Academic literature on the topic 'Algoritmi memetici'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Algoritmi memetici.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Algoritmi memetici"
Nico, Nico, Novrido Charibaldi, and Yuli Fauziah. "Comparison of Memetic Algorithm and Genetic Algorithm on Nurse Picket Scheduling at Public Health Center." International Journal of Artificial Intelligence & Robotics (IJAIR) 4, no. 1 (May 30, 2022): 9–23. http://dx.doi.org/10.25139/ijair.v4i1.4323.
Full textDodu, A. Y. Erwin, Deny Wiria Nugraha, and Subkhan Dinda Putra. "Penjadwalan Tenaga Kebidanan Menggunakan Algoritma Memetika." JURNAL SISTEM INFORMASI BISNIS 8, no. 1 (April 30, 2018): 99. http://dx.doi.org/10.21456/vol8iss1pp99-106.
Full textHanda, Hisashi. "Solving Constraint Satisfaction Problems by Memetic Algorithms Using Estimation of Distribution Algorithms." Transactions of the Japanese Society for Artificial Intelligence 19 (2004): 405–12. http://dx.doi.org/10.1527/tjsai.19.405.
Full textHe Zewen, 何泽文, 庄秋实 Zhuang Qiushi, 曹惠宁 Cao Huining, and 辛煜 Xin Yu. "基于文化基因算法的透过散射介质聚焦." Laser & Optoelectronics Progress 58, no. 24 (2021): 2429001. http://dx.doi.org/10.3788/lop202158.2429001.
Full textAreibi, Shawki, and Zhen Yang. "Effective Memetic Algorithms for VLSI Design = Genetic Algorithms + Local Search + Multi-Level Clustering." Evolutionary Computation 12, no. 3 (September 2004): 327–53. http://dx.doi.org/10.1162/1063656041774947.
Full textPhan, Tuan Anh, and Anh Tuan Duong. "A FRAMEWORK FOR MEMETIC ALGORITHMS." Science and Technology Development Journal 12, no. 11 (June 15, 2009): 27–38. http://dx.doi.org/10.32508/stdj.v12i11.2309.
Full textVairam, Senthil, and V. Selladurai. "Parallel Machine Shop Scheduling Using Memetic Algorithm." Applied Mechanics and Materials 573 (June 2014): 362–67. http://dx.doi.org/10.4028/www.scientific.net/amm.573.362.
Full textBharothu, Dr Jyothilal Nayak, Dr B. Madhu Kiran, Dr G. Kishor Babu, and B. N. V. Satish Kumar Kolla. "IEEE -30 Bus System Study with Memetic Differential Evolution Algorithm." Journal of Advanced Research in Dynamical and Control Systems 11, no. 11 (November 20, 2019): 86–96. http://dx.doi.org/10.5373/jardcs/v11i11/20193172.
Full textLozano, Manuel, Francisco Herrera, Natalio Krasnogor, and Daniel Molina. "Real-Coded Memetic Algorithms with Crossover Hill-Climbing." Evolutionary Computation 12, no. 3 (September 2004): 273–302. http://dx.doi.org/10.1162/1063656041774983.
Full textElleuch, Souhir, and Bassem Jarboui. "Improved memetic programming algorithm." International Journal of Operational Research 44, no. 3 (2022): 389. http://dx.doi.org/10.1504/ijor.2022.124105.
Full textDissertations / Theses on the topic "Algoritmi memetici"
Vitiello, Autilia. "Memetic algorithms for ontology alignment." Doctoral thesis, Universita degli studi di Salerno, 2013. http://hdl.handle.net/10556/1156.
Full textSemantic interoperability represents the capability of two or more systems to meaningfully and accurately interpret the exchanged data so as to produce useful results. It is an essential feature of all distributed and open knowledge based systems designed for both e-government and private businesses, since it enables machine interpretation, inferencing and computable logic. Unfortunately, the task of achieving semantic interoperability is very difficult because it requires that the meanings of any data must be specified in an appropriate detail in order to resolve any potential ambiguity. Currently, the best technology recognized for achieving such level of precision in specification of meaning is represented by ontologies. According to the most frequently referenced definition [1], an ontology is an explicit specification of a conceptualization, i.e., the formal specification of the objects, concepts, and other entities that are presumed to exist in some area of interest and the relationships that hold them [2]. However, different tasks or different points of view lead ontology designers to produce different conceptualizations of the same domain of interest. This means that the subjectivity of the ontology modeling results in the creation of heterogeneous ontologies characterized by terminological and conceptual discrepancies. Examples of these discrepancies are the use of different words to name the same concept, the use of the same word to name different concepts, the creation of hierarchies for a specific domain region with different levels of detail and so on. The arising so-called semantic heterogeneity problem represents, in turn, an obstacle for achieving semantic interoperability... [edited by author]
XI n.s.
Maciel, Cristiano Baptista Faria. "A memetic algorithm for logistics network design problems." Master's thesis, Instituto Superior de Economia e Gestão, 2014. http://hdl.handle.net/10400.5/8601.
Full textNeste trabalho, um algoritmo memético é desenvolvido com o intuito de ser aplicado a uma rede logística, com três níveis, múltiplos períodos, seleção do meio de transporte e com recurso a outsourcing. O algoritmo memético pode ser aplicado a uma rede logística existente, no sentido de otimizar a sua configuração ou, se necessário, pode ser utilizado para criar uma rede logística de raiz. A produção pode ser internalizada e é permitido o envio direto de produtos para os clientes. Neste problema, as capacidades das diferentes infraestruturas podem ser expandidas ao longo do período temporal. Caso se trate uma infraestrutura já existente, após uma expansão, já não pode ser encerrada. Sempre que se abre uma nova infraestrutura, a mesma também não pode ser encerrada. A heurística é capaz de determinar o número e localizações das infraestrutura a operar, as capacidades e o fluxo de mercadoria na rede logística.
This thesis describes a memetic algorithm applied to the design of a three-echelon logistics network over multiple periods with transportation mode selection and outsourcing. The memetic algorithm can be applied to an existing supply chain in order to obtain an optimized configuration or, if required, it can be used to define a new logistics network. In addition, production can be outsourced and direct shipments of products to customer zones are possible. In this problem, the capacity of an existing or new facility can be expanded over the time horizon. In this case, the facility cannot be closed. Existing facilities, once closed, cannot be reopened. New facilities cannot be closed, once opened. The heuristic is able to determine the number and locations of facilities (i.e. plants and warehouses), capacity levels as well as the flow of products throughout the supply chain.
Filák, Jakub. "Evoluční optimalizace turnusů jízdních řádů." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2009. http://www.nusl.cz/ntk/nusl-236673.
Full textBonfim, Tatiane Regina. "Escalonamento memetico e neuro-memetico de tarefas." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/260503.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação
Made available in DSpace on 2018-08-06T10:47:10Z (GMT). No. of bitstreams: 1 Bonfim_TatianeRegina_D.pdf: 1154007 bytes, checksum: 1b6dd7bc9c2e3eef16c1e3258710730c (MD5) Previous issue date: 2006
Resumo: Este trabalho apresenta uma nova abordagem de resolução, por algoritmo memético e pela coevolução de algoritmo memético com redes neurais, para o problema de escalonamento de tarefas em máquinas paralelas idênticas e para o problema de job shop com parâmetros precisos. Para os problemas de escalonamento com parâmetros com incertezas, onde os parâmetros não são precisamente conhecidos, toma-se dificil classificar um determinado escalonamento ótimo. A noção de ótimo também torna-se imprecisa e o grau de otimalidade de um dado escalonamento ("o quanto um escalonamento é ótimo") pode ser caracterizada por um número fuzzy. Foi aplicado também o conceito de otimalidade possível para medir a possibilidade de um determinado escalonamento ser ótimo. O algoritmo memético foi aplicado para encontrar soluções para o problema, a rede neural foi aplicada para encontrar a função de fitness das soluções encontradas pelo algoritmo memético, e o conceito de possibilidade foi aplicado para avaliar as melhores soluções. Foram utilizadas as redes neurais backpropagation e com aprendizado por reforço para encontrar o valor da função de fitness. As simulações mostraram que as redes neurais apresentaram uma boa performance na coevolução com o algoritmo memético e na resolução dos problemas, e mostraram que o conceito de possibilidade teve uma boa perfomance na avaliação da otimalidade das soluções
Abstract: This work presents a new approach for the resolution of the problem of identical parallel machine scheduling and job shop scheduling with precise parameters, with memetic algorithm and memetic algorithm coevolving with neural networks. For problems with parameters with uncertainties, where the parameters of the problem are not precisely known, it is difficult to say in prior which schedule will be optimal. The notion of optimal also becomes imprecise and the degree of optimality of a given schedule ("how much a schedule is optimal") can be characterized by a fuzzy number. We was used also the concepts of possibility to measure the possibility of a given schedule be optimal. Memetic algorithm has been used to find the solutions of the problem, the neural network has been used to find the fitness function of these solutions, and the concept of possibility has been used to evaluate the best solutions. We was used neural networks with backpropagation and reinforcement learning to find the fitness function. Simulations showed that the neural networks presents a good performance in the coevolution of the memetic algorithm and in the resolution of the problems, and showed that the concept of possibility present a good performance in the evaluation of solutions optimality
Doutorado
Telecomunicações e Telemática
Doutor em Engenharia Elétrica
Procházka, Vít. "Pokročilé optimalizační modely v odpadovém hospodářství." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231395.
Full textBuriol, Luciana Salete. "Algoritmo memetico para o problema do caixeiro viajante assimetrico como parte de um framework para algoritmos evolutivos." [s.n.], 2000. http://repositorio.unicamp.br/jspui/handle/REPOSIP/261832.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação
Made available in DSpace on 2018-08-12T02:08:09Z (GMT). No. of bitstreams: 1 Buriol_LucianaSalete_M.pdf: 8595148 bytes, checksum: 8048854c00a24631aefeb449304ce2bd (MD5) Previous issue date: 2000
Resumo: Dentre a gama de técnicas heurísticas e exatas existentes para a resolução de problemas combinatórios, os algoritmos populacionais genéticos e meméticos têm se destacado devido a sua boa performance. Em especial, os algoritmos meméticos podem ser considerados atualmente como uma das técnicas melhores sucedidas para a resolução de vários problemas combinatórios, dentre eles, o problema do caixeiro viajante. Nesta dissertação será apresentado um algoritmo memético aplicado ao problema do caixeiro viajante assimétrico, com a proposta de uma nova busca local: Recursive Arc Insertion. Os resultados computacionais considerando as 27 instâncias assimétricas da TSPLIB são apresentados, analisados e comparados com resultados obtidos por outros métodos propostos para o problema. O mesmo algoritmo é também aplicado a 32 outras instâncias assimétricas e a 30 instâncias reduzidas do problema de ciclos hamiltonianos não direcionados. Um framework para algoritmos evolutivos é apresentado, já incluindo o algoritmo memético implementado e a redução de instâncias do problema de ciclos hamiltonianos não direcionados para o problema do caixeiro viajante simétrico. Além disso, dois geradores portáveis de instâncias com solução ótima conhecida são descritos: um para o problema do caixeiro viajante assimétrico e outro para o problema de ciclos hamiltonianos
Abstract: Among the range of heuristic and exact techniques for solving combinatorial problems, the genetic and memetic populational algorithms play an important role due to their good performance. In special, the memetic algorithms can be considered current1y as one of the best techniques to solve several combinatorial problems, especially, the traveling salesman problem. In this dissertation a memetic algorithm applied to the asymmetric traveling salesman problem is developed, and a new local search is proposed: Recursive Are Insertion. The computational results considering the 27 asymmetric instances from TSPLIB are presented, analyzed and compared with results attained by other methods recent1y published. The same algorithm is also applied to 32 other asymmetric instances and to 30 reduced instances from undirect hamiltonian cycle problem. A framework for evolutionary algorithms is also presented, including the memetic algorithm implemented and the codes which performs a reduction from the undirect hamiltonian cycle problem to the symmetric traveling salesman problem. Besides, two portable instances generators with a known optimal solution are described: one for asymmetric traveling salesman problem and other for hamiltonian cycle problem
Mestrado
Automação
Mestre em Engenharia Elétrica
Dang, Hieu. "Adaptive multiobjective memetic optimization: algorithms and applications." Journal of Cognitive Informatics and Natural Intelligence, 2012. http://hdl.handle.net/1993/30856.
Full textFebruary 2016
Aldogan, Deniz. "Memetic Algorithms For Timetabling Problems In Private Schools." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606218/index.pdf.
Full textCaraffini, Fabio. "Novel memetic computing structures for continuous optimisation." Thesis, De Montfort University, 2014. http://hdl.handle.net/2086/10629.
Full textFischer, Thomas. "Distributed memetic algorithms for graph theoretical combinatorial optimization problems." Berlin Logos-Verl, 2008. http://d-nb.info/994066945/04.
Full textBooks on the topic "Algoritmi memetici"
C, Tan K., Goh Chi-Keong, Ong Yew Soon, and SpringerLink (Online service), eds. Multi-Objective Memetic Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
Find full textGoh, Chi-Keong, Yew-Soon Ong, and Kay Chen Tan, eds. Multi-Objective Memetic Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88051-6.
Full textNeri, Ferrante, Carlos Cotta, and Pablo Moscato, eds. Handbook of Memetic Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23247-3.
Full textCarlos, Cotta, Moscato Pablo, and SpringerLink (Online service), eds. Handbook of Memetic Algorithms. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2012.
Find full textHart, William E., J. E. Smith, and N. Krasnogor, eds. Recent Advances in Memetic Algorithms. Berlin/Heidelberg: Springer-Verlag, 2005. http://dx.doi.org/10.1007/3-540-32363-5.
Full textHemanth, D. Jude, B. Vinoth Kumar, and G. R. Karpagam Manavalan, eds. Recent Advances on Memetic Algorithms and its Applications in Image Processing. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1362-6.
Full textSchönberger, Jörn. Operational freight carrier planning: Basic concepts, optimization models and advanced memetic algorithms. Berlin: Springer, 2005.
Find full textClancey, Owen. Dosimetric Optimization Method for CyberKnife Robotic RadioSurgery System Using a Memetic Algorithm. [New York, N.Y.?]: [publisher not identified], 2011.
Find full textSwagatam, Das, Suganthan Ponnuthurai Nagaratnam, Nanda Pradipta Kumar, and SpringerLink (Online service), eds. Swarm, Evolutionary, and Memetic Computing: Third International Conference, SEMCCO 2012, Bhubaneswar, India, December 20-22, 2012. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textNagaratnam, Suganthan Ponnuthurai, Das Swagatam, Satapathy Suresh Chandra, and SpringerLink (Online service), eds. Swarm, Evolutionary, and Memetic Computing: Second International Conference, SEMCCO 2011, Visakhapatnam, Andhra Pradesh, India, December 19-21, 2011, Proceedings, Part II. Berlin, Heidelberg: Springer-Verlag GmbH Berlin Heidelberg, 2011.
Find full textBook chapters on the topic "Algoritmi memetici"
Du, Ke-Lin, and M. N. S. Swamy. "Memetic Algorithms." In Search and Optimization by Metaheuristics, 315–25. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41192-7_19.
Full textKrasnogor, Natalio. "Memetic Algorithms." In Handbook of Natural Computing, 905–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-92910-9_29.
Full textTruszkowski, Walt, Christopher Rouff, Mohammad Akhavannik, and Edward Tunstel. "Memetic Algorithms." In SpringerBriefs in Electrical and Computer Engineering, 43–50. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37952-0_4.
Full textMoscato, Pablo, Carlos Cotta, and Alexandre Mendes. "Memetic Algorithms." In New Optimization Techniques in Engineering, 53–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-39930-8_3.
Full textCotta, Carlos, Luke Mathieson, and Pablo Moscato. "Memetic Algorithms." In Handbook of Heuristics, 607–38. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-07124-4_29.
Full textCotta, Carlos, Luke Mathieson, and Pablo Moscato. "Memetic Algorithms." In Handbook of Heuristics, 1–32. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-07153-4_29-1.
Full textJaszkiewicz, Andrzej, Hisao Ishibuchi, and Qingfu Zhang. "Multiobjective Memetic Algorithms." In Handbook of Memetic Algorithms, 201–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23247-3_13.
Full textGupta, Abhishek, and Yew-Soon Ong. "Canonical Memetic Algorithms." In Adaptation, Learning, and Optimization, 17–26. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02729-2_2.
Full textRadcliffe, Nicholas J., and Patrick D. Surry. "Formal memetic algorithms." In Evolutionary Computing, 1–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-58483-8_1.
Full textEiben, Ágoston E., and James E. Smith. "Evolutionary Algorithms." In Handbook of Memetic Algorithms, 9–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23247-3_2.
Full textConference papers on the topic "Algoritmi memetici"
Misir, Mustafa, Stephanus Daniel Handoko, and Hoong Chuin Lau. "Building algorithm portfolios for memetic algorithms." In GECCO '14: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2598394.2598455.
Full textCosta, Celso M. da, Fernado L. Dotti, Eder N. Mathias, and Felipe M. Müller. "A Distributed Architecture Supporting Heuristic and Metaheuristic Optimization Methods." In Simpósio de Arquitetura de Computadores e Processamento de Alto Desempenho. Sociedade Brasileira de Computação, 2001. http://dx.doi.org/10.5753/sbac-pad.2001.22206.
Full textPorumbel, Daniel Cosmin, Jin-Kao Hao, and Pascale Kuntz. "Spacing memetic algorithms." In the 13th annual conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2001576.2001720.
Full textLiu, Bo, Juan-Juan Xu, Bin Qian, Jian-Rong Wang, and Yan-Bin Chu. "Probabilistic memetic algorithm for flowshop scheduling." In 2013 IEEE Workshop on Memetic Computing (MC). IEEE, 2013. http://dx.doi.org/10.1109/mc.2013.6608208.
Full textHongwei Mo and Longlong Meng. "Research on evolution hardware design based on memetic algorithm." In 2013 IEEE Workshop on Memetic Computing (MC). IEEE, 2013. http://dx.doi.org/10.1109/mc.2013.6608204.
Full textWang, Juan, Ke Tang, and Xin Yao. "A memetic algorithm for uncertain Capacitated Arc Routing Problems." In 2013 IEEE Workshop on Memetic Computing (MC). IEEE, 2013. http://dx.doi.org/10.1109/mc.2013.6608210.
Full textDinneen, Michael J., and Kuai Wei. "On the analysis of a (1+1) adaptive memetic algorithm." In 2013 IEEE Workshop on Memetic Computing (MC). IEEE, 2013. http://dx.doi.org/10.1109/mc.2013.6608203.
Full textSun, Yiwen, Zexuan Zhu, Shan He, and Zhen Ji. "A coevolving memetic algorithm for simultaneous partitional clustering and feature weighting." In 2013 IEEE Workshop on Memetic Computing (MC). IEEE, 2013. http://dx.doi.org/10.1109/mc.2013.6608201.
Full textJula, Amin, Zalinda Othman, and Elankovan Sundararajan. "A hybrid imperialist competitive-gravitational attraction search algorithm to optimize cloud service composition." In 2013 IEEE Workshop on Memetic Computing (MC). IEEE, 2013. http://dx.doi.org/10.1109/mc.2013.6608205.
Full textYang, Cheng-San, Li-Yeh Chuang, Yu-Jung Chen, and Cheng-Hong Yang. "Feature Selection Using Memetic Algorithms." In 2008 Third International Conference on Convergence and Hybrid Information Technology (ICCIT). IEEE, 2008. http://dx.doi.org/10.1109/iccit.2008.81.
Full text