Contents
Academic literature on the topic 'Algorithmes de portefeuille'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Algorithmes de portefeuille.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Algorithmes de portefeuille"
EL GHALDY, SOUKAINA. "COMMENT PRÉDIRE LE COURS DU BITCOIN ?" Management & Data Science, July 1, 2022. http://dx.doi.org/10.36863/mds.a.20456.
Full textDissertations / Theses on the topic "Algorithmes de portefeuille"
Moeini, Mahdi. "La programmation DC et DCA pour l'optimisation de portefeuille." Thesis, Metz, 2008. http://www.theses.fr/2008METZ008S/document.
Full textThe topics presented in this thesis are related to new optimization techniques for solving some challenging problems resulting from finance. They are large-scale non convex optimization problems for which finding efficient solving methods is currently the topic of numerous researches. Our work is based mainly on DC (Difference of Convex functions) programming and DCA (DC Algorithm). This approach is motivated by the robustness and efficiency of DC programming and DCA approaches in comparison to the other methods. The thesis is divided into two parts and consists of seven chapters. In the first part entitled Methodology ; we present theoretical tools and algorithms that we are going to use in the thesis. The first chapter is about DC programming and DCA and the second focuses on branch and bound algorithms. In the second part we develop DC programming and DCA for solving some problems in finance. We begin with an introduction to the modern portfolio theory (The Chapter 3). The Chapter 4 is dedicated to the generalizations of the mean variance (MV) model of Markowitz, where we study the MV model under the buy-in threshold constraints, threshold constraints, and cardinality constraints. The Chapter 5 is devoted to the portfolio selection problem under downside risk measure and cardinality constraints. The Chapter 6 deals with the portfolio optimization under step increasing transaction costs functions. Finally, the robust investment strategies with discrete asset choice constraints are developed in the last chapter
Perez, Escobedo José Luis. "Optimisation du développement de nouveaux produits dans l'industrie pharmaceutique par algorithme génétique multicritère." Thesis, Toulouse, INPT, 2010. http://www.theses.fr/2010INPT0038/document.
Full textNew Product Development (NPD) constitutes a challenging problem in the pharmaceutical industry, due to the characteristics of the development pipeline, namely, the presence of uncertainty, the high level of the involved capital costs, the interdependency between projects, the limited availability of resources, the overwhelming number of decisions due to the length of the time horizon (about 10 years) and the combinatorial nature of a portfolio. Formally, the NPD problem can be stated as follows: select a set of R and D projects from a pool of candidate projects in order to satisfy several criteria (economic profitability, time to market) while copying with the uncertain nature of the projects. More precisely, the recurrent key issues are to determine the projects to develop once target molecules have been identified, their order and the level of resources to assign. In this context, the proposed approach combines discrete event stochastic simulation (Monte Carlo approach) with multiobjective genetic algorithms (NSGA II type, Non-Sorted Genetic Algorithm II) to optimize the highly combinatorial portfolio management problem. An object-oriented model previously developed for batch plant scheduling and design is then extended to embed the case of new product management, which is particularly adequate for reuse of both structure and logic. Two case studies illustrate and validate the approach. From this simulation study, three performance evaluation criteria must be considered for decision making: the Net Present Value (NPV) of a sequence, its associated risk defined as the number of positive occurrences of NPV among the samples and the time to market. Theyv have been used in the multiobjective optimization formulation of the problem. In that context, Genetic Algorithms (GAs) are particularly attractive for treating this kind of problem, due to their ability to directly lead to the so-called Pareto front and to account for the combinatorial aspect. NSGA II has been adapted to the treated case for taking into account both the number of products in a sequence and the drug release order. From an analysis performed for a representative case study on the different pairs of criteria both for the bi- and tricriteria optimization, the optimization strategy turns out to be efficient and particularly elitist to detect the sequences which can be considered by the decision makers. Only a few sequences are detected. Among theses sequences, large portfolios cause resource queues and delays time to launch and are eliminated by the bicriteria optimization strategy. Small portfolio reduces queuing and time to launch appear as good candidates. The optimization strategy is interesting to detect the sequence candidates. Time is an important criterion to consider simultaneously with NPV and risk criteria. The order in which drugs are released in the pipeline is of great importance as with scheduling problems
López, Dawn Ricardo José. "Modélisation stochastique et analyse des données pour la diffusion d'information dans les plateformes sociales en ligne." Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS036.pdf.
Full textInfluencer marketing has become a thriving industry with a global market value expected to reach 15 billion dollars by 2022. The advertising problem that such agencies face is the following: given a monetary budget find a set of appropriate influencers that can create and publish posts of various types (e.g. text, image, video) for the promotion of a target product. The campaign's objective is to maximize across one or multiple online social platforms some impact metric of interest, e.g. number of impressions, sales (ROI), or audience reach. In this thesis, we create original continuous formulations of the budgeted influence marketing problem by two frameworks, a static and a dynamic one, based on the advertiser's knowledge of the impact metric, and the nature of the advertiser's decisions over a time horizon. The static model is formulated as a convex program, and we further propose an efficient iterative algorithm based on the Frank-Wolfe method, that converges to the global optimum and has low computational complexity. We also suggest a simpler near-optimal rule of thumb, which can perform well in many practical scenarios. Due to the nature of the dynamic model we cannot solve any more a Network Utility Maximisation problem since that the ROI is unknown, possibly noisy, continuous and costly to evaluate for the advertiser. This approach involves exploration and so, we seek to ensure that there is no destructive exploration, and that each sequential decision by the advertiser improves the outcome of the ROI over time. In this approach, we propose a new algorithm and a new implementation, based on the Bayesian optimization framework to solve our budgeted influence marketing problem under sequential advertiser's decisions over a time horizon. Besides, we propose an empirical observation to avoid the curse of dimensionality. We test our static model, algorithm and the heuristic against several alternatives from the optimization literature as well as standard seed selection methods and validate the superior performance of Frank-Wolfe in execution time and memory, as well as its capability to scale well for problems with very large number (millions) of social users. Finally, we evaluate our dynamic model on a real Twitter data trace and we conclude the feasibility of our model and empirical support of our formulated observation
Mencarelli, Luca. "The Multiplicative Weights Update Algorithm for Mixed Integer NonLinear Programming : Theory, Applications, and Limitations." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX099/document.
Full textThis thesis presents a new algorithm for Mixed Integer NonLinear Programming, inspired by the Multiplicative Weights Update framework and relying on a new class of reformulations, called the pointwise reformulations.Mixed Integer NonLinear Programming is a hard and fascinating topic in Mathematical Optimization both from a theoretical and a computational viewpoint. Many real-word problems can be cast this general scheme and, usually, are quite challenging in terms of efficiency and solution accuracy with respect to the solving procedures.The thesis is divided in three main parts: a foreword consisting in Chapter 1, a theoretical foundation of the new algorithm in Chapter 2, and the application of this new methodology to two real-world optimization problems, namely the Mean-Variance Portfolio Selection in Chapter 3, and the Multiple NonLinear Separable Knapsack Problem in Chapter 4. Conclusions and open questions are drawn in Chapter 5
Sbaï, Mohamed. "Modélisation de la dépendance et simulation de processus en finance." Thesis, Paris Est, 2009. http://www.theses.fr/2009PEST1046/document.
Full textThe first part of this thesis deals with probabilistic numerical methods for simulating the solution of a stochastic differential equation (SDE). We start with the algorithm of Beskos et al. [13] which allows exact simulation of the solution of a one dimensional SDE. We present an extension for the exact computation of expectations and we study the application of these techniques for the pricing of Asian options in the Black & Scholes model. Then, in the second chapter, we propose and study the convergence of two discretization schemes for a family of stochastic volatility models. The first one is well adapted for the pricing of vanilla options and the second one is efficient for the pricing of path-dependent options. We also study the particular case of an Orstein-Uhlenbeck process driving the volatility and we exhibit a third discretization scheme which has better convergence properties. Finally, in the third chapter, we tackle the trajectorial weak convergence of the Euler scheme by providing a simple proof for the estimation of the Wasserstein distance between the solution and its Euler scheme, uniformly in time. The second part of the thesis is dedicated to the modelling of dependence in finance through two examples : the joint modelling of an index together with its composing stocks and intensity-based credit portfolio models. In the forth chapter, we propose a new modelling framework in which the volatility of an index and the volatilities of its composing stocks are connected. When the number of stocks is large, we obtain a simplified model consisting of a local volatility model for the index and a stochastic volatility model for the stocks composed of an intrinsic part and a systemic part driven by the index. We study the calibration of these models and show that it is possible to fit the market prices of both the index and the stocks. Finally, in the last chapter of the thesis, we define an intensity-based credit portfolio model. In order to obtain stronger dependence levels between rating transitions, we extend it by introducing an unobservable random process (frailty) which acts multiplicatively on the intensities of the firms of the portfolio. Our approach is fully historical and we estimate the parameters of our model to past rating transitions using maximum likelihood techniques
Books on the topic "Algorithmes de portefeuille"
Li, Bin, and Steven Chu Hong Hoi. Online Portfolio Selection: Principles and Algorithms. Taylor & Francis Group, 2018.
Find full textLi, Bin, and Steven Chu Hong Hoi. Online Portfolio Selection: Principles and Algorithms. Taylor & Francis Group, 2018.
Find full textLi, Bin, and Steven Chu Hong Hoi. Online Portfolio Selection: Principles and Algorithms. Taylor & Francis Group, 2018.
Find full textHighfrequency Trading A Practical Guide To Algorithmic Strategies And Trading Systems. John Wiley & Sons, 2012.
Find full textGlantz, Morton, and Robert L. Kissell. Multi-Asset Risk Modeling: Techniques for a Global Economy in an Electronic and Algorithmic Trading Era. Elsevier Science & Technology Books, 2013.
Find full text