Dissertations / Theses on the topic 'Algèbre de Lie tordue'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Algèbre de Lie tordue.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Ayadi, Mohamed. "Propriétés algébriques et combinatoires des espaces topologiques finis." Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2022. http://www.theses.fr/2022UCFAC106.
Full textAuger, Jean. "Extensions des modules de dimension finie pour les algèbres de courants tordues." Master's thesis, Université Laval, 2015. http://hdl.handle.net/20.500.11794/26001.
Full textThis master’s thesis is about the representation theory of a certain class of infinite dimensional Lie algebras, the twisted current algebras. The object of this work is to obtain a classification of the extension blocks of the category of finite dimensional modules for a given twisted current algebra. The principal motivations for this study are the recent classifications of simple finite dimensional modules for these algebras and of the extension blocks of the category of finite dimensional modules in the case of equivariant map algebras. The class of twisted current algebras includes, amongst others, the families of Lie algebras of twisted forms and equivariant map algebras, therefore the key multiloop generalisations, twisted or not, of the affine Kac-Moody setting.
Maassarani, Mohamad. "Formalité pour certains espaces de configurations tordus et connexions de type Knizhnik - Zamolodchikov." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAD039/document.
Full textThe Malcev Lie algebra of the fundamental group of X (or Macev Lie algebra of X) is an algebraic invariant of the space X studied in rational homotopy theory. The space X is 1-formal if its Malcev algebra is quadratic. One can use Knizhnik–Zamolodchikov-type connections to obtain "formality" (1-formality or filtered formality) results for configuration spaces of surfaces. In the thesis we consider a family of orbit configuration spaces X of the complex projective line associated to finite finite groups of homographies. We study the fundamental group of X and constuct Knizhnik– Zamolodchikov-type connections. This allows us to give a presentation of the Malcev Lie algebra of X and to prove the 1-formality of X
Righi, Céline. "Caractérisation et énumération des idéaux ad-nilpotents d'une sous-algèbre parabolique d'une algèbre de Lie simple." Poitiers, 2007. http://www.theses.fr/2007POIT2301.
Full textSaidi, Abdellatif. "Algèbres de Hopf d'arbres et structures pré-Lie." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2011. http://tel.archives-ouvertes.fr/tel-00720201.
Full textBack, Valérie. "Formes réelles presque déployées d'algèbres de Lie affines." Nancy 1, 1995. http://www.theses.fr/1995NAN10090.
Full textAmmari, Kaïs. "Sur la stabilité des sous-algèbres paraboliques d'une algèbre de Lie simple." Thesis, Poitiers, 2014. http://www.theses.fr/2014POIT2256.
Full textLet K be an algebraically closed field of characteristic 0. It is well known by work of Duflo, Khalgui and Torasso that any quasi-reductive algebraic Lie algebra (defined over K) is stable. However, there are stable Lie algebras which are not quasi-reductive. This raises the question, if for some particular class of non-reductive Lie algebras, there is equivalence between stability and quasi-reductivity. More generally, biparabolic subalgebras form a very interesting class (including the class of parabolic subalgebras and of Levi subalgebras) of non-reductive Lie algebras. It was conjectured by Panyushev that these two notions are equivalent for biparabolic subalgebras of a reductive Lie algebra. In this thesis, we give by considering the results of Panyushev for parabolic subalgerbras of simple Lie algebra of type A and C a positive answer to this conjecture in the case of parabolic subalgebras. In passing, we prove that these two notions are equivalent for certain subalgebras of gl(n,K) which stabilize an alternating bilinear form of maximal rank and a flag in generic position
Saïdi, Abdellatif. "Algèbres de Hopf d'arbres et structures pré-Lie." Thesis, Clermont-Ferrand 2, 2011. http://www.theses.fr/2011CLF22208/document.
Full textWe investigate in this thesis the Hopf algebra structure on the vector space H spanned by the rooted forests, associated with the pre-Lie operad. The space of primitive elements of the graded dual of this Hopf algebra is endowed with a left pre-Lie product denoted by ⊲, defined in terms of insertion of a tree inside another. In this thesis we retrieve the “derivation” relation between the pre-Lie structure ⊲ and the left pre-Lie product → on the space of primitive elements of the graded dual H0CK of the Connes-Kreimer Hopf algebra HCK, defined by grafting. We also exhibit a coproduct on the tensor product H⊗HCK, making it a Hopf algebra the graded dual of which is isomorphic to the enveloping algebra of the semidirect product of the two (pre-)Lie algebras considered. We prove that the span of the rooted trees with at least one edge endowed with the pre-Lie product ⊲ is generated by two elements. It is not free : we exhibit two families of relations. Moreover we prove a similar result for the pre-Lie algebra associated with the NAP operad. Finally, we introduce current preserving operads and prove that the pre-Lie operad can be obtained as a deformation of the NAP operad in this framework
Drouot, François. "Quelques propriétés des représentations de la super-algèbre de Lie gl(m, n)." Thesis, Nancy 1, 2008. http://www.theses.fr/2008NAN10069/document.
Full textThis thesis is a study of finite dimensional representations of the Lie superalgebra gl(m,n). In the first chapter we recall some results on these Lie superalgebra. In the second chapter we study the simple representations of gl(2.2). These modules can be obtained as quotient of some induced modules, the knowledge of the composition series of these modules allow us to compute an explicit finite character forumula for simple modules. In the third chapter we look at representations of a quantum deformation of the universal enveloping algebra of gl(m,n). We first recall the construction of crystal bases for the direct factors of a tensor power of the standard representation. We show by weakening the definition of crystal, that there exist crystal bases for non-semisimple modules, and we give a way to construct them. The fourth chapter focuses on the understanding of the maximaly atypical block of the category of finite dimensional representations of gl(2.2). Knowing the full subcategory of projective maximally atypical modules allows us to reconstruct the category. First, we study the projective indecomposable modules, and we compute their Loewy series. We then study their morphisms. Finally we make a conjecture on the composition of those morphisms
Hao, Kuangrong. "Algèbre de Lie et cinématique des mécanismes en boucles fermées." Phd thesis, Ecole Nationale des Ponts et Chaussées, 1995. http://pastel.archives-ouvertes.fr/pastel-00569136.
Full textRabeherimanana, Toussaint Joseph. "Petites perturbations de systèmes dynamiques et algèbre de Lie nilpotentes." Paris 7, 1992. http://www.theses.fr/1992PA077163.
Full textLiu, Bingxiao. "Laplacien hypoelliptique et formule des traces tordue." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS165/document.
Full textIn this thesis, we give an explicit geometric formula for the twisted semisimple orbital integrals associated with the heat kernel on symmetric spaces. For that purpose, we use the method of the hypoelliptic Laplacian developed by Bismut. We show that our results are compatible with classical results in local equivariant index theory. We also use this formula to evaluate the leading term of the asymptotics as d -> + ∞ of the equivariant Ray-Singer analytic torsion associated with a sequence of flat vector bundles Fd on a compact locally symmetric space. We show that the leading term can be evaluated in terms of the W-invariants constructed by Bismut-Ma-Zhang
Bulois, Michaël. "Étude de quelques sous-variétés des algèbres de Lie symétriques semi-simples." Brest, 2009. http://www.theses.fr/2009BRES2042.
Full textLie algebras were introduced toward the end of nineteenth century in order to study some problems arising from geometry. In the interest of classifying these objects, the subcategory of semisimple Lie algebras has been studied. Symmetric Lie algebras are a generalisation of Lie algebras and there are connections between complex symmetric Lie algebras and real Lie algebras. There is an another level structure on (semisimple complex) Lie algebras. Denoting by G the algebraic adjoint group of g, we can conside g as a G-variety under the adjoint action M. We can then study some properties in the framework of algebraic geometry. One can then study various G-varieties arising from this setting. From a global perspective, I try to generalize or understand some properties of analogue varieties in symmetric Lie algebras
Ancochea, Bermudez Jose Maria. "Sur la classification des algèbres de Lie rigides." Mulhouse, 1985. http://www.theses.fr/1985MULH0006.
Full textGomez, Aparicio Maria. "Propriété (T) et morphisme de Baum-Connes tordus par une représentation non unitaire." Paris 7, 2007. http://www.theses.fr/2007PA077189.
Full textIn my thesis I defined a twisting of Kazhdan's property (T) and of the Baum-Connes conjecture by some non-unitary finite dimensional representations. Let G be a locally compact group and (p,V) be a finite dimensional representation of G. In Chapter 1, when p is irreducible, we consider tensor products of p by irreducible unitary representations of G to define a twisting of property (T). We introduce two Banach algebras, A(p,G) and A_r(p,G), analogous to the C*-group algebras C*(G) and C*_r(G), and we define property (T) twisted by p in terms of A(p, G). We then show that most of real semi-simple Lie groups verifying property (T) have property (T) twisted by any irreducible finite dimensional representation. In Chapter 2 and 3 we compute the K-theory of these "twisted" group algebras. To do these we define an assembly map defined on the left part of the Baum-Connes morphism, KAtop(G), and with image in the K-theory of A_r(p,G). We then prove that these twisted Baum-Connes map is an isomorphism for a large class of groups verifying the Baum-Connes conjecture. Finally, in Chapter 4 we show that the tensor product by p defines a morphism from A(p,G) to the tensor product of C*_r(G) and End(V) and that these induces a group morphism between K(A(p,G)) and K(C*_r(G)). We then define an action of the finite dimensional representation ring of G on KAtop(G) that is compatible with the tensor product by p and with the twisted Baum-Connes map. This enables us to compute the above morphism on the image of the twisted assembly map
Bartouli, Issam. "Cohomologie et déformation des champs de vecteurs sur une variété de dimension 1." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLE010/document.
Full textWe consider the Vect(R)-module structure on the spaces of bilinear differential operators acting on the spaces of weighted densities.We compute the first differential cohomology of the vector fields Lie algebra Vect(R) with coefficients in space of bilinear differential operators acting on weighted densities. we consider the action of Vect(S1) by Lie derivative on the spaces of pseudodifferential operators . We study the h-trivial deformations of the standard embedding of the Lie algebra Vect(S1) of smooth vector fields on the circle, into the Lie algebra of functions on the cotangent bundle T∗S1. We classify the deformations of this action that become trivial once restricted to h, where h = aff(1) or sl(2). Necessary and sufficient conditions for integrability of infinitesimal deformations are given
Moreau, Anne. "Quelques propriétés de l'indice dans une algèbre de Lie semi-simple." Paris 7, 2006. http://www.theses.fr/2006PA077184.
Full textThe index of a complex Lie algebra is the minimal dimension of stabilizers of elements for the coadjoint action. The index plays an important role in representation and invariant theory. This thesis concerns the index of non-reductive subalgebras in a semisimple Lie algebra. We establish in the first part an explicite formula for the index of the normaliser of the centraliser of a nilpotent element in a semisimple complex Lie algebra. This result has been conjectured by D. Panyushev. The proof uses some methods developed by J. Y. Charbonnel to obtain the index of the centraliser of an element. We solve in the second part a problem of additivity of the index linked to a Cartan décomposition of a semisimple real Lie algebra. In particular, we answer positively a question by M. Raïs. To proof this conjecture we use the Kostan's construction to find stable forms. In the annex, we give computations made with GAP useful for the first part
Koufany, Khalid. "Semi-groupe de Lie associé à une algèbre de Jordan euclidienne." Nancy 1, 1993. http://docnum.univ-lorraine.fr/public/SCD_T_1993_0172_KOUFANY.pdf.
Full textAhmad, Saad. "Algèbres symétriques à gauche et algèbre de couleurs." Montpellier 2, 1989. http://www.theses.fr/1989MON20039.
Full textGruson, Caroline. "Sur les super groupes de Lie." Paris 7, 1993. http://www.theses.fr/1993PA077056.
Full textChopp, Mikaël. "Lie-admissible structures on Witt type algebras and automorphic algebras." Thesis, Metz, 2011. http://www.theses.fr/2011METZ020S/document.
Full textThe Witt algebra has been intensively studied and arise in many research fields in Mathematics. We are interested in two generalizations of the Witt algebra: the Witt type algebras and the Krichever-Novikov algebras. In a first part we study the problem of finding Lie-admissible structures on Witt type algebras. We give all third-power associative Lie-admissible structures and flexible Lie-admissible structures on these algebras. Moreover we study the symplectic forms which induce a graded left-symmetric product. In the second part of the thesis we study the automorphic algebras. Starting from arbitrary compact Riemann surfaces we consider the action of finite subgroups of the automorphism group of the surface on certain geometrically defined Lie algebras as the Krichever-Novikov type algebras. More precisely, we relate for G a finite subgroup of automorphism acting on the Riemann surface, the invariance subalgebras living on the surface to the algebras on the quotient surface under the group action. The almost-graded Krichever-Novikov algebras structure on the quotient gives in this way a subalgebra of a certain Krichever-Novikov algebra (with almost-grading) on the original Riemann surface
Sadaka, Guilnard. "Paires admissibles d'une algèbre de Lie simple complexe et W-algèbres finies." Thesis, Poitiers, 2013. http://www.theses.fr/2013POIT2309/document.
Full textLet g be a complex simple Lie algebra and e a nilpotent element of g. We are interested to answer the isomorphism question (raised by Premet) between the finite W-algebras constructed from some nilpotent subalgebras of g called e-admissible. We introduce the concept of e-admissible pair and e-admissible grading. We show then that the W-algebra associated to an e-admissible pair admits similar properties to that introduced by Gan and Ginzburg. Moreover, we define an equivalence relation on the set of admissible pairs and we show that if two admissible pairs are equivalent, it follows that the associated W-algebras are isomorphic. We introduce later the concepts of b-maximal admissible pair and b-maximal admissible grading and show that b-maximal admissible pairs are equivalent. As a consequence to this result, we recover a result of Brundan and Goodwin on the good gradings. In a final part, we consider some particular cases where we may find a complete answer to the isomorphism question
Zaiter, Mouchira. "Sur quelques sous-variétés d'une puissance cartésienne d'une algèbre de Lie réductive." Paris 7, 2013. http://www.theses.fr/2013PA077141.
Full textIn my PHD thesis, we describe some desingularizations of some subvarieties of cartesian powers of a reductive Lie algebra of finite dimension g. We study the nature of the singularities of its normalizations. One of these varieties is the set B(k} of éléments (X₁,. . . , Xk) in gk such that x₁. . . , xk are in a same Borel subalgebra of g. We construct a normalization of this variety and we prove that it has rational singularities. Furthermore, we prove that the nullcone N(k) of gk has rational singularities and the normalizations of the commuting variety C(²) of g and of the variety N⁻¹ (C(²)) have rational singularities, where N is a normalization morphism B(²). Taking P(k) the variety of elements (X₁,. . . , Xk) of gk such that x₁. . . , xk are in a same parabolic subalgebra of g , conjugale under G to a parabolic subalgebra p of g and P(k)u the subvariety of P(k) of elements (X₁,. . . , Xk) of gk such that X₁,. . . , Xk are in the nilpotent radical of a same parabolic subalgebra of g , conjugale under G to p. We describe a desingularization of P(k} and we prove that it is not normal. In addition, we give some property of P(k)u
Letellier, Emmanuel. "Transformation de Fourier des fonctions invariantes sur une algèbre de Lie finie." Paris 6, 2003. http://www.theses.fr/2003PA066191.
Full textKhakimdjanova, Kamola. "Algèbres de Lie dont le treillis des idéaux est fixé." Mulhouse, 2000. http://www.theses.fr/2000MULH0606.
Full textMabrouk, Sami. "Algèbres Hom-Nambu quadratiques et Cohomologie des algèbres Hom-Nambu-Lie multiplicatives." Thesis, Mulhouse, 2012. http://www.theses.fr/2012MULH7311/document.
Full textThe aim of this thesis is to study representation theory and cohomology of n-ary Hom-Nambu-Lie algebras, as well as quadratic structures on these algebras. It is organized as follows.• Chapter 1. n-ary Hom-Nambu algebras : in the first section we recall the definitions of n-ary Hom-Nambu algebras and n-ary Hom-Nambu-Lie algebras, introduced by Ataguema, Makhlouf and Silvestrov and provide some key constructions. These algebras correspond to a generalized version by twisting of n-ary Nambu algebras and Nambu-Lie algebras which are called Filippov algebras. We deal in this chapter with a subclass of n-ary Hom-Nambu algebras called multiplicative n-ary Hom-Nambu algebras. In Section 1.2, we recall the list of 3-dimensional ternary Hom-Nambu-Lie algebras of special type corresponding to diagonal homomorphisms. In Section 1.4 we show different construction procedures. We recall the construction procedures by twisting principles and provide some new constructions using for example the centroid. The first twisting principle, introduced for binary case, was extend to n-ary case. The second twisting principle was introduced for binary algebras. We will extend it to n-ary case in the sequel. Also we recall a construction by tensor product of symmetric totally n-ary Hom-associative algebra by an n-ary Hom-Nambu algebra. In Section 1.5, we extend representation theory of Hom-Lie algebras to the n-ary case and discuss the derivations, αk-derivations and central derivations. The last section of chapter 1 is dedicated to ternary q-Virasoro-Witt algebras. We recall constructions of infinite dimensional ternary Hom-Nambu algebras.• Chapter 2. Cohomology of n-ary multiplicative Hom-Nambu algebras : InSection 2.1. We define a central extension. In the second Section we show that for an n-ary Hom-Nambu-Lie algebra N, the space ∧n−1 N carries a structure of Hom-Leibniz algebra and we dene a cohomology which is suitable for the study of one parameter formal deformations of n-ary Hom-Nambu-Lie algebras. In Section 2.4, we extend to n-ary multiplicative Hom-Nambu-Lie algebras the Takhtajan's construction of a cohomology of ternary Nambu-Lie algebras starting from Chevalley-Eilenberg cohomology of binary Lie algebras. The cohomology of multiplicative Hom-Lie algebras. The cohomology complex for Leibniz algebras was defined by Loday and Pirashvili.• Chapter 3. Quadratic n-ary Hom-Nambu algebras : In the first section we introduce a class of Hom-Nambu-Lie algebras which possess an inner product. In Section 3.3, we provide some constructions of Hom-quadratic Hom-Nambu-Lie algebras starting from an ordinary Nambu-Lie algebra and from tensor product of Hom-quadratic commutative Hom-associative algebra and Hom-quadratic Hom-Nambu-Lie algebra. In Section 3.5, we provide a construction of n-ary Hom-Nambu algebra L which is a generalization of the trivial T∗-extension. In Section 3.6, we give a construction of ternary algebra arising from quadratic Lie algebra. In Section 3.7, we construct quadratic n-ary Hom-Nambu algebras involving elements of the centroid of n-ary Nambu algebras
Drouot, Francois. "Quelques propriétés des représentations de la super-algèbre de Lie gl(m,n)." Phd thesis, Université Henri Poincaré - Nancy I, 2008. http://tel.archives-ouvertes.fr/tel-00371432.
Full textFauquant-Millet, Florence. "Sur la polynomialité de certaines algèbres d'invariants d'algèbres de Lie." Habilitation à diriger des recherches, Université Jean Monnet - Saint-Etienne, 2014. http://tel.archives-ouvertes.fr/tel-00994655.
Full textChenal, Julien. "Structures géométriques liées aux algèbres de Lie graduées." Thesis, Nancy 1, 2010. http://www.theses.fr/2010NAN10036/document.
Full textThe goal of this thesis is to define a geometric objet associated to graded Lie algebras. In the case of a $\mathbb{Z}/2\mathbb{Z}$ graded Lie algebra, this object is a symmetric space G/H and the infinitesimal object associated is a Lie triple system. If the Lie algebra is 3-graded, the geometry is called a generalized projective geometry and the infinitesimal object is a Jordan pair. In the general case, the geometric object will be called a generalized flag geometry. Its contruction needs the notions of elementary projective group and projective completion, definied by O. Loos and used by J. R. Faulkner. Then, by the notion of filtrations of a Lie algebras, a realization of the generalized flag geometry of a graded Lie algebra can be done as orbits under the elementary projective group of two natural filtrations, associated to the graduation. In the example $\mathfrak{g}=End_R(V)$, consisting of the endomorphisms of a module $V$ on a assocative algebra $R$, then the generalized flag geometry is realized like orbits of flags of $V$; so, it justifies the chosen name: "generalized flag geometry". To finish, using a generalized differential calculus, we can construct on this generalized flag geometry a structure of smooth manifold
Leray, Johan. "Approche fonctorielle et combinatoire de la propérade des algèbres double Poisson." Thesis, Angers, 2017. http://www.theses.fr/2017ANGE0027/document.
Full textWe construct and study the generalization of shifted double Poisson algebras to all additive symmetric monoidal categories. We are especially interested in linear and quadratic double Poisson algebras. We then study the koszulity of the properads DLie and DPois = As ⮽c DLie which encode double Lie algebras and double Poisson algebras respectively. We associate to each, a S-module with a monoidal structure for a new monoïdal product call the connected composition product : we call such monoids protoperads. We show, for any S-module, the existence of the associated free protoperad and we make explicit the underlying combinatorics. We define a bar-cobar adjunction, the notion of Koszul duality and PBW bases for protoperads. We present an attempt of prove a PBW theorem à la Hoffbeck for protoperads, and prove the koszulity of the dioperad associated to the properad DLie
Sanchez-Flores, Selene. "La structure de Lie de la cohomologie de Hochschild d'algèbres monomiales." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2009. http://tel.archives-ouvertes.fr/tel-00464064.
Full textKabbaj, Samir. "Classification locale des espaces affinés symétriques." Nancy 1, 1986. http://www.theses.fr/1986NAN10068.
Full textMint, Elhacen A. Salma. "Sur les représentations algébriquement irréductibles des groupes de Lie exponentiels et nilpotents." Metz, 1999. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/1999/Mint_Elhacen.A.Salma.SMZ9916.pdf.
Full textTomasini, Guillaume. "Etude de certaines catégories de modules de poids et de leurs restrictions à des paires duales." Strasbourg, 2010. https://publication-theses.unistra.fr/public/theses_doctorat/2010/TOMASINI_Guillaume_2010.pdf.
Full textA major issue in Lie theory is to understand the category of modules over a given Lie algebra. Bernstein-Gelfand-Gelfand category O and then the category of weight modules studied from the 80's lead to an important breakthrough in this area. Cuspidal modules introduced to describe the category of weight modules are now at the heart of the theory. In this thesis, we introduce a family of categories extrapolating the category O and the category of cuspidal modules. In some cases, we describe completely the given categories. Then we use these categories to obtain a Howe type correspondence for some dual pairs
Gomez, Aparicio Maria Paula. "Propriété (T) et morphisme de Baum-Connes tordus par une représentation non unitaire." Phd thesis, Université Paris-Diderot - Paris VII, 2007. http://tel.archives-ouvertes.fr/tel-00274378.
Full textSoit G un groupe localement compact et (rho,V) une représentation de dimension finie non nécessairement unitaire de G.
Dans le Chapitre 1, nous avons défini un renforcement de la propriété (T) en considérant des produits tensoriels par rho de représentations unitaires de G. Nous avons alors défini deux algèbres de Banach de groupe tordues, Amax(rho) et A(rho), analogues aux C*-algèbres de groupe, C*(G) et C*r(G), et nous avons défini la propriété (T) tordue par rho en termes de Amax(rho). Nous avons ensuite montrer que la plupart des groupes de Lie semi-simples réels ayant la propriété (T) ont la propriété (T) tordue par n'importe quelle représentation irréductible de dimension finie.
Les Chapitres 2 et 3 sont consacrés au calcul de la K-théorie des algèbres tordues. Pour ceci, Nous avons défini deux applications d'assemblage tordues du membre de gauche du morphisme de Baum-Connes, noté Ktop(G), dans la K-théorie des algèbres tordues. Nous avons ensuite montrer, dans le Chapitre 3, que ce morphisme de Baum-Connes tordu est bijectif pour une large classe de groupes vérifiant la conjecture de Baum-Connes.
Dans le Chapitre 4, nous avons montré que le domaine de définition naturel d'un analogue en K-théorie du produit tensoriel par une représentation de dimension finie est la K-théorie des algèbres tordues et non pas la K-théorie des C*-algèbres de groupe.
Sanchez-Flores, Selene Camelia. "La structure de Lie de la cohomologie de Hochschild d'algèbres monomiales." Montpellier 2, 2009. http://www.theses.fr/2009MON20047.
Full textThis thesis is about the Lie structure on the Hochschild cohomology given by the Gerstenhaber bracket. More precisely, we study the Lie algebra structure on the first Hochschild cohomology group and the Lie module structure on the Hochschild cohomology groups of some monomial algebras. Such algebras are defined by the quotient of the path algebra of a quiver by a two-sided ideal generated by a set of paths of length at least two. We use the combinatorial data of such algebras to study the Lie structure on the Hochschild cohomology. Actually, we discuss two features of such algebraic structure. The first one is the relationship between semisimplicity on the first Hochschild cohomology group and the vanishing of the Hochschild cohomology groups. In the second one, we center our attention to the Lie module structure on the Hochschild cohomology groups of a particular family of monomial algebras: those whose Jacobson radical square is zero
Bou, Daher Rabih. "Crochet de Gerstenhaber pour les algèbres enveloppantes d'algèbres de Lie de dimension finie." Thesis, Université Clermont Auvergne (2017-2020), 2017. http://www.theses.fr/2017CLFAC039/document.
Full textIn this thesis, we explicitly describe the multiplicative structure and the graded Lie algebra structure of the cohomology of finite-dimensional Lie algebras. In a first step, we introduce a multiplicative structure for the cohomology of Lie algebra. Then, we explicitly show that there exists an isomorphism of commutative graded algebras between the Hochschild cohomology algebra of the enveloping algebra provided with the cup product and the cohomology algebra of the Lie algebra. In a second step, we introduce a graded Lie algebra structure for the cohomology of Lie algebra. Then, we show that there exists an isomorphism of graded Lie algebras between the Hochschild cohomology Lie algebra of the enveloping algebra provided with the Gerstenhaber bracket and the cohomology algebra of the Lie algebra. Finally, we describe completely the Gerstenhaber bracket on the Hochschild cohomology of the enveloping algebra of a Lie algebra for dimension _ 3
Strametz, Claudia. "Structure d'algèbre de Lie de la cohomologie de Hochschild en degré un et groupe d'automorphismes extérieurs." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2002. http://tel.archives-ouvertes.fr/tel-00002005.
Full textaussi d'examiner la composante de l'identité du groupe algébrique des automorphismes extérieurs de A en caractéristique zéro.
La première partie est consacrée à l'étude de l'algèbre de Lie H1(A,A) d'une algèbre monomiale A de dimension finie. Ceci se fait en termes de la combinatoire du carquois de A, sans restriction sur la caractéristique du corps k. Nous montrons que le quotient de Lie semi-simple de H1(A,A) par son radical est un produit d'algèbres de Lie pgl(n,k). Des critères combinatoires pour la résolubilité, la (semi-)simplicité, la commutativité et la nilpotence sont donnés.
Dans la deuxième partie, nous étudions l'algèbre de Lie H1(kG,kG) de quelques algèbres de groupe pour un corps k de caractéristique p>0. Grace à une Morita équivalence de Gabriel, nous traitons le cas des groupes finis admettant un seul p-sous-groupe de Sylow cyclique. L'algèbre de Lie H1(kG,kG) des groupes finis abéliens est étudiée en utilisant la cohomologie de groupes. Pour p différent de 2, l'algèbre de Lie H1(kG,kG) est semi-simple si et seulement si le p-sous-groupe de Sylow de G est élémentaire. Dans ce cas, H1(kG,kG) est un produit d'algèbres de Lie de Jacobson et Witt.
Enfin, nous examinons l'algèbre de Lie H1(TA,TA) de l'extension triviale TA d'une algèbre A, en particulier d'une algèbre dont le carré du radical est nul. Dans ce dernier cas, le quotient de Lie semi-simple de H1(TA,TA) par son radical est un produit d'algèbres de Lie pgl(n,k) et so(2m,k). L'algèbre de Lie H1(TA,TA) n'est jamais semi-simple. Ce travail se termine par des critères combinatoires sur la
résolubilité et sur la commutativité de l'algèbre de Lie H1(TA,TA).
Molitor, Catherine. "Actions exponentielles et idéaux premiers." Metz, 1996. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/1996/Braun.Catherine.SMZ9620.pdf.
Full textLet G be a nilpotent, connected, simply connected Lie group, whose Lie algebra g is an exponential d-module, if d denotes an exponential algebra of derivations of the Lie algebra g. Let D be the connected, simply connected Lie group with Lie algebra d. One has the following results : the maximal d-invariant ideals in the convolution alegbra of integrable functions on g (resp. In the Schwartz algebra of g) coincide with the kernels of the closed d-orbits of the dual of g (resp. With the restrictions of these kernels to the Schwartz algebra). The proper closed d-prime ideals in the convolution algebra of integrable functions (resp. The proper d-prime ideals in the Schwartz algebra which are closed in the topology induced by an arbitrary Schwartz norm) coincide with the kernels of not necessarily closed d-orbits (resp. With the restrictions of these kernels to the Schwartz algebra). One has the equivalent of the Wiener property for D-invariant ideals. For a closed d-orbit, the kernel of the orbit modulo the closed minimal ideal associated to it (in the convolution algebra of integrable functions) is a nilpotent algebra. For a closed d-orbit the restriction of the kernel to the Schwartz algebra is dense in the kernal itself. Moreover, the closure of every d-orbit contains a closed d-orbit. These results generalize well known properties of nilpotent Lie groups
Meyer, Philippe. "Représentations associées à des graduations d'algèbres de Lie et d'algèbres de Lie colorées." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAD001/document.
Full textLet k be a field of characteristic not 2 or 3. Colour Lie algebras generalise both Lie algebras and Lie superalgebras. In this thesis we study representations V of colour Lie algebras g arising from colour Lie algebras structures on the vector space g⨁V. Firstly, we study the general structure of simple three-dimensional Lie algebras over k. Then, we classify up to isomorphism finite-dimensional Lie superalgebras whose even part is a simple three-dimensional Lie algebra. Next, to an abelian group ᴦ and a commutation factor ɛ of ᴦ, we develop the multilinear algebra associated to ᴦ-graded vector spaces. In this context, colour Lie algebras play the rôle of Lie algebras. This language allows us to state and prove a theorem reconstructing an ɛ-quadratic colour Lie algebra g⨁V from an ɛ-orthogonal representation V of an ɛ-quadratic colour Lie algebra g. This theorem involves an invariant taking its values in the ɛ-exterior algebra of V and generalises results of Kostant and Chen-Kang. We then introduce the notion of a special ɛ-orthogonal representation V of an ɛ-quadratic colour Lie algebra g and show that it allows us to define an ɛ-quadratic colour Lie algebra structure on the vector space g⨁sl(2,k)⨁V⨂k². Finally we give examples of special ɛ-orthogonal representations and in particular examples of special orthogonal representations of Lie algebras amongst which are: a one-parameter family of representations of sl(2,k)xsl(2,k) ; the 7-dimensional fundamental representation of a Lie algebra of type G₂ ; the 8-dimensional spinor representation of a Lie algebra of type so(7)
GIÉ, Pierre-Alexandre. "Structures de Nambu et super-théorème d'Amitsur-Levitzki." Phd thesis, Université de Bourgogne, 2004. http://tel.archives-ouvertes.fr/tel-00008876.
Full textAl-Kaabi, Mahdi Jasim Hasan. "Bases de monômes dans les algèbres pré-Lie libres et applications." Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22599/document.
Full textIn this thesis, we study the concept of free pre-Lie algebra generated by a (non-empty) set. We review the construction by A. Agrachev and R. Gamkrelidze of monomial bases in free pre-Lie algebras. We describe the matrix of the monomial basis vectors in terms of the rooted trees basis exhibited by F. Chapoton and M. Livernet. Also, we show that this matrix is unipotent and we find an explicit expression for its coefficients, adapting a procedure implemented for the free magmatic algebra by K. Ebrahimi-Fard and D. Manchon. We construct a pre-Lie structure on the free Lie algebra $\mathcal{L}$(E) generated by a set E, giving an explicit presentation of $\mathcal{L}$(E) as the quotient of the free pre-Lie algebra $\mathcal{T}$^E, generated by the (non-planar) E-decorated rooted trees, by some ideal I. We study the Gröbner bases for free Lie algebras in tree version. We split the basis of E- decorated planar rooted trees into two parts O(J) and $\mathcal{T}$(J), where J is the ideal defining $\mathcal{L}$(E) as a quotient of the free magmatic algebra generated by E. Here $\mathcal{T}$(J) is the set of maximal terms of elements of J, and its complement O(J) then defines a basis of $\mathcal{L}$(E). We get one of the important results in this thesis (Theorem 3.12), on the description of the set O(J) in terms of trees. We describe monomial bases for the pre-Lie (respectively free Lie) algebra $\mathcal{L}$(E), using the procedure of Gröbner bases and the monomial basis for the free pre-Lie algebra obtained in Chapter 2. Finally, we study the so-called classical and pre-Lie Magnus expansions, discussing how we can find a recursion for the pre-Lie case which already incorporates the pre-Lie identity. We give a combinatorial vision of a numerical method proposed by S. Blanes, F. Casas, and J. Ros, on a writing of the classical Magnus expansion in $\mathcal{L}$(E), using the pre-Lie structure
Molinier, Jean-Christophe. "Linéarisation de structures de Poisson." Montpellier 2, 1993. http://www.theses.fr/1993MON20006.
Full textBen, Abdeljelil Khaoula. "L'Intégrabilité des réseaux de 2-Toda et de Full Kostant Toda pour toute algèbre de Lie simple." Phd thesis, Poitiers, 2010. http://theses.edel.univ-poitiers.fr/theses/index.php?id=5432.
Full textIn this thesis we construct two integrable systems associated with an arbitrary simple Lie algebras: the 2-Toda lattice and the periodic Full Kostant-Toda lattice for simple Lie algebras. Each of These lattices is given by a Hamiltonian vector field, associated to a Poisson bracket which results from an R-matrix of the underlying Lie algebra. We construct in both cases a big family of constants of motion which we use to prove the Liouville integrability of the two systems. We achieve the proof of their integrability by using several results on simple Lie algebras, R-matrices, invariant functions and root systems
Günther, Janne-Kathrin. "The C*-algebras of certain Lie groups." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0118/document.
Full textIn this doctoral thesis, the C*-algebras of the connected real two-step nilpotent Lie groups and the Lie group SL(2,R) are characterized. Furthermore, as a preparation for an analysis of its C*-algebra, the topology of the spectrum of the semidirect product U(n) x H_n is described, where H_n denotes the Heisenberg Lie group and U(n) the unitary group acting by automorphisms on H_n. For the determination of the group C*-algebras, the operator valued Fourier transform is used in order to map the respective C*-algebra into the algebra of all bounded operator fields over its spectrum. One has to find the conditions that are satisfied by the image of this C*-algebra under the Fourier transform and the aim is to characterize it through these conditions. In the present thesis, it is proved that both the C*-algebras of the connected real two-step nilpotent Lie groups and the C*-algebra of SL(2,R) fulfill the same conditions, namely the “norm controlled dual limit” conditions. Thereby, these C*-algebras are described in this work and the “norm controlled dual limit” conditions are explicitly computed in both cases. The methods used for the two-step nilpotent Lie groups and the group SL(2,R) are completely different from each other. For the two-step nilpotent Lie groups, one regards their coadjoint orbits and uses the Kirillov theory, while for the group SL(2,R) one can accomplish the calculations more directly
Ray, Jishnu. "Iwasawa algebras for p-adic Lie groups and Galois groups." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS189/document.
Full textA key tool in p-adic representation theory is the Iwasawa algebra, originally constructed by Iwasawa in 1960's to study the class groups of number fields. Since then, it appeared in varied settings such as Lazard's work on p-adic Lie groups and Fontaine's work on local Galois representations. For a prime p, the Iwasawa algebra of a p-adic Lie group G, is a non-commutative completed group algebra of G which is also the algebra of p-adic measures on G. It is a general principle that objects coming from semi-simple, simply connected (split) groups have explicit presentations like Serre's presentation of semi-simple algebras and Steinberg's presentation of Chevalley groups as noticed by Clozel. In Part I, we lay the foundation by giving an explicit description of certain Iwasawa algebras. We first find an explicit presentation (by generators and relations) of the Iwasawa algebra for the principal congruence subgroup of any semi-simple, simply connected Chevalley group over Z_p. Furthermore, we extend the method to give a set of generators and relations for the Iwasawa algebra of the pro-p Iwahori subgroup of GL(n,Z_p). The base change map between the Iwasawa algebras over an extension of Q_p motivates us to study the globally analytic p-adic representations following Emerton's work. We also provide results concerning the globally analytic induced principal series representation under the action of the pro-p Iwahori subgroup of GL(n,Z_p) and determine its condition of irreducibility. In Part II, we do numerical experiments using a computer algebra system SAGE which give heuristic support to Greenberg's p-rationality conjecture affirming the existence of "p-rational" number fields with Galois groups (Z/2Z)^t. The p-rational fields are algebraic number fields whose Galois cohomology is particularly simple and they offer ways of constructing Galois representations with big open images. We go beyond Greenberg's work and construct new Galois representations of the absolute Galois group of Q with big open images in reductive groups over Z_p (ex. GL(n, Z_p), SL(n, Z_p), SO(n, Z_p), Sp(2n, Z_p)). We are proving results which show the existence of p-adic Lie extensions of Q where the Galois group corresponds to a certain specific p-adic Lie algebra (ex. sl(n), so(n), sp(2n)). This relates our work with a more general and classical inverse Galois problem for p-adic Lie extensions
Cesaro, Andrea. "Pre-Lie algebras and operads in positive characteristic." Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10026/document.
Full textThe subject of this thesis is the theory of operads. An operad is used to encode collections of operations. An operad P is associated to a category of algebras, which is governed by a monad, denoted by S(P,-). We have variants of this monad, denoted by Λ(P,-) and Γ(P,-), which give new categories of algebras associated to P. We study the monads Λ(PreLie,-) and Γ(PreLie,-) associated to a particular operad PreLie, whose structure reflects the classical definition of Lie brackets by the symmetrization of operations in the field of differential geometry. We show that the category of Λ(PreLie,-) algebras is isomorphic to the category of p-restricted pre-Lie algebras. Then we give a presentation of the structure of an algebra over the monad Γ(PreLie,-). We explain how to define a suitable generalisation of the notion of an operad in the second part of the thesis. In a first step we explain the definition of a category of cohomological Mackey functors on a category of partitions HParn. We prove that this category of cohomological HParn-Mackey functors is equivalent to the Suslin-Friedlander category of strict polynomial functors of degree n. We rely on this result to define a category of M-modules corresponding to analytic functors. We prove that the category of M-modules forms a monoidal category equivalent to the category of analytic functors with the composition of functors as monoidal structure. We use this result to prove that the category of analytic monads is equivalent to a category of generalized operads in M-modules
Marque, François. "Sur les singularités des espaces de cohomogénéité un." Nancy 1, 1995. http://www.theses.fr/1995NAN10418.
Full textMortajine, Abdellatif. "Classification des espaces préhomogènes réguliers de type parabolique et de leurs invariants relatifs." Nancy 1, 1988. http://www.theses.fr/1988NAN10048.
Full textPirozerski, Alexei. "Crochets de Gelfand-Dickey Q-déformés et Q-réduction de Drinfeld-Sokolov universelle." Dijon, 2001. http://www.theses.fr/2001DIJOS002.
Full text