10.1002/slct.201600138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Naito, Shuichi. "Study of photocatalytic reaction of methanol with water over Rh-, and Pd-loaded TiO2 catalysts. The role of added alkali metal cations." Canadian Journal of Chemistry 64, no. 9 (September 1, 1986): 1795–99. http://dx.doi.org/10.1139/v86-295.

Full text
Abstract:
The product selectivity of the photocatalytic reaction of methanol with water is changed drastically by the addition of alkali metal cations to Rh- and Pd-loaded TiO2 catalysts. Over alkali metal cation free catalysts, the main products are 1:1 ratio of H2 and dimethoxymethane, which is replaced with H2, methyl formate, and CO2 over alkali metal cation added catalysts. The role of added alkali metal cations is the stabilization of the reaction intermediate as adsorbed formate instead of adsorbed formaldehyde, which causes the selectivity change from dimethoxymethane to methyl formate.
APA, Harvard, Vancouver, ISO, and other styles
28

Waegele, Matthias M. "(Invited) Probing the Specific Adsorption of Alkali Metal Cations on Au Electrodes Under CO2 Reduction." ECS Meeting Abstracts MA2023-01, no. 46 (August 28, 2023): 2497. http://dx.doi.org/10.1149/ma2023-01462497mtgabs.

Full text
Abstract:
Electrolyte engineering has recently been recognized as an integral component in the design of electrode/electrolyte interfaces for electrocatalysis. In particular, alkali metal cations of the supporting electrolyte are known to influence electrocatalytic processes. A better understanding of these cation effects requires methods capable of probing the distribution of alkali metal cations in the electrochemical double layer under reaction conditions. However, the scarcity of experimental technique capable of probing alkali metal cations greatly hinders further advances in leveraging cation effects in electrolyte engineering. In this talk, we will discuss our novel spectroscopic approach for quantifying the surface coverage of specifically adsorbed alkali metal cations, that is, the cations that are in direct contact with the electrode and therefore most likely to influence electrocatalysis. The technique is based on the use of an organic cation, tetramethylammonium (methyl4N+), as a vibrational probe of the electrode/electrolyte interface in the presence of alkali metal cations. We will discuss how we use this approach to characterize the adsorption of alkali metal cation during CO2-to-CO conversion.
APA, Harvard, Vancouver, ISO, and other styles
29

Maltese, Cristiano, Carlo Pistolesi, Anna Bravo, Fiorenza Cella, Tiziano Cerulli, Davide Salvioni, and Enrico Dal Negro. "Effects of alkali metal hydroxides on alkali-free accelerators." Advances in Cement Research 23, no. 6 (December 2011): 277–88. http://dx.doi.org/10.1680/adcr.2011.23.6.277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Chen, X. H., J. C. Peng, and W. Z. Li. "The locations of alkali cations in alkali-metal–fullerides." Physica B: Condensed Matter 291, no. 3-4 (September 2000): 285–91. http://dx.doi.org/10.1016/s0921-4526(00)00280-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Schwinghammer, Vanessa F., Susanne M. Tiefenthaler, and Stefanie Gärtner. "The Role of Different Alkali Metals in the A15Tl27 Type Structure and the Synthesis and X-ray Structure Analysis of a New Substitutional Variant Cs14.53Tl28.4." Materials 14, no. 24 (December 8, 2021): 7512. http://dx.doi.org/10.3390/ma14247512.

Full text
Abstract:
Alkali metal thallides have been known since the report of E. Zintl on NaTl in 1932. Subsequently, binary and ternary thallides of alkali metals have been characterized. At an alkali metal proportion of approximately 33% (A:Tl~1:2, A = alkali metal), three different unique type structures are reported: K49Tl108, Rb17Tl41 and A15Tl27 (A = Rb, Cs). Whereas Rb17Tl41 and K49Tl108 feature a three-dimensional sublattice of Tl atoms, the A15Tl27 structure type includes isolated Tl11 clusters as well as two-dimensional Tl-layers. This unique arrangement is only known so far when the heavier alkali metals Rb and Cs are included. In our contribution, we present single-crystal X-ray structure analyses of new ternary and quaternary compounds of the A15Tl27 type structure, which include different amounts of potassium. The crystal structures allow for the discussion of the favored alkali metal for each of the four Wyckoff positions and clearly demonstrate alkali metal dependent site preferences. Thereby, the compound Cs2.27K12.73Tl27 unambiguously proves the possibility of a potassium-rich A15Tl27 phase, even though a small amount of cesium appears to be needed for the stabilization of the latter structure type. Furthermore, we also present two compounds that show an embedding of Tl instead of alkali metal into the two-dimensional substructure, being equivalent to the formal oxidation of the latter. Cs14.53Tl28.4 represents the binary compound with the so far largest proportion of incorporated Tl in the structure type A15Tl27.
APA, Harvard, Vancouver, ISO, and other styles
32

Suleimanov, E. V., N. G. Chernorukov, and A. V. Golubev. "Thermochemistry of alkali metal uranomolybdates." Radiochemistry 48, no. 1 (January 2006): 15–17. http://dx.doi.org/10.1134/s1066362206010048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Bezkishko, I. A., A. A. Zagidullin, V. A. Milyukov, and O. G. Sinyashin. "Alkali and transition metal phospholides." Russian Chemical Reviews 83, no. 6 (June 27, 2014): 555–74. http://dx.doi.org/10.1070/rc2014v083n06abeh004442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Poirier, D. M., D. W. Owens, and J. H. Weaver. "Alkali-metal-fulleride phase equilibria." Physical Review B 51, no. 3 (January 15, 1995): 1830–43. http://dx.doi.org/10.1103/physrevb.51.1830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Bagus, Paul S., and Gianfranco Pacchioni. "Ionicity of alkali-metal adsorbates." Physical Review Letters 71, no. 1 (July 5, 1993): 206. http://dx.doi.org/10.1103/physrevlett.71.206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Stevenson, Cheryl D., James R. Noyes, and Richard C. Reiter. "Endohedral Alkali Metal Fullerene Complexes." Journal of the American Chemical Society 122, no. 51 (December 2000): 12905–6. http://dx.doi.org/10.1021/ja003100d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Eggen, B. R., J. N. Murrell, and L. J. Dunne. "Hydrogen — The first alkali metal?" Solid State Communications 105, no. 2 (January 1998): 119–23. http://dx.doi.org/10.1016/s0038-1098(97)10061-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Frank, Olaf, and Jan M. Rost. "Photoionization of alkali metal clusters." Zeitschrift f�r Physik D Atoms, Molecules and Clusters 38, no. 1 (August 19, 1996): 59–64. http://dx.doi.org/10.1007/s004600050064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Bronold, M., C. Pettenkofer, and W. Jaegermann. "Alkali metal intercalation into SnS2." Applied Physics A Solids and Surfaces 52, no. 3 (March 1991): 171–79. http://dx.doi.org/10.1007/bf00324413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Haarmann, F., H. Jacobs, and W. Kockelmann. "Dynamics of alkali metal hydrogensulfides." Physica B: Condensed Matter 276-278 (March 2000): 264–65. http://dx.doi.org/10.1016/s0921-4526(99)01448-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Murphy, D. W., M. J. Rosseinsky, R. C. Haddon, A. P. Ramirez, A. F. Hebard, R. Tycko, R. M. Fleming, and G. Dabbagh. "Superconductivity in alkali metal fullerides." Physica C: Superconductivity 185-189 (December 1991): 403–8. http://dx.doi.org/10.1016/0921-4534(91)92006-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Zhang, Chuhong, Stephen Gamble, David Ainsworth, Alexandra M. Z. Slawin, Yuri G. Andreev, and Peter G. Bruce. "Alkali metal crystalline polymer electrolytes." Nature Materials 8, no. 7 (July 2009): 580–84. http://dx.doi.org/10.1038/nmat2474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Aruga, T. "Alkali-metal adsorption on metals." Progress in Surface Science 31, no. 1-2 (1989): 61–130. http://dx.doi.org/10.1016/0079-6816(89)90013-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Mitsuhashi, T., and Y. Fujiki. "Thermochemistry of alkali-metal titanates." Thermochimica Acta 88, no. 1 (June 1985): 177–84. http://dx.doi.org/10.1016/0040-6031(85)85425-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Araya, A. "Manufacture of alkali metal aluminosilicates." Zeolites 17, no. 5-6 (November 1996): 523. http://dx.doi.org/10.1016/0144-2449(96)88990-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

MANN, S., and M. JANSEN. "ChemInform Abstract: Alkali Metal Thionylimides." ChemInform 26, no. 21 (August 18, 2010): no. http://dx.doi.org/10.1002/chin.199521010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Bakum, S. I., S. F. Kuznetsova, and V. P. Tarasov. "ChemInform Abstract: Alkali-Metal Tetrahydroindates." ChemInform 30, no. 35 (June 13, 2010): no. http://dx.doi.org/10.1002/chin.199935014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

García-Castro, María, Avelino Martín, Miguel Mena, Adrián Pérez-Redondo, and Carlos Yélamos. "Titanium Alkali Metal Nitrido Complexes." Chemistry 7, no. 3 (February 2, 2001): 647–51. http://dx.doi.org/10.1002/1521-3765(20010202)7:3<647::aid-chem647>3.0.co;2-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Karyakin, N. V., N. G. Chernorukov, A. V. Knyazev, V. O. Khomyakova, and N. N. Smirnova. "Thermodynamics of Alkali Metal Uranoborates." Radiochemistry 47, no. 2 (March 2005): 136–49. http://dx.doi.org/10.1007/s11137-005-0061-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

García-Castro, María, Avelino Martín, Miguel Mena, Adrián Pérez-Redondo, and Carlos Yélamos. "Titanium Alkali Metal Nitrido Complexes." Chemistry 7, no. 8 (April 17, 2001): 1585. http://dx.doi.org/10.1002/1521-3765(20010417)7:8<1585::aid-chem15851>3.0.co;2-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography