Academic literature on the topic 'Algebras- Commutative rings'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Algebras- Commutative rings.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Algebras- Commutative rings"
Finkel, Olivier, and Stevo Todorčević. "A hierarchy of tree-automatic structures." Journal of Symbolic Logic 77, no. 1 (March 2012): 350–68. http://dx.doi.org/10.2178/jsl/1327068708.
Full textFlaut, Cristina, and Dana Piciu. "Some Examples of BL-Algebras Using Commutative Rings." Mathematics 10, no. 24 (December 13, 2022): 4739. http://dx.doi.org/10.3390/math10244739.
Full textTuganbaev, A. A. "Quaternion algebras over commutative rings." Mathematical Notes 53, no. 2 (February 1993): 204–7. http://dx.doi.org/10.1007/bf01208328.
Full textTambour, Torbjörn. "S-algebras and commutative rings." Journal of Pure and Applied Algebra 82, no. 3 (October 1992): 289–313. http://dx.doi.org/10.1016/0022-4049(92)90173-d.
Full textZhou, Chaoyuan. "Acyclic Complexes and Graded Algebras." Mathematics 11, no. 14 (July 19, 2023): 3167. http://dx.doi.org/10.3390/math11143167.
Full textCHAKRABORTY, S., R. V. GURJAR, and M. MIYANISHI. "PURE SUBRINGS OF COMMUTATIVE RINGS." Nagoya Mathematical Journal 221, no. 1 (March 2016): 33–68. http://dx.doi.org/10.1017/nmj.2016.2.
Full textMacoosh, R., and R. Raphael. "Totally Integrally Closed Azumaya Algebras." Canadian Mathematical Bulletin 33, no. 4 (December 1, 1990): 398–403. http://dx.doi.org/10.4153/cmb-1990-065-5.
Full textCimprič, Jakob. "A Representation Theorem for Archimedean Quadratic Modules on ∗-Rings." Canadian Mathematical Bulletin 52, no. 1 (March 1, 2009): 39–52. http://dx.doi.org/10.4153/cmb-2009-005-4.
Full textBix, Robert. "Separable alternative algebras over commutative rings." Journal of Algebra 92, no. 1 (January 1985): 81–103. http://dx.doi.org/10.1016/0021-8693(85)90146-2.
Full textScedrov, Andre, and Philip Scowcroft. "Decompositions of finitely generated modules over C(X): sheaf semantics and a decision procedure." Mathematical Proceedings of the Cambridge Philosophical Society 103, no. 2 (March 1988): 257–68. http://dx.doi.org/10.1017/s0305004100064823.
Full textDissertations / Theses on the topic "Algebras- Commutative rings"
Malec, Sara. "Intersection Algebras and Pointed Rational Cones." Digital Archive @ GSU, 2013. http://digitalarchive.gsu.edu/math_diss/14.
Full textFerreira, Mauricio de Araujo 1982. "Algebras biquaternionicas : construção, classificação e condições de existencia via formas quadraticas e involuções." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306541.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-05T18:56:31Z (GMT). No. of bitstreams: 1 Ferreira_MauriciodeAraujo_M.pdf: 1033477 bytes, checksum: 8d697b5cdeb1a633c1270a5e2f919de7 (MD5) Previous issue date: 2006
Resumo: Neste trabalho, estudamos as álgebras biquaterniônicas, que são um tipo especial de álgebra central simples de dimensão 16, obtida como produto tensorial de duas álgebras de quatérnios. A teoria de formas quadráticas é aplicada para estudarmos critérios de decisão sobre quando uma álgebra biquaterniônica é de divisão e quando duas destas álgebras são isomorfas. Além disso, utilizamos o u-invariante do corpo para discutirmos a existência de álgebras biquaterniônicas de divisão sobre o corpo. Provamos também um resultado atribuído a A. A. Albert, que estabelece critérios para decidir quando uma álgebra central simples de dimensão 16 é de fato uma álgebra biquaterniônica, através do estudo de involuções. Ao longo do trabalho, construímos vários exemplos concretos de álgebras biquaterniônicas satisfazendo propriedades importantes
Mestrado
Algebra
Mestre em Matemática
Bell, Kathleen. "Cayley Graphs of PSL(2) over Finite Commutative Rings." TopSCHOLAR®, 2018. https://digitalcommons.wku.edu/theses/2102.
Full textSekaran, Rajakrishnar. "Fuzzy ideals in commutative rings." Thesis, Rhodes University, 1995. http://hdl.handle.net/10962/d1005221.
Full textHasse, Erik Gregory. "Lowest terms in commutative rings." Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6433.
Full textGranger, Ginger Thibodeaux. "Properties of R-Modules." Thesis, University of North Texas, 1989. https://digital.library.unt.edu/ark:/67531/metadc500710/.
Full textJohnston, Ann. "Markov Bases for Noncommutative Harmonic Analysis of Partially Ranked Data." Scholarship @ Claremont, 2011. http://scholarship.claremont.edu/hmc_theses/4.
Full textOyinsan, Sola. "Primary decomposition of ideals in a ring." CSUSB ScholarWorks, 2007. https://scholarworks.lib.csusb.edu/etd-project/3289.
Full textSalt, Brittney M. "MONOID RINGS AND STRONGLY TWO-GENERATED IDEALS." CSUSB ScholarWorks, 2014. https://scholarworks.lib.csusb.edu/etd/31.
Full textGreen, Ellen Yvonne. "Characterizing the strong two-generators of certain Noetherian domains." CSUSB ScholarWorks, 1997. https://scholarworks.lib.csusb.edu/etd-project/1539.
Full textBooks on the topic "Algebras- Commutative rings"
Gelʹfand, I. M. Commutative normed rings. Providence, RI: AMS Chelsea Publishing, 2003.
Find full textGelʹfand, I. M. Commutative normed rings. Providence, RI: AMS Chelsea Publishing, 2003.
Find full textGelʹfand, I. M. Commutative normed rings. Providence, RI: American Mathematical Society, 1999.
Find full text1943-, Bunce John W., and Van Vleck Fred S, eds. Linear systems over commutative rings. New York: Dekker, 1986.
Find full textBosch, Siegfried. Algebraic Geometry and Commutative Algebra. London: Springer London, 2013.
Find full textservice), SpringerLink (Online, ed. Commutative Algebra: Expository Papers Dedicated to David Eisenbud on the Occasion of His 65th Birthday. New York, NY: Springer New York, 2013.
Find full text1973-, Positselski Leonid, ed. Quadratic algebras. Providence, R.I: American Mathematical Society, 2005.
Find full textKunz, Ernst. Introduction to Commutative Algebra and Algebraic Geometry. New York, NY: Springer New York, 2013.
Find full textservice), SpringerLink (Online, ed. Algèbre: Chapitre 8. 2nd ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textservice), SpringerLink (Online, ed. Categories and Commutative Algebra. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Find full textBook chapters on the topic "Algebras- Commutative rings"
Kadison, Lars. "Hopf algebras over commutative rings." In University Lecture Series, 53–62. Providence, Rhode Island: American Mathematical Society, 1999. http://dx.doi.org/10.1090/ulect/014/06.
Full textPeruginelli, Giulio, and Nicholas J. Werner. "Integral Closure of Rings of Integer-Valued Polynomials on Algebras." In Commutative Algebra, 293–305. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0925-4_17.
Full textHahn, Alexander J., and O. Timothy O’Meara. "Clifford Algebras and Orthogonal Groups over Commutative Rings." In Grundlehren der mathematischen Wissenschaften, 381–440. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-662-13152-7_9.
Full textNg, Siu-Hung. "Non-Commutative, Non-Cocommutative Semisimple Hopf Algebras Arise from Finite Abelian Groups." In Groups, Rings, Lie and Hopf Algebras, 167–77. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4613-0235-3_11.
Full textSalimi, Maryam, Elham Tavasoli, and Siamak Yassemi. "A Survey on Algebraic and Homological Properties of Amalgamated Algebras of Commutative Rings." In Algebraic, Number Theoretic, and Topological Aspects of Ring Theory, 383–404. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28847-0_20.
Full textKanwar, Pramod, Meenu Khatkar, and R. K. Sharma. "Basic One-Sided Ideals of Leavitt Path Algebras over Commutative Rings." In Springer Proceedings in Mathematics & Statistics, 155–65. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3898-6_12.
Full textGómez-Torrecillas, José. "Basic Module Theory over Non-commutative Rings with Computational Aspects of Operator Algebras." In Algebraic and Algorithmic Aspects of Differential and Integral Operators, 23–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54479-8_2.
Full textCohn, P. M. "Commutative Rings." In Basic Algebra, 347–96. London: Springer London, 2003. http://dx.doi.org/10.1007/978-0-85729-428-9_10.
Full textKempf, George R. "Commutative rings." In Algebraic Structures, 141–43. Wiesbaden: Vieweg+Teubner Verlag, 1995. http://dx.doi.org/10.1007/978-3-322-80278-1_18.
Full textOlberding, Bruce. "Finitely Stable Rings." In Commutative Algebra, 269–91. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0925-4_16.
Full textConference papers on the topic "Algebras- Commutative rings"
KLINGLER, LEE, and LAWRENCE S. LEVY. "REPRESENTATION TYPE OF COMMUTATIVE NOETHERIAN RINGS (INTRODUCTION)." In Proceedings of the International Conference on Algebras, Modules and Rings. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774552_0010.
Full textKlisowski, Michal, and Vasyl Ustimenko. "On the implementation of public keys algorithms based on algebraic graphs over finite commutative rings." In 2010 International Multiconference on Computer Science and Information Technology (IMCSIT 2010). IEEE, 2010. http://dx.doi.org/10.1109/imcsit.2010.5679687.
Full text