Contents
Academic literature on the topic 'Algorithme d’apprentissage primal- dual'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Algorithme d’apprentissage primal- dual.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Algorithme d’apprentissage primal- dual"
Chouzenoux, Emilie, Saïd Moussaoui, Maxime Legendre, and Jérôme Idier. "Algorithme primal-dual de points intérieurs pour l’estimation pénalisée des cartes d’abondances en imagerie hyperspectrale." Traitement du signal 30, no. 1-2 (April 28, 2013): 35–59. http://dx.doi.org/10.3166/ts.30.35-59.
Full textDissertations / Theses on the topic "Algorithme d’apprentissage primal- dual"
Bouvier, Louis. "Apprentissage structuré et optimisation combinatoire : contributions méthodologiques et routage d'inventaire chez Renault." Electronic Thesis or Diss., Marne-la-vallée, ENPC, 2024. http://www.theses.fr/2024ENPC0046.
Full textThis thesis stems from operations research challenges faced by Renault supply chain. Toaddress them, we make methodological contributions to the architecture and training of neural networks with combinatorial optimization (CO) layers. We combine them with new matheuristics to solve Renault’s industrial inventory routing problems.In Part I, we detail applications of neural networks with CO layers in operations research. We notably introduce a methodology to approximate constraints. We also solve some off- policy learning issues that arise when using such layers to encode policies for Markov decision processes with large state and action spaces. While most studies on CO layers rely on supervised learning, we introduce a primal-dual alternating minimization scheme for empirical risk minimization. Our algorithm is deep learning-compatible, scalable to large combinatorial spaces, and generic. In Part II, we consider Renault European packaging return logistics. Our rolling-horizon policy for the operational-level decisions is based on a new large neighborhood search for the deterministic variant of the problem. We demonstrate its efficiency on large-scale industrialinstances, that we release publicly, together with our code and solutions. We combine historical data and experts’ predictions to improve performance. A version of our policy has been used daily in production since March 2023. We also consider the tactical-level route contracting process. The sheer scale of this industrial problem prevents the use of classic stochastic optimization approaches. We introduce a new algorithm based on methodological contributions of Part I for empirical risk minimization
Keraghel, Abdelkrim. "Étude adaptative et comparative des principales variantes dans l'algorithme de Karmarkar." Phd thesis, Grenoble 1, 1989. http://tel.archives-ouvertes.fr/tel-00332749.
Full textPhan, Tran Duc Minh. "Une méthode de dualité pour des problèmes non convexes du Calcul des Variations." Thesis, Toulon, 2018. http://www.theses.fr/2018TOUL0006/document.
Full textIn this thesis, we study a general principle of convexification to treat certain non convex variationalproblems in Rd. Thanks to this principle we are able to enforce the powerful duality techniques andbring back such problems to primal-dual formulations in Rd+1, thus making efficient the numericalsearch of a global minimizer. A theory of duality and calibration fields is reformulated in the caseof linear-growth functionals. Under suitable assumptions, this allows us to revisit and extend anexclusion principle discovered by Visintin in the 1990s and to reduce the original problem to theminimization of a convex functional in Rd. This result is then applied successfully to a class offree boundary or multiphase problems that we treat numerically obtaining very accurate interfaces.On the other hand we apply the theory of calibrations to a classical problem of minimal surfaceswith free boundary and establish new results related to the comparison with its variant where theminimal surfaces functional is replaced by the total variation. We generalize the notion of calibrabilityintroduced by Caselles-Chambolle and Al. and construct explicitly a dual solution for the problemassociated with the second functional by using a locally Lipschitzian potential related to the distanceto the cut-locus. The last part of the thesis is devoted to primal-dual optimization algorithms forthe search of saddle points, introducing new more efficient variants in precision and computationtime. In particular, we experiment a semi-implicit variant of the Arrow-Hurwicz method whichallows to reduce drastically the number of iterations necessary to obtain a sharp accuracy of theinterfaces. Eventually we tackle the structural non-differentiability of the Lagrangian arising fromour method by means of a geometric projection method on the epigraph, thus offering an alternativeto all classical regularization methods
Phan, Tran Duc Minh. "Une méthode de dualité pour des problèmes non convexes du Calcul des Variations." Electronic Thesis or Diss., Toulon, 2018. http://www.theses.fr/2018TOUL0006.
Full textIn this thesis, we study a general principle of convexification to treat certain non convex variationalproblems in Rd. Thanks to this principle we are able to enforce the powerful duality techniques andbring back such problems to primal-dual formulations in Rd+1, thus making efficient the numericalsearch of a global minimizer. A theory of duality and calibration fields is reformulated in the caseof linear-growth functionals. Under suitable assumptions, this allows us to revisit and extend anexclusion principle discovered by Visintin in the 1990s and to reduce the original problem to theminimization of a convex functional in Rd. This result is then applied successfully to a class offree boundary or multiphase problems that we treat numerically obtaining very accurate interfaces.On the other hand we apply the theory of calibrations to a classical problem of minimal surfaceswith free boundary and establish new results related to the comparison with its variant where theminimal surfaces functional is replaced by the total variation. We generalize the notion of calibrabilityintroduced by Caselles-Chambolle and Al. and construct explicitly a dual solution for the problemassociated with the second functional by using a locally Lipschitzian potential related to the distanceto the cut-locus. The last part of the thesis is devoted to primal-dual optimization algorithms forthe search of saddle points, introducing new more efficient variants in precision and computationtime. In particular, we experiment a semi-implicit variant of the Arrow-Hurwicz method whichallows to reduce drastically the number of iterations necessary to obtain a sharp accuracy of theinterfaces. Eventually we tackle the structural non-differentiability of the Lagrangian arising fromour method by means of a geometric projection method on the epigraph, thus offering an alternativeto all classical regularization methods
Vu, Bang Cong. "Inclusions Monotones en Dualité et Applications." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2013. http://tel.archives-ouvertes.fr/tel-00816116.
Full textMichau, Gabriel. "Link Dependent Origin-Destination Matrix Estimation : Nonsmooth Convex Optimisation with Bluetooth-Inferred Trajectories." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEN017/document.
Full textOrigin Destination matrix estimation is a critical problem of the Transportation field since the fifties. OD matrix is a two-entry table taking census of the zone-to-zone traffic of a geographic area. This traffic description tools is therefore paramount for traffic engineering applications. Traditionally, the OD matrix estimation has solely been based on traffic counts collected by networks of magnetic loops. This thesis takes place in a context with over 600 Bluetooth detectors installed in the City of Brisbane. These detectors permit in-car Bluetooth device detection and thus vehicle identification.This manuscript explores first, the potentialities of Bluetooth detectors for Transport Engineering applications by characterising the data, their noises and biases. This leads to propose a new methodology for Bluetooth equipped vehicle trajectory reconstruction. In a second step, based on the idea that probe trajectories will become more and more available by means of new technologies, this thesis proposes to extend the concept of OD matrix to the one of link dependent origin destination matrix that describes simultaneously both the traffic demand and the usage of the network. The problem of LOD matrix estimation is formulated as a minimisation problem based on probe trajectories and traffic counts and is then solved thanks to the latest advances in nonsmooth convex optimisation.This thesis demonstrates that, with few hypothesis, it is possible to retrieve the LOD matrix for the whole set of users in a road network. It is thus different from traditional OD matrix estimation approaches that relied on successive steps of modelling and of statistical inferences