Contents
Academic literature on the topic 'Algorithmique et combinatoire des monoïdes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Algorithmique et combinatoire des monoïdes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Algorithmique et combinatoire des monoïdes"
Albenque, Marie, and Philippe Nadeau. "Growth function for a class of monoids." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AK,..., Proceedings (January 1, 2009). http://dx.doi.org/10.46298/dmtcs.2728.
Full textBassino, Frédérique, Mathilde Bouvel, Adeline Pierrot, Carine Pivoteau, and Dominique Rossin. "Combinatorial specification of permutation classes." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AR,..., Proceedings (January 1, 2012). http://dx.doi.org/10.46298/dmtcs.3082.
Full textDissertations / Theses on the topic "Algorithmique et combinatoire des monoïdes"
Charles, Balthazar. "Combinatorics and computations : Cartan matrices of monoids & minimal elements of Shi arrangements." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG063.
Full textThis thesis presents an investigation into two distinct combinatorial subjects: the effective computation of Cartan matrices in monoid representation theory and the exploration of properties of minimal elements in Shi arrangements of Coxeter groups. Although disparate, both of these research focuses share a commonality in the utilization of combinatorial methods and computer exploration either as an end in itself for the former or as a help to research for the latter. In the first part of the dissertation, we develop methods for the effective computation of character tables and Cartan matrices in monoid representation theory. To this end, we present an algorithm based on our results for the efficient computations of fixed points under a conjugacy-like action, with the goal to implement Thiéry's formula for the Cartan matrix from [Thiéry '12]. After a largely self-contained introduction to the necessary background, we present our results for fixed-point counting, as well as a new formula for the character table of finite monoids. We evaluate the performance of the resulting algorithms in terms of execution time and memory usage and find that they are more efficient than algorithms not specialized for monoids by orders of magnitude. We hope that the resulting (public) implementation will contribute to the monoid representation community by allowing previously impractical computations. The second part of the thesis focuses on the properties of minimal elements in Shi arrangements. The Shi arrangements were introduced in [Shi '87] and are the object of Conjecture 2 from [Dyer, Hohlweg '14]. Originally motivated by this conjecture, we present two results. Firstly, a direct proof in the case of rank 3 groups. Secondly, in the special case of Weyl groups, we give a description of the minimal elements of the Shi regions by extending a bijection from [Athanasiadis, Linusson '99] and [Armstrong, Reiner, Rhoades '15] between parking functions and Shi regions. This allows for the effective computation of the minimal elements. From the properties of this computation, we provide a type-free proof of the conjecture in Weyl groups as an application. These results reveal an intriguing interplay between the non-nesting and non-crossing worlds in the case of classical Weyl groups
Gay, Joël. "Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS209/document.
Full textAlgebraic combinatorics is the research field that uses combinatorial methods and algorithms to study algebraic computation, and applies algebraic tools to combinatorial problems. One of the central topics of algebraic combinatorics is the study of permutations, interpreted in many different ways (as bijections, permutation matrices, words over integers, total orders on integers, vertices of the permutahedron…). This rich diversity of perspectives leads to the following generalizations of the symmetric group. On the geometric side, the symmetric group generated by simple transpositions is the canonical example of finite reflection groups, also called Coxeter groups. On the monoidal side, the simple transpositions become bubble sort operators that generate the 0-Hecke monoid, whose algebra is the specialization at q=0 of Iwahori’s q-deformation of the symmetric group. This thesis deals with two further generalizations of permutations. In the first part of this thesis, we first focus on partial permutations matrices, that is placements of pairwise non attacking rooks on a n by n chessboard, simply called rooks. Rooks generate the rook monoid, a generalization of the symmetric group. In this thesis we introduce and study the 0-Rook monoid, a generalization of the 0-Hecke monoid. Its algebra is a proper degeneracy at q = 0 of the q-deformed rook monoid of Solomon. We study fundamental monoidal properties of the 0-rook monoid (Green orders, lattice property of the R-order, J-triviality) which allow us to describe its representation theory (simple and projective modules, projectivity on the 0-Hecke monoid, restriction and induction along an inclusion map).Rook monoids are actually type A instances of the family of Renner monoids, which are completions of the Weyl groups (crystallographic Coxeter groups) for Zariski’s topology. In the second part of this thesis we extend our type A results to define and give a presentation of 0-Renner monoids in type B and D. This also leads to a presentation of the Renner monoids of type B and D, correcting a misleading presentation that appeared earlier in the litterature. As in type A we study the monoidal properties of the 0-Renner monoids of type B and D : they are still J-trivial but their R-order are not lattices anymore. We study nonetheless their representation theory and the restriction of projective modules over the corresponding 0-Hecke monoids. The third part of this thesis deals with different generalizations of permutations. In a recent series of papers, Châtel, Pilaud and Pons revisit the algebraic combinatorics of permutations (weak order, Malvenuto-Reutenauer Hopf algebra) in terms of the combinatorics of integer posets. This perspective encompasses as well the combinatorics of quotients of the weak order such as binary trees, binary sequences, and more generally the recent permutrees of Pilaud and Pons. We generalize the weak order on the elements of the Weyl groups. This enables us to describe the order on vertices of the permutahedra, generalized associahedra and cubes in the same unified context. These results are based on subtle properties of sums of roots in Weyl groups, and actually fail for non-crystallographic Coxeter groups
Lévy, Bruno. "Topologie Algorithmique : combinatoire et Plongement." Vandoeuvre-les-Nancy, INPL, 1999. http://www.theses.fr/1999INPL094N.
Full textGély, Alain. "Algorithmique combinatoire : cliques, bicliques et systèmes implicatifs." Clermont-Ferrand 2, 2005. http://www.theses.fr/2005CLF22622.
Full textDurand, Marianne. "Combinatoire analytique et algorithmique des ensembles de données." Phd thesis, Ecole Polytechnique X, 2004. http://pastel.archives-ouvertes.fr/pastel-00000810.
Full textPierrot, Adeline. "Combinatoire et algorithmique dans les classes de permutations." Paris 7, 2013. http://www.theses.fr/2013PA077056.
Full textThis work is dedicated to the study of pattern closed classes of permutations. Algorithmic results are obtained thanks to a combinatorial study of permutation classes through their substitution decomposition. The first part of the thesis focuses on the structure of permutation classes. More precisely, we give an algorithm which derives a combinatorial specification for a permutation class given by its basis of excluded patterns. The specification is obtained if and only if the class contains a finite number of simple permutations, this condition being tested algorithmically. This algorithm takes its root in the theorem of Albert and Atkinson stating that every permutation class containing a finite number of simple permutations has a finite basis and an algebraic generating function, and its developments by Brignall and al. The methods involved make use of languages and automata theory, partially ordered sets and mandatory patterns. The second part of the thesis gives a polynomial algorithm deciding whether a permutation given as input is sortable trough two stacks in series. The existence of a polynomial algorithm answering this question is a problem that stayed open for a long time, which is solved in this thesis by introducing a new notion, the pushall sorting, which is a restriction of the general stack sorting. We first solve the decision problem in the particular case of the pushall sorting, by encoding the sorting procedures through a bicoloring of the diagrams of the permutations. Then we solve the general base by showing that a sorting procedure in the general case corresponds to several steps of pushall sorting which have to be compatible
Giroire, Frédéric. "Réseaux, algorithmique et analyse combinatoire de grands ensembles." Paris 6, 2006. http://www.theses.fr/2006PA066530.
Full textKane, Ladji. "Combinatoire et algorithmique des factorisations tangentes à l'identité." Thesis, Paris 13, 2014. http://www.theses.fr/2014PA132059/document.
Full textCombinatorics has solved many problems in Mathematics, Physics and Computer Science, in return these domains inspire new questions to combinatorics. This memoir entitled "Combinatorics and algorithmics of factorization tangent to indentity includes several works on the combinatorial deformations of the shuffle product. The aim of this thesis is to write factorizations wich principal term is the identity through the use of tools relating mainly to combinatorics on the words (orderings, grading etc). In the classical case, let F be the free algebra. Due to the fact that F is an enveloping algebra, one has an exact factorization of the identity of End(F) = F⨶F as an infinite product of exponentials (End(F) being endowed with the shuffle product on the left and the concatenation on the right, a faithful representation of the convolution product) as follows : first on begins with a PBW basis, second one computes the family of coordinate forms and then non-trivial (combinatorial) properties of theses families in duality gives the factorization. Starting from the other side and writing the same product does give exactly identity only under very restrictive conditions that we clarify here. In many other (deformed) cases, the explicit construction of pairs of bases in duality requires combinatorial and algorithmic studies that we provide in this memoir
Chamboredon, Jérémy. "Algorithmique des tresses et de l’autodistributivité." Caen, 2011. http://www.theses.fr/2011CAEN2016.
Full textIn this work, we investigate algebraic properties for Artin's braid groups and self-distributive systems on the left, two objets which are linked. The first part is a syntactic analysis of Bressaud's normal formal for braids. The principal result is a translation in terms of rewriting systems of the existence of Bressaud's normal form, initially established by geometric methods. The second part deals with the embedding conjecture for self-distributivity, one of the principal open statements of the field. We discuss the various ways (including the computing ones) which could lead to this conjecture, and we establish some partial positive results
Lecouvey, Cédric. "Algorithmique et combinatoire des algèbres enveloppantes quantiques de type classique." Caen, 2001. http://www.theses.fr/2001CAEN2012.
Full text