Contents
Academic literature on the topic 'Alignements de bande'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Alignements de bande.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Alignements de bande"
El Kurdi, Moustafa, Emilie Sakat, Jean-Michel Hartmann, Vincent Reboud, Alexei Chelnokov, Nicolas Pauc, Vincent Calvo, Philippe Boucaud, and Fréderic Bœuf. "Laser infrarouge à base de semi-conducteurs de la filière silicium." Photoniques, no. 109 (July 2021): 40–43. http://dx.doi.org/10.1051/photon/202110940.
Full textDaigneault, Robert-André, and Serge Occhietti. "Les moraines du massif Algonquin, Ontario, au début du Dryas récent, et corrélation avec la Moraine de Saint-Narcisse." 60, no. 2 (December 10, 2007): 103–18. http://dx.doi.org/10.7202/016823ar.
Full textDissertations / Theses on the topic "Alignements de bande"
Gérard, Lionel. "Structures de semiconducteurs II-VI à alignements de bande de type II pour le photovoltaïque." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENY070.
Full textThis work focuses on the study of II-VI semiconductor heterostructures with type II band alignments, especially in the form of superlattices. This is a system that can be promising for photovoltaic applications, and my work is presented in this perspective. Thus the first part deals with a conceptual reflection on the contribution of type II interfaces for photovoltaics.In a second step I present a study on the growth of CdSe and ZnTe by molecular beam epitaxy on various substrates. These materials are particularly interesting and suitable for this application because they have a direct bandgap, are almost lattice-matched, present a type II band alignment, and CdSe shows a bandgap compatible with the solar spectrum. But in return these are binary semiconductors which have no atoms in common, so that the growth of samples with specific thicknesses close to the monolayer is challenging. For this reason we conducted a detailed study at the interfaces through analysis of X-ray diffraction and transmission electron microscopy, which allows us to conclude on the chemical nature of the atoms near the interfaces.This is followed by a detailed spectroscopy study on the effects of type II interfaces on the charge carriers through their energy and kinetics of recombination. We have developed an analytical model that allows to precisely adjust all the features observed in relation to these interfaces, and shows a very efficient charge separation mechanism. We show later that these effects are inherent characteristics of all interfaces of type II, regardless of materials and structures, and that they allow us to accurately extract the values of band offsets between different materials with type II band alignments
Luo, Yandi. "Development of new buffer layers and rapid annealing process for efficient Sb₂Se₃ thin-film solar cells." Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. http://www.theses.fr/2024URENS039.
Full textIn this thesis, heterojunction interface behavior, grain growth process and alternative buffer layer of Sb₂Se₃ based solar cells were investigated. The absorber quality and the band alignment are identified as key parameters for reducing defect density and for facilitating the separation and the transport of photogenerated charge carriers. A strategy of Al³⁺ doping into the CdS buffer layer was introduced in Sb₂Se₃ solar cells. The band alignment and the interface quality have been significantly improved. A “spike-like” structure was obtained for the best device with an efficiency of 8.41%. Secondly, a rapid thermal annealing process has also been developed and optimized in order to improve the quality of Sb₂Se₃ absorber film with reduced defect density. The efficiency of the Sb₂Se₃ solar cells is increased to 9.03%. In addition, we have tried to replace the toxic CdS buffer layer with an environmentally friendly ZnSnO film with moreover a wider band gap. An interesting power conversion efficiency of 3.44% was achieved for the Cd-free Sb₂Se₃ thin-film solar cells
Prodhomme, Pierre-Yves. "Etude ab initio des alignements de bandes dans les empilements Métal-Oxyde-Semiconducteur." Phd thesis, INSA de Rennes, 2008. http://tel.archives-ouvertes.fr/tel-00639024.
Full textGérard, Lionel. "Structures de semiconducteurs II-VI à alignement de bandes de type II pour le photovoltaïque." Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-00941180.
Full textDas, Tilak. "Theoretical study of the electronic and optical properties of photocatalytic inorganic materials." Nantes, 2012. https://archive.bu.univ-nantes.fr/pollux/show/show?id=36d13bbd-da38-4786-b15f-2ca9980ba8f4.
Full textIn a clean full Sun sky, the daily average solar irradiance coming into Earth surface is approximately 250 W/m2. Converting a part of this inexhaustible solar energy is of direct interest for our everyday-life. Over the past four decades, an important number of investigations, devoted to photocatalysis, have been carried out in a context related to global energy issues and environmental water and air pollution control. This thesis aims at the theoretical description of semiconductor materials which are promising for photocatalytic applications. We focused our discussion on the electronic and optical properties of MQ phases (M = Al, Ga, In, Zn, Cd and Q = N, P, As, Sb, O, S, Se, Te), the visiblelight photocatalytic compounds BiVO4 and La2ZnTiO6. In addition, a new strategy to access the absolute energy band positions of semiconductors is proposed. All these calculations allow to better understand the role played by the light absorption, the electron-hole lifetime and the redox reactions on the efficiency of a given photocatalytic compound. For such purpose, our calculations have been realized using standard density functional theory (DFT) approaches, but also hybrid functionals
Hermans, Yannick. "Interface analysis and development of BiVO4 and CuFeO2 heterostructures for photochemical water splitting." Phd thesis, Bordeaux, 2019. http://tuprints.ulb.tu-darmstadt.de/8700/1/Complete_thesis%20-%20German.pdf.
Full textHajlaoui, Chahira. "Etude des propriétés structurales et électroniques des nanofil semiconducteurs III-V." Thesis, Rennes, INSA, 2014. http://www.theses.fr/2014ISAR0012/document.
Full textSemiconductor nanowires are attracting much attention both for their original properties and their potential applications in opto- and nanoelectronics. The physics of nanowires and in particular materials at the base is poorly understood and difficult to characterize. In this context, the numerical simulation can provide quantitative answers to the problems posed by these objects and help to explore their potential. In particular, their crystallization is in a wurtzite (WZ) hexagonal phase but with stacking faults that result in insertions of cubic sequences. The zinc blende structure has been widely studied; the various structural, electronic and optical properties of semiconductor materials adopting this structure are well illustrated and discussed in the literature. On the other side, these properties are poorly understood for WZ. Study of WZ III-V materials and related heterostructures is the subject of this work. In particular, I have simulated the structural and electronic properties of relaxed InAs and InP and under strain condition. ab initio modeling or first principle may explore structural, electronic and dynamics of matter without any experimental prior knowledge. Here, DFT calculations are performed to model the structural and electronic properties of WZ InAs and InP. The error in the evaluation of conduction energy states has been circumvented with the use of GW approximation and hybrid functionals. Finally, I have studied band offset alignment and polarizations effects in InAs/InP WZ system
Jama, Mariel Grace. "Semiconductor composites for solid-state lighting." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0207/document.
Full textLuminescent organic phases that are embedded in a conductive inorganicmatrix is proposed in this study for the active layer of a hybrid light-emitting diode. Inthis composite, the organic dye acts as the radiative recombination site for chargecarriers that are injected into the inorganic ambipolar transporting matrix. As one ofthe candidate material combinations, bilayer and composite thin films of ZnSe and ared iridium complex (Ir(BPA)) organic light emitter were prepared in situ via UHVthermal evaporation technique. The energy band alignments measured byphotoelectron spectroscopy (PES) for the ZnSe/Ir(BPA) bilayer and ZnSe+Ir(BPA)composite reveal that the HOMO and LUMO of the organic dye are positioned in theZnSe bandgap. This lineup provides the required energetic driving forces for electronand hole transfers from ZnSe to Ir(BPA). By interpreting PES data, the chemicalcomposition of the interfaces were also determined. The ZnSe/Ir(BPA) interface isreactive even though it is of high material purity. Meanwhile, the Ir(BPA)/ZnSeinterface does not exhibit material purity. This is accounted to the nature of ZnSeevaporation as individual Zn and Se2 fluxes, coupled with chemical interactions withthe Ir(BPA) substrate. The interface is, thereby, composed of an abundance of Se0phases, sparse ZnSe phases, reduced Se and oxidized dye molecules, and Znatoms that are intercalated into the Ir(BPA) substrate. PES of the ZnSe+Ir(BPA)composites reveals similar trends to the Ir(BPA)/ZnSe interface. A faded areal andintermittent red light emissions were observed from devices that incorporatedalternating layer sequences of ZnSe and Ir(BPA) for the active layer
Uddin, Md Tamez. "Metal oxide heterostructures for efficient photocatalysts." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2013. http://tel.archives-ouvertes.fr/tel-00879226.
Full textGélinas, Guillaume. "Comprendre et maîtriser le passage de type I à type II de puits quantiques d'In(x)Ga(1-x)As(y)Sb(1-y) sur substrat de GaSb." Thèse, 2015. http://hdl.handle.net/1866/16034.
Full textAntimonide-based semiconductors are promising in the development of optoelectronic devices considering that the high electron mobility, the possibility to emit or absorb light for a large number of wavelengths in the infrared region and the change in recombination type for confined heterostructure make them a prime subject of research. A good number of publications are aimed at developing devices based on In(x)Ga(1-x)As(y)Sb(1-y) alloys to emit or detect a specific wavelength without giving much information about the composition determination or the band alignment. There are only a few fundamental studies about the incorporation of indium and none about the incorporation of arsenic tetramers by molecular beam epitaxy. Also, the values of the band offsets between binary compounds forming the In(x)Ga(1-x)As(y)Sb(1-y) alloys diverge and the methods used to do so are sometimes arbitrary. A model was constructed and predicts the band alignment between In(x)Ga(1-x)As(y)Sb(1-y) alloys and GaSb for any values of x and y. This model considers thermal effects, strain and confinement for quantum wells. Therefore, it is possible to predict the type of recombination for any composition. Indium atoms tend to segregate on the surface while the growth of In(x)Ga(1-x)Sb on GaSb is taking place by molecular beam epitaxy. This behavior has already been seen before and the work presented here corroborates this observation. It is possible to build up a thin layer of indium on the surface prior to the growth of the alloy to avoid a change of composition in the layer. The thickness of this layer is dependent on the temperature of the substrate and can be evaluated with a simple model of segregation. In the case of a quantum well, there will be another interface where the indium floating on the surface will incorporate. To avoid the formation of a long gradient of composition at this interface, it is recommended to grow a few monolayers of GaSb at low temperature without a growth interruption. This way, the indium will incorporate rapidly and leave a sharp interface. The ratio between the indium beam equivalent pressure and the beam equivalent pressure of indium and gallium gives the nominal composition and is the same as the measured composition by XRD in the alloy. The incorporation of arsenic tetramers is not as straightforward in In(x)Ga(1-x)As(y)Sb(1-y) alloys and is shown to decrease when the V/III ratio is increased as measured by XRD. A simple kinetic model explained that this behavior is caused by antimony occupying a large fraction of the surface. The dissociation of tetramers into dimers is a reaction of second order and the tetramers occupy two sites on the surface and makes the incorporation a slower process. Therefore, the use of arsenic tetramers is not the best choice for a good control on the arsenic composition in the layer. In(x)Ga(1-x)As(y)Sb(1-y) quantum wells were grown on GaSb and were optically characterized to observe the transition of type I recombination to type II. This transition could not be corroborated because all the measurements showed an unknown transition related to the GaSb buffer layer. The origin of this optical signature could not be identified, but may be related to a contaminant in the gallium cell. Identifying the source of this problem and solving it will be essential to go further and observe the transition of type I to type II.