Academic literature on the topic 'Alginates'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Alginates.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Alginates"
Rizfa, Mila Safitri, Ervia Yudiati, and Diah Permata Wijayanti. "Improving The Antioxidant Activity of Sodium Alginate from Sargassum sp. by Thermal Heating and Chemical Methods." Jurnal Kelautan Tropis 23, no. 3 (November 14, 2020): 284–90. http://dx.doi.org/10.14710/jkt.v23i3.8946.
Full textOchbaum, Guy, Maya Davidovich-Pinhas, and Ronit Bitton. "Tuning the mechanical properties of alginate–peptide hydrogels." Soft Matter 14, no. 21 (2018): 4364–73. http://dx.doi.org/10.1039/c8sm00059j.
Full textAbourehab, Mohammad A. S., Rahul R. Rajendran, Anshul Singh, Sheersha Pramanik, Prachi Shrivastav, Mohammad Javed Ansari, Ravi Manne, Larissa Souza Amaral, and A. Deepak. "Alginate as a Promising Biopolymer in Drug Delivery and Wound Healing: A Review of the State-of-the-Art." International Journal of Molecular Sciences 23, no. 16 (August 12, 2022): 9035. http://dx.doi.org/10.3390/ijms23169035.
Full textAdamiak, Katarzyna, and Alina Sionkowska. "State of Innovation in Alginate-Based Materials." Marine Drugs 21, no. 6 (June 8, 2023): 353. http://dx.doi.org/10.3390/md21060353.
Full textT., Jayanthy, and Vayyala P. Reddy. "Efficacy of an alginate versus proton pump inhibitor in the symptomatic relief of gastroesophageal reflux symptoms in pregnant women." International Journal of Reproduction, Contraception, Obstetrics and Gynecology 12, no. 6 (May 26, 2023): 1616–21. http://dx.doi.org/10.18203/2320-1770.ijrcog20231524.
Full textJeoh, Tina, Dana E. Wong, Scott A. Strobel, Kevin Hudnall, Nadia R. Pereira, Kyle A. Williams, Benjamin M. Arbaugh, Julia C. Cunniffe, and Herbert B. Scher. "How alginate properties influence in situ internal gelation in crosslinked alginate microcapsules (CLAMs) formed by spray drying." PLOS ONE 16, no. 2 (February 25, 2021): e0247171. http://dx.doi.org/10.1371/journal.pone.0247171.
Full textRosiak, Piotr, Ilona Latanska, Paulina Paul, Witold Sujka, and Beata Kolesinska. "Modification of Alginates to Modulate Their Physic-Chemical Properties and Obtain Biomaterials with Different Functional Properties." Molecules 26, no. 23 (November 30, 2021): 7264. http://dx.doi.org/10.3390/molecules26237264.
Full textColin, Camille, Emma Akpo, Aurélie Perrin, David Cornu, and Julien Cambedouzou. "Encapsulation in Alginates Hydrogels and Controlled Release: An Overview." Molecules 29, no. 11 (May 26, 2024): 2515. http://dx.doi.org/10.3390/molecules29112515.
Full textSoukaina, Bouissil, EL Alaoui-Talibi Zainab, Pierre Guillaume, Rchid Halima, Michaud Philippe, El Modafar Cherkaoui, and Delattre Cédric. "Radical Depolymerization of Alginate Extracted from Moroccan Brown Seaweed Bifurcaria bifurcata." Applied Sciences 10, no. 12 (June 17, 2020): 4166. http://dx.doi.org/10.3390/app10124166.
Full textKıvılcımdan Moral, Ç., Ö. Doğan, and F. D. Sanin. "Use of laboratory-grown bacterial alginate in copper removal." Water Science and Technology 65, no. 11 (June 1, 2012): 2003–9. http://dx.doi.org/10.2166/wst.2012.101.
Full textDissertations / Theses on the topic "Alginates"
Wilcox, Matthew David. "Bioactive alginates." Thesis, University of Newcastle Upon Tyne, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.578262.
Full textNogueira, Marcela Tiemi. "Extração e caracterização de alginato de sódio da macroalga Sargassum cymosum C. Agardh /." Assis, 2017. http://hdl.handle.net/11449/150488.
Full textBanca: Cassia Roberta Malacrida Mayer
Banca: Izabel Cristina Freitas Moraes
Resumo: As algas marinhas pardas são as principais fontes de alginato de sódio utilizados na indústria alimentícia. O Brasil não possui o processamento de alginato, sendo assim dependente de produtos importados para suprir a demanda. A macroalga Sargassum sp. é comumente encontrada nas regiões costeiras do litoral de São Paulo, a extração de alginato dessa alga possibilitaria autonomia brasileira na produção de alginato de sódio. O meio ambiente e as condições climáticas em que as algas marinhas vivem influencia no rendimento de alginato, na massa molecular e na capacidade antioxidante. No primeiro capítulo foi realizado a otimização da extração de alginato de sódio por delineamento Box-Behnken e também o estudo da influência dos parâmetros de pH, temperatura e tempo de extração sobre o rendimento, viscosidade intrínseca e massa molecular. O pH influencia no rendimento, viscosidade intrínseca e massa molecular, enquanto que o tempo apresentou baixo efeito sobre o rendimento e a temperatura não influenciou nas respostas avaliadas. Os resultados da otimização mostraram que máximo rendimento (46,04%), viscosidade intrínseca (4,89 dL/g) e massa molecular (231,78 kDa) podem ser obtidos utilizando na extração a temperatura de 80°C, pH 10 por 90,08 minutos. No segundo capítulo foram estudados alginatos extraídos de Sargassum cymosum C. Agardh coletadas em duas localidades diferentes do litoral de São Paulo (Ubatuba-ASU e São Sebastião-ASS) com relação ao rendimento, massa molecular, compor... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Brown seaweeds are the main sources of sodium alginate used in the food industry. Brazil doesn't have alginate processing, so it is dependent on imported products to supply the demand. The macroalgae Sargassum sp. is commonly found in the coastal regions of São Paulo, the extraction of alginate from this alga would allow Brazilian autonomy in the production of sodium alginate. The environment and climatic conditions in which marine algae live influence alginate yield, molecular weight and antioxidant capacity. In the first chapter, the optimization of the sodium alginate extraction by the Box-Behnken design was carried out, as well as the influence of pH, temperature and extraction time parameters on yield, intrinsic viscosity and viscosimetric molecular mass. pH influenced yield, intrinsic viscosity and molecular mass, while time had low effect and temperature did not influence the responses evaluated. The optimization results showed that maximum yield (46.04%), intrinsic viscosity (4.89 dL / g) and viscosimetric molecular weight (231.78 kDa) can be obtained using the extraction at temperature of 80 ° C, pH 10 and 90 minutes. In the second chapter, alginates extracted from Sargassum cymosum C. Agardh were studied in two different locations along the coast of São Paulo (Ubatuba-ASU and São Sebastião-SSA) and were studied the difference between them in the yield, molecular mass, rheological behavior and antioxidant activity. The yield presented higher values for the alginates ... (Complete abstract click electronic access below)
Mestre
Aarstad, Olav Andreas. "Alginate sequencing : Block distribution in alginates and its impact on macroscopic properties." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for bioteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-20246.
Full textTurbiani, Franciele Rezende Barbosa. "Desenvolvimento e caracterização de filmes ativos de alginato de sodio reticulados com benzoato de calcio." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/266253.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica
Made available in DSpace on 2018-08-11T12:31:13Z (GMT). No. of bitstreams: 1 Turbiani_FrancieleRezendeBarbosa_M.pdf: 2355251 bytes, checksum: 54057feae41bd47bee56d5615dbbfd3d (MD5) Previous issue date: 2007
Resumo: Filmes biodegradáveis são produzidos a partir de polímeros naturais, principalmente polissacarídeos e proteínas, e tem potencial aplicação na área médica, farmacêutica e alimentícia. A incorporação de agentes ativos pode ampliar suas funções como embalagens antimicrobianas, por exemplo. Filmes foram confeccionados à base de alginato de sódio usando cloreto de cálcio como agente reticulante e glicerol como plastificante. O uso de benzoato de cálcio foi investigado como agente ativo (íons benzoato) e como auxiliar na reticulação (íons cálcio). Devido ao alto poder gelificante do Ca++, confeccionou-se, inicialmente, um filme de baixa reticulação a partir de soluções filmogênicas contendo até 0,54% de Ca++ (1º estágio). Esse filme sofreu uma reticulação complementar com excesso de Ca++ (2º estágio). Dentre os vários procedimentos avaliados (contato do filme com tecido e/ou esponja umidecidas, pincel ou rolo de pintura e imersão do filme em solução reticuladora), a simples imersão em solução contendo de 3 a 7% de CaCl2 no 2º estágio produziu filmes com alto grau de reticulação. O aumento da concentração de glicerol nessa solução melhora a manuseabilidade e plasticidade dos filmes, porém aumenta a solubilidade em água e o conteúdo de umidade dos mesmos e um adequado compromisso foi obtido usando 5% desse plastificante. Ensaios nos quais o CaCl2 foi substituído, total ou parcialmente, por benzoato de cálcio indicou que o mesmo não pode ser usado na solução do 2º estágio por favorecer a precipitação de cristais sobre o filme. Filmes ativos de 0,06 mm de espessura, pré-reticulados apenas com benzoato de cálcio e 0,7% de glicerol na solução do 1º estágio e imersos por 30 minutos em banho contendo 3% de CaCl2 e 5% de glicerol no 2º estágio, apresentaram baixa solubilidade em água (até 20% da matéria seca). Estes filmes têm baixo grau de intumescimento (< 50% da massa inicial), boa resistência mecânica à tração, mas baixa elasticidade. A permeabilidade ao vapor de água é moderada e os valores encontrados são típicos de biofilmes hidrofílicos. Ensaios de liberação de benzoato utilizando água como sorvedouro, apresentaram bom ajuste as soluções da 2ª Lei de Fick, com valores de difusividade efetiva do benzoato variando de 3 a 5.10-7 cm2/s. Os valores de difusividade diminuiram com o aumento da reticulação e aumentaram com o aumento da concentração de benzoato no filme
Abstract: Biodegradable films are produced from natural polymers, structurized mainly by polysaccharides or proteins, and have potential applications in the medical, pharmaceutical or food area. The incorporation of active agents can extend their application as antimicotic packaging, for instance. Films were manufactured with sodium alginate, using calcium chloride as cross-linking agent and glycerol as plasticizer. The use of calcium benzoate as active agent (benzoate ions) and as crosslinking agent (calcium ions) was investigated. Due to the strong gelling power of Ca++ ions, impeding smooth casting procedures, films with low reticulation are initially manufactured, using less than 0.54% Ca++ in the filmogenic solutions (1st stage). These films are further crosslinked with an excess of Ca++ by immersion in a solution of 3% to 7% of CaCl2 (2nd stage). Increasing the glycerol concentration in this solution improves the handling and plasticity of the films but increase water solubility and moisture content and an adequate compromise was obtained using 5% plasticizer. Tests conducted with partial or total substitution of CaCl2 by calcium benzoate indicated that the later could not be used in the 2nd stage solution since it promoted crystals precipitation on film surface. Active films, 0.06mm thick, pre-reticulated with calcium benzoate only and with 0.7% glycerol in the solution of the 1st stage, immersed for 30 minutes in a 3% CaCl2 and 5% glycerol solution (2nd stage) had around 17% moisture content and low water solubility (up to 20% of total dry mass). These films show low swelling degree (<50% of initial mass), good tension strength but low elongation ability. The water vapor permeability is moderate, typical of highly hydrophilic films. Benzoate liberation tests, using pure water as sink, presented good fit to solutions of Fick¿s 2nd law and effective diffusivities found varied from 4.2 to 6.3 × 10-7 cm2/s. The diffusivity values decreased with the degree of reticulation and increase with benzoate concentration in the film
Mestrado
Engenharia de Processos
Mestre em Engenharia Química
Pires, Ana Luiza Resende 1984. "Desenvolvimento de curativos flexíveis e neutralizados de quitosana e alginato contendo Alphasan 'Marca Registra' RC2000." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/266655.
Full textDissertação (mestrado-) - Universidade Estadual de Campinas, Faculdade de Engenharia Química
Made available in DSpace on 2018-08-22T01:56:28Z (GMT). No. of bitstreams: 1 Pires_AnaLuizaResende_M.pdf: 3161193 bytes, checksum: c48592744224fd8b24f5563cdc1a3415 (MD5) Previous issue date: 2013
Resumo: Polímeros biodegradáveis estão sendo amplamente aplicados na constituição de curativos para o tratamento de lesões de pele de diferentes origens, estando a quitosana e o alginato dentre os mais estudados. A associação de alginato e quitosana em curativos pode atuar de maneira positiva na absorção de fluidos das lesões, além de propiciar a incorporação de fármacos. Entretanto, a flexibilidade do dispositivo é baixa e o processo de obtenção é lento em função de etapas como a correção do pH para a neutralidade, secagem e reticulação. Neste trabalho teve-se por objetivo melhorar as propriedades mecânicas de membranas de quitosana e alginato pela incorporação de um gel de silicone comercial (Silpuran® 2130 A/B), avaliar os efeitos da correção do pH em etapa única, da temperatura de secagem e também da eliminação das etapas de reticulação nas características de membranas de quitosana e alginato na presença e ausência de AlphaSan®RC2000, um agente microbicida à base de prata. As membranas foram caracterizadas quanto à espessura, à absorção de fluidos, à perda de massa quando expostas a diferentes fluidos fisiológicos e à resistência mecânica. Análises complementares de FTIR e EDS também foram realizadas. Os resultados obtidos mostraram que as membranas secas a 60 °C apresentaram superfície mais lisa que as secas a 37 °C. A espessura diminuiu com a correção do pH para 7,0 e aumentou na presença de AlphaSan®RC2000. Para as formulações livres do antimicrobiano, a elevação do pH aumentou a absorção de soro fetal bovino e solução salina e aumentou também a perda de massa nesta última solução. Já as amostras obtidas na presença de AlphaSan® RC2000 apresentaram aumento na absorção de água. A elevação da temperatura reduziu somente a perda de massa após o contato com a água. A reticulação, após a secagem, com CaCl2 a 2% mostrou-se indispensável para a estabilização das membranas, resultando em materiais com aspecto mais rugoso e maior espessura. A absorção de fluidos, a estabilidade em diferentes fluidos e a resistência mecânica diminuíram tanto na presença quanto na ausência de prata. Análises por EDS e FTIR mostraram que tanto o AlphaSan® RC2000 quanto o Silpuran® 2130 A/B, não são removidos após a etapa de lavagem das membranas. As formulações contendo o composto siliconado apresentaram-se mais homogêneas, flexíveis e com maior caráter adesivo, assim como menor espessura. A absorção de soluções por estas formulações foi menor e a estabilidade em solução foi maior. A resistência mecânica aumentou significativamente com a incorporação de silicone, atingindo-se uma tensão de ruptura máxima de 63 MPa. Dessa forma, é viável a diminuição do tempo de processamento das membranas pelo ajuste do pH em etapa única, pelo uso de temperaturas mais elevadas de secagem e pela eliminação da etapa de reticulação primária. A incorporação de Silpuran® 2130 A/B mostrou-se uma boa alternativa para a melhora das propriedades mecânicas dos curativos de quitosana e alginato
Abstract: Biodegradable polymers are widely applied in the constitution of dressings for treating various types of skin lesions, being chitosan and alginate two of the most studied raw materials. The association between alginate and chitosan in wound dressings can act positively in the absorption of fluids from lesions, allowing also the incorporation of drugs. However, the device flexibility is frequently low and its production is time-consuming due to steps such as adjusting the pH to neutrality, sample drying and crosslinking. This study aimed to improve the mechanical properties of chitosan-alginate wound dressings by incorporating a commercial silicone gel (Silpuran® 2130 A/B) and to evaluate the effects of pH correction in one step, of the drying temperature and also of the elimination of the crosslinking steps in the characteristics of chitosan-alginate membranes obtained in the presence and absence of AlphaSan® RC2000, an antimicrobial agent containing silver in its composition. The membranes were characterized regarding thickness, absorption of fluids, mass loss in different fluids and mechanical resistance. Complementary analyzes of FTIR and EDS were also performed. The results showed that membranes dried at 60 °C presented smoother surfaces than when dried at 37 °C. Membrane thickness decreased with the correction of the pH to 7,0 and increased in the presence of AlphaSan® RC2000. For formulations free of the antimicrobial agent, the pH adjustment increased bovine fetal serum and saline solution absorption, increasing also sample mass loss in the latter solution. Devices containing AlphaSan® RC2000, on the other hand, had increased water absorption. The increase of drying temperature, however, reduced mass loss due to prolonged contact with water. The crosslinking with CaCl2 2% after a drying step was shown to be essential for membrane stabilization, conducting to materials with less smooth surfaces and with greater thickness. The absorption of fluids decreased for samples prepared both in the presence and absence of silver, as did membrane stability and mechanical properties. EDS and FTIR analyzes showed that both AlphaSan® RC2000 and Silpuran® 2130 A/B were not removed from the membranes after the washing step. The formulations incorporating the silicone compound showed more homogeneous surfaces, greater flexibility and adhesivity, as well as lower thickness. The solution absorption was lower and membrane stability was higher for those devices. The mechanical strength increased with the incorporation of silicone, reaching a maximum of 63 MPa. Thus, it is viable to decrease the processing time of the membranes by pH adjustment in a single step, through the use of higher temperatures during drying and by the eliminating of the primary crosslinking step. The incorporation of Silpuran® 2130 A/B proved to be a good alternative for the improvement of the mechanical properties of chitosan and alginate dressings
Mestrado
Desenvolvimento de Processos Biotecnologicos
Mestra em Engenharia Química
Caswell, R. C. "Bacterial degradation of alginates." Thesis, Bucks New University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234705.
Full textYamashita, Camila. "Efeito da aplicação de ozônio na qualidade de alginato extraído de algas pardas : (Sargassum spp.) /." Assis, 2019. http://hdl.handle.net/11449/181871.
Full textBanca: Cassia Roberta Malacrida Mayer
Banca: Izabel Cristina Freitas Moraes
Resumo: O alginato, presente na parede celular das algas marinhas pardas, apresenta coloração marrom, sendo necessário seu branqueamento para melhor aceitabilidade do mercado consumidor. O gás ozônio (O3) tem mostrado grande potencial de aplicabilidade como agente clareador mais sustentável. O presente estudo visa a otimização, utilizando a análise de superfície de resposta, dos parâmetros de clareamento (tempo, fluxo de oxigênio e temperatura), utilizando ozônio como agente branqueador, sobre os parâmetros colorimétricos (porcentagem de transmitância e índice de luminosidade), composição química (razão entre os ácidos manurônico (M) e gulurônico (G) M/G) e propriedades reológicas (viscosidade dinâmica, viscosidade intrínseca e massa molar) do alginato de sódio extraído de algas pardas (Sargassum spp.). Nas condições otimizadas de clareamento também foi verificada a influência da ozonização sobre a atividade antioxidante do alginato. O tempo é a variável independente que apresentou maior influência nas respostas, seguido da temperatura e fluxo de oxigênio. A condição otimizada encontrada foi um tratamento com fluxo de oxigênio de 2 L/min por 35 minutos à 25oC. A amostra clareada na condição otimizada apresentou capacidade antioxidante maior que a amostra comercial, indicando que o processo de clareamento por ozonização pode ser menos prejudicial aos compostos bioativos. Além disso, os antioxidantes naturais presentes no alginato de sódio aqui estudado podem agregar valor aos produtos que utilizam esse composto em preparações alimentícias
Abstract: Alginate is a polysaccharide which can be found in the cell wall of brown algae. Its original color is brown that is why a bleaching process is needed to improve this visual impairment. The ozone gas (O3) has shown a great potential as a more sustainable bleaching agent. The present study aims the optimization of bleaching parameters (time, oxygen flow rate and temperature) of sodium alginate from brown seaweeds (Sargassum spp.) using ozone gas as the bleaching agent on the colorimetrics parameters (percent transmittance and index of luminosity), chemical compositon (mannuronic (M) and guluronic (G) acid ratio M/G) and rheological properties (intrinsic viscosity, dynamic viscosity and molar mass). Once it was found the optimal conditions of bleaching, it was also verified the influence of ozonation on antioxidant activity of sodium alginate. The findings point out that ozonation time is the independent variable that most affects the responses, followed by the temperature and oxygen flow rate. The optimized bleaching conditions were determinated with an oxygen flow rate at 2 L/min, during 35 min at 25oC. The bleached sample on the optimized conditions presented a higher antioxidant capacity than the commercial sodium alginate sample, highlighting that the discoloration by ozone might be less harmful to bioactive compounds. Besides, natural antioxidants of sodium alginate can add value to products that use this compound in food preparations
Mestre
Chater, Peter. "Bioactive alginates and macronutrient digestion." Thesis, University of Newcastle upon Tyne, 2014. http://hdl.handle.net/10443/2460.
Full textCruz, Maria Clara Pinto. "Influencia do poli(etileno glicol) (PEG) no processo de microencapsulação da oxitetraciclina no sistema alginato/quitosana : modelamento "in vitro' da liberação oral." [s.n.], 2004. http://repositorio.unicamp.br/jspui/handle/REPOSIP/267677.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Quimica
Made available in DSpace on 2018-08-04T01:52:20Z (GMT). No. of bitstreams: 1 Cruz_MariaClaraPinto_D.pdf: 5943553 bytes, checksum: b12150e79224fd5dadd1465609f322d1 (MD5) Previous issue date: 2004
Resumo: Neste trabalho as análises de difusão de oxitetracilina (OTC) como espécie ativa, foram realizadas a 37 +/- 0,5 °C; em soluções tampão pH=7,4 e 1,2, condições estas similar ao trato gastro-intestinal, com microesferas de alginato de cálcio; microcápsulas de alginato de cálcio coacervado com quitosana (baixa, média e alta viscosidade); microcápsulas de alginato de cálcio coacervada com a quitosana baixa viscosidade, e revestidas com o polietileno glicol - PEG (2000, 4600 e 10000); microcápsulas de alginato de cálcio revestidas com o PEG e, finalmente, microcápsulas de alginato de cálcio revestidas com EUDRAGIT®. Na primeira parte do trabalho, priorizou-se o estudo da estrutura, sequência e composição das unidades repetitivas dos biopolímeros alginato e quitosana, as quais certamente exercem profunda influência na liberação controlada do fármaco. Na segunda parte, o coeficiente de difusão (D) de OTC foi calculado através de equações estabelecidas por Crank, para difusão em esferas, que seguem a segunda lei de Fick. Considerou-se a difusão do interior para o exterior das micropartículas, utilizando o método dos mínimos quadrados e método iterativo de Newton Raphson para ajuste dos dados. Foi verificado que o modelo matemático para a difusão de OTC tem uma representatividade muito boa em meio básico, mesmo com o efeito de disparo de OTC em forma de cristais alojados na superfície das micropartículas, conforme observado por Microscopia Eletrônica de Varredura (MEV). No entanto, em meio ácido, o ajuste não foi o esperado, pois fatores como a alta solubilidade do fármaco no meio; além da presença de fissuras nas microesferas, devido aos cristais na superfície, contribuíram para que o perfil desviasse do obtido em outros meios, resultando em um comportamento não-Fickiano. Finalmente, observou-se a possibilidade de modulação da velocidade de liberação nos diversos tipos de microesferas
Abstract: Diffusion studies of oxytetracycline (OTC) entrapped in microbeads of calcium alginate, calcium alginate coacerved with chitosan (high, medium and low viscosity) and calcium alginate coacerved with chitosan low viscosity, covered with Poly (ethylene glycol) - PEG (2 000, 4 600 and 10 000) and alginate covered with EUORAGITI®, were carried out at 37 +/- 0.5 °C, in buffer solutions at pH 7.4 and pH 1.2, similar to the conditions of the gastric-intestinal system. The diffusion coefficient, or diffusivity (D), of OTC was calculated by equations provided by Crank for diffusion, which follows Fick's second law, considering the diffusion from the inner parts to the surface of the microbeads. The least square and the Newton Raphson methods were used to obtain the diffusion coefficients. The microbeads swelling in pH 7.4 and OTC diffusion is classically Fickian, suggesting that the OTC transport, in this case, is controlled by the exchange rates of free water and relaxation of calcium-alginate chains. In case of acid media, it was observed that the phenomenon did not follow Fick's law, due probably to the high solubility of the OTC in this environment and the presence of cracks formed during the drying process of the microbeads. It was possible to model the release rate of OTC in several types of microbeads
Doutorado
Ciencia e Tecnologia de Materiais
Doutor em Engenharia Química
Sacchetin, Priscila Soares Costa. "Incorporação de Flavobacterium columnare inativado em microparticulas de alginato e quitosana para a imunização de tilapia do Nilo (Oreochromis Niloticus) por via oral." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/267175.
Full textDissertação (mestrado) - Universadade Estadual de Campinas, Faculdade de Engenharia Quimica
Made available in DSpace on 2018-08-13T23:28:36Z (GMT). No. of bitstreams: 1 Sacchetin_PriscilaSoaresCosta_M.pdf: 5223039 bytes, checksum: 51dddf156f0471fcebe8aebb1852182e (MD5) Previous issue date: 2009
Resumo: A imunização oral destaca-se por sua praticidade, custo moderado e ao baixo estresse que provoca nos animais. Esta técnica possui como principal entrave a dificuldade de proteger o agente de imunização dos processos digestivos e da decomposição por enzimas às quais este é submetido durante a passagem pelo trato gastrointestinal. Neste contexto, este trabalho teve como objetivo propiciar ao agente antigênico um sistema de proteção frente à ação de degradação no trato gastrointestinal. Para isso, propôs-se a incorporação de um antígeno-modelo (células inativadas de Flavobacterium columnare) em partículas de alginato e de quito sana recobertas com alginato preparadas por métodos passíveis de escalonamento baseados na formação de emulsões. Aspectos como a temperatura, o uso de diferentes impelidores, a alteração na concentração dos biopolímeros no diâmetro e na forma das micropartículas produzidas foram avaliadas. O comportamento in vitro destes sistemas microestruturados, sua estabilidade e o perfil de liberação do agente antigênico foram também analisados. Micropartículas com diâmetros médios inferiores a 50 µm foram obtidas. As micropartículas de alginato foram capazes de encapsular praticamente 100% das células inativadas, enquanto que as de quito sana incorporaram até 84% do agente antigênico. As partículas produzidas resistiram às condições gastrointestinais simuladas de tilápia do Nilo, liberando um máximo de 4% do antígeno em pH estomacal e de 9% em pH intestinal. As partículas produzidas poderiam, desta forma, ser eficientemente empregadas, hipoteticamente, no controle de columnariose em tilápias do Nilo
Abstract: Oral immunization is a practical and low cost fish vaccination method with the advantage of causing low stress to the animals. The main concern regarding oral vaccination is related to protecting the immunizing agent from exposure to the digestive processes and enzymatic decomposition when crossing the gastrointestinal tract. In this context, the goal of this work was to provide a protection system to the antigenic agent when facing degradation action in gastrointestinal conditions. Thus, the incorporation of a model antigen (inactivated Flavobacterium columnare cells) in alginate micropartic1es and also in chitosan micropartic1es coated with alginate was evaluated, using methods suited to up-scaling based on emulsion formation. Aspects such as temperature, the use of distinct impellers and the variation on the biopolymers concentration in the diameter and shape of the produced micropartic1es were analyzed. The microstructured system behavior in vitro, its stability and the antigenic agent release profile were also evaluated. Microparticles with less than 50 µm in average diameter were produced. The alginate microparticles were capable of encapsulating almost 100% of the inactivated cells, while the chitosan micropartic1es incorporated up to 84% of the antigenic agent. The produced partic1es were resistant to Nile tilapia simulated gastrointestinal conditions, releasing at most 4% of the cells in stomach pH and less than 9% in intestinal pH. The produced partic1es, in this way, could be successfully employed, hypothetically, to control Nile tilapia columnariosis
Mestrado
Desenvolvimento de Processos Biotecnologicos
Mestre em Engenharia Química
Books on the topic "Alginates"
Ahmed, Shakeel, ed. Alginates. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119487999.
Full textMcDowell, R. H. Properties of alginates. 5th ed. London: Kelco International, 1986.
Find full textRehm, Bernd H. A., ed. Alginates: Biology and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-92679-5.
Full textGacesa, P., and N. J. Russell, eds. Pseudomonas Infection and Alginates. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1836-8.
Full textAhmad, Fasihuddin Badruddin. Physicochemical characterisation of alginates. Salford: University of Salford, 1987.
Find full textRehm, Bernd H. A., and M. Fata Moradali, eds. Alginates and Their Biomedical Applications. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6910-9.
Full textImeson, A. P. Alginates and xanthan in food. [Manchester?: Manchester Polytechnic Department of Food Manufacture and Distribution?, 1985.
Find full text(Firm), NutraSweet Kelco, and Monsanto, eds. Alginates, xanthan gum & gellan gum seminar. Tadworth, Surrey: NutraSweet Kelco and Monsanto, 1998.
Find full textP, Gacesa, and Russell Nicholas J, eds. Pseudomonas infection and alginates: Biochemistry, genetics, and pathology. London: Chapman and Hall, 1990.
Find full textJana, Sougata, and Subrata Jana, eds. Alginate Biomaterial. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6937-9.
Full textBook chapters on the topic "Alginates"
Sehgal, Rutika, Akshita Mehta, and Reena Gupta. "Alginates: General Introduction and Properties." In Alginates, 1–20. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119487999.ch1.
Full textAntil, Reena, Ritu Hooda, Minakshi Sharm, and Pushpa Dahiya. "Alginate-Based Biomaterials for Bio-Medical Applications." In Alginates, 179–204. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119487999.ch10.
Full textTheagarajan, Radhika, Sayantani Dutta, J. A. Moses, and C. Anandharamakrishnan. "Alginates for Food Packaging Applications." In Alginates, 205–32. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119487999.ch11.
Full textVijayalakshmi, S., S. K. Sivakamasundari, J. A. Moses, and C. Anandharamakrishnan. "Potential Application of Alginates in the Beverage Industry." In Alginates, 233–61. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119487999.ch12.
Full textRavi, Ashwini, S. Vijayanand, Velu Rajeshkannan, S. Aisverya, K. Sangeetha, P. N. Sudha, and J. Hemapriya. "Alginates in Comestibles." In Alginates, 263–79. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119487999.ch13.
Full textRavi, Ashwini, S. Vijayanand, G. Ramya, A. Shyamala, Velu Rajeshkannan, S. Aisverya, P. N. Sudha, and J. Hemapriya. "Alginates: Current Uses and Future Perspective." In Alginates, 281–312. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119487999.ch14.
Full textPandit, Pintu, T. N. Gayatri, and Baburaj Regubalan. "Alginates Production, Characterization and Modification." In Alginates, 21–43. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119487999.ch2.
Full textArfin, Tanvir, and Kamini Sonawane. "Alginate: Recent Progress and Technological Prospects." In Alginates, 45–57. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119487999.ch3.
Full textJose, Ajith James, Kavya Mohan, and Alice Vavachan. "Alginate Hydrogel and Aerogel." In Alginates, 59–77. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119487999.ch4.
Full textCosta, Luiz Pereira da. "Alginate in Biomedical Applications." In Alginates, 79–93. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119487999.ch5.
Full textConference papers on the topic "Alginates"
Roufaida, Merir. "Colon specific delivery system based on ethylcellulose-alginates microspheres loaded with mesalazine." In 7th International Electronic Conference on Medicinal Chemistry. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/ecmc2021-11500.
Full textFrias, E., and M. Valdes. "397 Accelerated pneumoconiosis by alginates in a worker in the chemical-pharmaceutical industry. case report." In 32nd Triennial Congress of the International Commission on Occupational Health (ICOH), Dublin, Ireland, 29th April to 4th May 2018. BMJ Publishing Group Ltd, 2018. http://dx.doi.org/10.1136/oemed-2018-icohabstracts.1289.
Full textBaroni, Tommaso, Silvana Capella, Francesco Di Benedetto, Elena Belluso, Giordano Montegrossi, Maurizio Romanelli, and Fabio Capacci. "Preliminary mineralogical and morphological characterisation of dental alginates on the light of silica health hazard." In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.5100.
Full textLe Vot, S., J. Berthier, N. David, G. Costa, M. Alessio, V. Mourier, P. Y. Benhamou, and F. Rivera. "Scaling rules for flow focusing devices: From standard to large FFDs for cell encapsulation in alginates." In TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2009. http://dx.doi.org/10.1109/sensor.2009.5285655.
Full textSuzery, Meiny, Bambang Cahyono, Widayat, and Lina Apriliana. "Encapsulation of hyptolide coated alginate, chitosan, and alginate-chitosan." In VIII INTERNATIONAL ANNUAL CONFERENCE “INDUSTRIAL TECHNOLOGIES AND ENGINEERING” (ICITE 2021). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0106801.
Full textAdjuik, Toby A., Sue E. Nokes, and Michael D. Montross. "Lignin-alginate-based Biopolymers for the Bioencapsulation of Rhizobium." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/ojme7252.
Full textJarvis, P. M., D. A. J. Galvin, S. D. Blair, and C. N. McCollum. "HOW DOES CALCIUM ALGINATE ACHIEVE HAEMOSTASIS IN SURGERY?" In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643074.
Full textLi, Xiangpeng, Jihua Gou, and Olusegun J. Ilegbusi. "Synthesis-Structure-Property Relationship for Ultra-Soft Tissue-Equivalent Alginate Hydrogel." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-70392.
Full textYan, Jingyuan, Hemanth Gudapati, Yong Huang, and Changxue Xu. "Effect of Sodium Alginate Concentration During Laser-Assisted Printing of Alginate Tubes." In ASME/ISCIE 2012 International Symposium on Flexible Automation. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/isfa2012-7253.
Full textStarly, Binil, Shih-Feng Lan, and David Schmidtke. "Customized Release of Metronidazole From Composite Casted Rings of Poly-Caprolactone/Alginate for Periodontal Drug Delivery." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14177.
Full textReports on the topic "Alginates"
Fernando, P. U. Ashvin Iresh, Rebecca Crouch, Bobbi Stromer, Travis Thornell, Johanna Jernberg, and Erik Alberts. Scaled-up synthesis of water-retaining alginate-based hydrogel. Engineer Research and Development Center (U.S.), December 2023. http://dx.doi.org/10.21079/11681/48032.
Full textYoncheva, Krassimira. Benefits and Perspectives of Nanoparticles Based on Chitosan and Sodium Alginate. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, March 2020. http://dx.doi.org/10.7546/crabs.2020.03.01.
Full textGerstl, Zev, Thomas L. Potter, David Bosch, Timothy Strickland, Clint Truman, Theodore Webster, Shmuel Assouline, Baruch Rubin, Shlomo Nir, and Yael Mishael. Novel Herbicide Formulations for Conservation-Tillage. United States Department of Agriculture, June 2009. http://dx.doi.org/10.32747/2009.7591736.bard.
Full textRestrepo-Villamizar, Claudia Elena. Guía práctica para la toma de impresión en alginato. Ediciones Universidad Cooperativa de Colombia, December 2019. http://dx.doi.org/10.16925/gcgp.18.
Full textShpigel, Muki, Allen Place, William Koven, Oded (Odi) Zmora, Sheenan Harpaz, and Mordechai Harel. Development of Sodium Alginate Encapsulation of Diatom Concentrates as a Nutrient Delivery System to Enhance Growth and Survival of Post-Larvae Abalone. United States Department of Agriculture, September 2001. http://dx.doi.org/10.32747/2001.7586480.bard.
Full textCerdá-Bernad, Débora, Ioanna Pitterou, Andromachi Tzani, Anastasia Detsi, and María José Frutos. Novel chitosan/alginate hydrogels as carriers of phenolic-enriched extracts from saffron floral by-products using natural deep eutectic solvents as green extraction media. Peeref, June 2023. http://dx.doi.org/10.54985/peeref.2306p2939837.
Full textPoverenov, Elena, Tara McHugh, and Victor Rodov. Waste to Worth: Active antimicrobial and health-beneficial food coating from byproducts of mushroom industry. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7600015.bard.
Full text