To see the other types of publications on this topic, follow the link: Algebraic; Topological.

Dissertations / Theses on the topic 'Algebraic; Topological'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Algebraic; Topological.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Deshpande, D. V. "Topological methods in algebraic geometry : cohomology rings, algebraic cobordism and higher Chow groups." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.598515.

Full text
Abstract:
This thesis is divided into three chapters. The first chapter is about the cohomology ring of the space of rotational functions. In the second chapter, we define algebraic cobordism of classifying spaces, Ω*(BG) and G-equivariant algebraic cobordism Ω*G(-) for a linear algebraic group G. We prove some properties of the coniveau filtration on algebraic cobordism, denoted Fj(Ω*(-)); which are required for the definition to work. We show that G-equivariant cobordism satisfies the localization exact sequence. We compute Ω*(BG) for algebraic groups over the complex numbers corresponding to classical Lie groups GL(n), SL(n), Sp(n), O(n) and SO(2n + 1). We also compute Ω*(BG) when G is a finite abelian group. A finite non-abelian group for which we compute Ω*(BG) is the quaternion group of order 8. In all the above cases we check that Ω*(BG) is isomorphic to MU*(BG). The third chapter is work-in-progress on Steenrod operations on higher Chow groups. Voevodsky has defined motivic Steenrod operations on motivic cohomology and used them in his proof of the Minor Conjecture.
APA, Harvard, Vancouver, ISO, and other styles
2

Brecht, Matthew de. "Topological and Algebraic Aspects of Algorithmic Learning Theory." 京都大学 (Kyoto University), 2010. http://hdl.handle.net/2433/120375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wüthrich, Samuel. "I-adic towers in algebraic and topological derived categories /." [S.l.] : [s.n.], 2004. http://www.zb.unibe.ch/download/eldiss/04wuethrich_s.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dowerk, Philip. "Algebraic and Topological Properties of Unitary Groups of II_1 Factors." Doctoral thesis, Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-165242.

Full text
Abstract:
The thesis is concerned with group theoretical properties of unitary groups, mainly of II_1 factors. The author gives a new and elementary proof of an result on extreme amenability, defines the bounded normal generation property and invariant automatic continuity property and proves these for various unitary groups of functional analytic types.
APA, Harvard, Vancouver, ISO, and other styles
5

Larsen, Nicholas Guy. "A New Family of Topological Invariants." BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/6757.

Full text
Abstract:
We define an extension of the nth homotopy group which can distinguish a larger class of spaces. (E.g., a converging sequence of disjoint circles and the disjoint union of countably many circles, which have isomorphic fundamental groups, regardless of choice of basepoint.) We do this by introducing a generalization of homotopies, called component-homotopies, and defining the nth extended homotopy group to be the set of component-homotopy classes of maps from compact subsets of (0,1)n into a space, with a concatenation operation. We also introduce a method of tree-adjoinment for "connecting" disconnected metric spaces and show how this method can be used to calculate the extended homotopy groups of an arbitrary metric space.
APA, Harvard, Vancouver, ISO, and other styles
6

Mateus, de Oliveira L. M. "Partial Jordan *-triples." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Erninger, Klas. "Algebraic Simplifications of Metric Information." Thesis, KTH, Matematik (Avd.), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-277744.

Full text
Abstract:
This thesis is about how to interpret metric data with topological tools, such as homology. We show how to go from a metric space to a topological space via Vietoris-Rips complexes. We use the usual approach to Topological Data Analysis (TDA), and transform our metric space into tame parametrised vector spaces. It is then shown how to simplify tame parametrised vector spaces. We also present another approach to TDA, where we transform our metric space into a filtrated tame parametrised chain complex. We then show how to simplify chain complexes over fields in order to simplify tame parametrised filtrated chain complexes.
Denna uppsats handlar om att tolka metrisk data med hjälp utav topologiska verktyg, som exempelvis homologi. Vi visar hur man går från ett metriskt rum till ett topologiskt rum via Vieteris-Rips komplex. Vi använder den vanliga metoden till Topologisk Data Analys (TDA), och transformerar vårat metriska rum till tama parametriserade vektorrum. Det visas sedan hur vi kan förenkla tama parametriserade vektorrum. Vi presenterar även en annan metod för TDA, där vi går från ett metriskt rum till ett filtrerat tamt parametriserat kedjekomplex. Sedan visar vi hur man förenklar kedjekomplex över kroppar för att kunna förenkla filtrerade tama parametriserade kedjekomplex.
APA, Harvard, Vancouver, ISO, and other styles
8

Chatzigiannis, Georgios [Verfasser], and Christoph [Akademischer Betreuer] Wockel. "Topological and Algebraic Properties of Topological Group Cohomology and LHS-type Spectral Sequences / Georgios Chatzigiannis. Betreuer: Christoph Wockel." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2016. http://d-nb.info/1093411392/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chatzigiannis, Georgios Verfasser], and Christoph [Akademischer Betreuer] [Wockel. "Topological and Algebraic Properties of Topological Group Cohomology and LHS-type Spectral Sequences / Georgios Chatzigiannis. Betreuer: Christoph Wockel." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2016. http://nbn-resolving.de/urn:nbn:de:gbv:18-77677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kettner, Michael. "Algorithmic and topological aspects of semi-algebraic sets defined by quadratic polynomials." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19704.

Full text
Abstract:
Thesis (Ph.D)--Mathematics, Georgia Institute of Technology, 2008.
Committee Chair: Basu, Saugata; Committee Member: Etnyre, John; Committee Member: Ghomi, Mohammad; Committee Member: Gonzalez-Vega, Laureano; Committee Member: Powers, Victoria.
APA, Harvard, Vancouver, ISO, and other styles
11

Klein, Tom. "Filtered ends of pairs of groups." Diss., Online access via UMI:, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
12

Schwer, Brad. "Characterizing topological spaces using topological or algebraic invariants a thesis presented to the faculty of the Graduate School, Tennessee Technological University /." Click to access online, 2008. http://proquest.umi.com/pqdweb?index=35&did=1679674331&SrchMode=1&sid=1&Fmt=6&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1254145518&clientId=28564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Opalecky, Robert Vincent. "A Topological Uniqueness Result for the Special Linear Groups." Thesis, University of North Texas, 1997. https://digital.library.unt.edu/ark:/67531/metadc278561/.

Full text
Abstract:
The goal of this paper is to establish the dependency of the topology of a simple Lie group, specifically any of the special linear groups, on its underlying group structure. The intimate relationship between a Lie group's topology and its algebraic structure dictates some necessary topological properties, such as second countability. However, the extent to which a Lie group's topology is an "algebraic phenomenon" is, to date, still not known.
APA, Harvard, Vancouver, ISO, and other styles
14

Runge, Piotr. "A Comparison Theorem for the Topological and Algebraic Classification of Quaternionic Toric 8-Manifolds." DigitalCommons@USU, 2009. https://digitalcommons.usu.edu/etd/501.

Full text
Abstract:
In order to discuss topological properties of quaternionic toric 8-manifolds, we introduce the notion of an algebraic morphism in the category of toric spaces. We show that the classification of quaternionic toric 8-manifolds with respect to an algebraic isomorphism is finer than the oriented topological classification. We construct infinite families of quaternionic toric 8-manifolds in the same oriented homeomorphism type but algebraically distinct. To prove that the elements within each family are of the same oriented homeomorphism type, and that we have representatives of all such types of a quaternionic toric 8-manifold, we present and use a method of evaluating the first Pontrjagin class for an arbitrary quaternionic toric 8-manifold.
APA, Harvard, Vancouver, ISO, and other styles
15

Thiang, Guo Chuan. "Topological phases of matter, symmetries, and K-theory." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:53b10289-8b59-46c2-a0e9-5a5fb77aa2a2.

Full text
Abstract:
This thesis contains a study of topological phases of matter, with a strong emphasis on symmetry as a unifying theme. We take the point of view that the "topology" in many examples of what is loosely termed "topological matter", has its origin in the symmetry data of the system in question. From the fundamental work of Wigner, we know that topology resides not only in the group of symmetries, but also in the cohomological data of projective unitary-antiunitary representations. Furthermore, recent ideas from condensed matter physics highlight the fundamental role of charge-conjugation symmetry. With these as physical motivation, we propose to study the topological features of gapped phases of free fermions through a Z2-graded C*-algebra encoding the symmetry data of their dynamics. In particular, each combination of time reversal and charge conjugation symmetries can be associated with a Clifford algebra. K-theory is intimately related to topology, representation theory, Clifford algebras, and Z2-gradings, so it presents itself as a powerful tool for studying gapped topological phases. Our basic strategy is to use various K
APA, Harvard, Vancouver, ISO, and other styles
16

Contessoto, Marco Antônio de Freitas. "Uma adaptação da teoria de homologia para problemas de reconhecimento topológico de padrões." Universidade Estadual Paulista (UNESP), 2018. http://hdl.handle.net/11449/154303.

Full text
Abstract:
Submitted by Marco Antonio de Freitas Contessoto (marco_contessoto@hotmail.com) on 2018-06-19T06:27:03Z No. of bitstreams: 1 Marcoeditado.pdf: 1251669 bytes, checksum: 5fe5c25a4002aeefa7831bd4137fb1f8 (MD5)
Approved for entry into archive by Elza Mitiko Sato null (elzasato@ibilce.unesp.br) on 2018-06-19T14:26:54Z (GMT) No. of bitstreams: 1 contessoto_maf_me_sjrp.pdf: 1242012 bytes, checksum: e5b5acc9695b0f3103a68a1f1f32edac (MD5)
Made available in DSpace on 2018-06-19T14:26:54Z (GMT). No. of bitstreams: 1 contessoto_maf_me_sjrp.pdf: 1242012 bytes, checksum: e5b5acc9695b0f3103a68a1f1f32edac (MD5) Previous issue date: 2018-03-09
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
O objetivo dessa dissertação é apresentar parte do artigo [2] de Gunnar Carlsson, onde se discute a adaptação de métodos da teoria usual de homologia para problemas de reconhecimento topológico de padrões em conjuntos de dados. Esta adaptação conduz aos conceitos de homologia de persistência e de barcodes. Atualmente, várias aplicações são obtidas com o uso deste método. Apresentaremos alguns casos onde a homologia de persistência é usada, ilustrando diferentes modos em que podem ser aplicados. Descreveremos, também baseado no artigo de Carlsson, um novo método para estudar a persistência de características topológicas através de uma família de conjuntos de dados, chamado persistência zig-zag . Este método generaliza a teoria de homologia de persistência e chama atenção de situações que não são cobertas pela outra teoria. Além disso, são apresentadas algumas aplicações dessa ferramenta para a obtenção de informações de alguns conjuntos de dados
The main goal of this work is to present a part of the Gunnar Carlsson paper [2], where the adaptation of the theory of usual homology to topological pattern recognition problems in point cloud data sets is discussed. This adaptation leads to the concepts of persistence homology and barcodes. Several applications have been obtained using this method. We will present some cases where persistence homology is used, illustrating different ways in which the method can be applied. We will describe,alsobasedintheCarlsson’spaper,anewmethodtostudythepersistence oftopologicalfeaturesthroughpointclouddatasets,calledzig-zagpersistence. This method generalizes the homology persistent theory and we will pay attention to situations that are not covered by the other theory. In addition, some applications of this tool are presented to obtain information from some data sets.
2016/25659-3
APA, Harvard, Vancouver, ISO, and other styles
17

Almeida, Ricardo Costa de. "Topological order in three-dimensional systems and 2-gauge symmetry." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-05122017-094209/.

Full text
Abstract:
Topological order is a new paradigm for quantum phases of matter developed to explain phase transitions which do not fit the symmetry breaking scheme for classifying phases of matter. They are characterized by patterns of entanglement that lead to topologically depended ground state degeneracy and anyonic excitations. One common approach for studying such phases in two-dimensional systems is through exactly solvable lattice Hamiltonian models such as quantum double models and String-Net models. The former can be understood as the Hamiltonian formulation of lattice gauge theories and, as such, it is defined by a finite gauge group. However, not much is known about topological phases in tridimensional systems. Motivated by this we develop a new class of three-dimensional exactly solvable models which go beyond quantum double models by using finite crossed modules instead of gauge groups. This approach relies on a lattice implementation of 2-gauge theory to obtain models with a richer topological structure. We construct the Hamiltonian model explicitly and provide a rigorous proof that the ground state degeneracy is a topological invariant and that the ground states can only be characterized with nonlocal order parameters.
Ordem topológica é um novo paradigma para fases quânticas da matéria desenvolvido para explicar transições de fase que não se encaixam no esquema de classificação de fases da matéria por quebra de simetria. Estas fases são caracterizadas por padrões de emaranhamento que levam a uma degenerescência de estado fundamental topológica e a excitações anyonicas. Uma abordagem comum para o estudo de tais fases em sistemas bidimensionais é através de modelos Hamiltonianos exatamente solúveis de rede como os modelos duplos quânticos e modelos de String-Nets. O primeiro pode ser entendido como a formulação Hamiltoniana de teorias de gauge na rede e, desta maneira, é definido por um group de gauge finito. Entretanto, pouco é conhecido a respeito de fases topológicas em sistemas tridimensionais. Motivado por isso nós desenvolvemos uma nova classe de modelos tridimensionais exatamente solúveis que vai alem de modelos duplos quânticos pelo uso de módulos cruzados finitos no lugar de grupos de gauge. Esta abordagem se baseia numa implementação em redes de teoria de 2-gauge para obter modelos com uma estrutura topológica mais rica. Nós construímos o modelos Hamiltoniano explicitamente e fornecemos uma demonstração rigorosa de que a degenerescência de estado fundamental é um invariante topológico e que os estados fundamentais só podem ser caracterizados por parâmetros de ordem não locais.
APA, Harvard, Vancouver, ISO, and other styles
18

Buchet, Mickaël. "Topological inference from measures." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112367/document.

Full text
Abstract:
La quantité de données disponibles n'a jamais été aussi grande. Se poser les bonnes questions, c'est-à-dire des questions qui soient à la fois pertinentes et dont la réponse est accessible est difficile. L'analyse topologique de données tente de contourner le problème en ne posant pas une question trop précise mais en recherchant une structure sous-jacente aux données. Une telle structure est intéressante en soi mais elle peut également guider le questionnement de l'analyste et le diriger vers des questions pertinentes. Un des outils les plus utilisés dans ce domaine est l'homologie persistante. Analysant les données à toutes les échelles simultanément, la persistance permet d'éviter le choix d'une échelle particulière. De plus, ses propriétés de stabilité fournissent une manière naturelle pour passer de données discrètes à des objets continus. Cependant, l'homologie persistante se heurte à deux obstacles. Sa construction se heurte généralement à une trop large taille des structures de données pour le travail en grandes dimensions et sa robustesse ne s'étend pas au bruit aberrant, c'est-à-dire à la présence de points non corrélés avec la structure sous-jacente.Dans cette thèse, je pars de ces deux constatations et m'applique tout d'abord à rendre le calcul de l'homologie persistante robuste au bruit aberrant par l'utilisation de la distance à la mesure. Utilisant une approximation du calcul de l'homologie persistante pour la distance à la mesure, je fournis un algorithme complet permettant d'utiliser l'homologie persistante pour l'analyse topologique de données de petite dimension intrinsèque mais pouvant être plongées dans des espaces de grande dimension. Précédemment, l'homologie persistante a également été utilisée pour analyser des champs scalaires. Ici encore, le problème du bruit aberrant limitait son utilisation et je propose une méthode dérivée de l'utilisation de la distance à la mesure afin d'obtenir une robustesse au bruit aberrant. Cela passe par l'introduction de nouvelles conditions de bruit et l'utilisation d'un nouvel opérateur de régression. Ces deux objets font l'objet d'une étude spécifique. Le travail réalisé au cours de cette thèse permet maintenant d'utiliser l'homologie persistante dans des cas d'applications réelles en grandes dimensions, que ce soit pour l'inférence topologique ou l'analyse de champs scalaires
Massive amounts of data are now available for study. Asking questions that are both relevant and possible to answer is a difficult task. One can look for something different than the answer to a precise question. Topological data analysis looks for structure in point cloud data, which can be informative by itself but can also provide directions for further questioning. A common challenge faced in this area is the choice of the right scale at which to process the data.One widely used tool in this domain is persistent homology. By processing the data at all scales, it does not rely on a particular choice of scale. Moreover, its stability properties provide a natural way to go from discrete data to an underlying continuous structure. Finally, it can be combined with other tools, like the distance to a measure, which allows to handle noise that are unbounded. The main caveat of this approach is its high complexity.In this thesis, we will introduce topological data analysis and persistent homology, then show how to use approximation to reduce the computational complexity. We provide an approximation scheme to the distance to a measure and a sparsifying method of weighted Vietoris-Rips complexes in order to approximate persistence diagrams with practical complexity. We detail the specific properties of these constructions.Persistent homology was previously shown to be of use for scalar field analysis. We provide a way to combine it with the distance to a measure in order to handle a wider class of noise, especially data with unbounded errors. Finally, we discuss interesting opportunities opened by these results to study data where parts are missing or erroneous
APA, Harvard, Vancouver, ISO, and other styles
19

Jost, Christine. "Topics in Computational Algebraic Geometry and Deformation Quantization." Doctoral thesis, Stockholms universitet, Matematiska institutionen, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-87399.

Full text
Abstract:
This thesis consists of two parts, a first part on computations in algebraic geometry, and a second part on deformation quantization. More specifically, it is a collection of four papers. In the papers I, II and III, we present algorithms and an implementation for the computation of degrees of characteristic classes in algebraic geometry. Paper IV is a contribution to the field of deformation quantization and actions of the Grothendieck-Teichmüller group. In Paper I, we present an algorithm for the computation of degrees of Segre classes of closed subschemes of complex projective space. The algorithm is based on the residual intersection theorem and can be implemented both symbolically and numerically. In Paper II, we describe an algorithm for the computation of the degrees of Chern-Schwartz-MacPherson classes and the topological Euler characteristic of closed subschemes of complex projective space, provided an algorithm for the computation of degrees of Segre classes. We also explain in detail how the algorithm in Paper I can be implemented numerically. Together this yields a symbolical and a numerical version of the algorithm. Paper III describes the Macaulay2 package CharacteristicClasses. It implements the algorithms from papers I and II, as well as an algorithm for the computation of degrees of Chern classes. In Paper IV, we show that L-infinity-automorphisms of the Schouten algebra T_poly(R^d) of polyvector fields on affine space R^d which satisfy certain conditions can be globalized. This means that from a given L-infinity-automorphism of T_poly(R^d) an L-infinity-automorphism of T_poly(M) can be constructed, for a general smooth manifold M. It follows that Willwacher's action of the Grothendieck-Teichmüller group on T_poly(R^d) can be globalized, i.e., the Grothendieck-Teichmüller group acts on the Schouten algebra T_poly(M) of polyvector fields on a general manifold M.

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Manuscript. Paper 4: Accepted.

APA, Harvard, Vancouver, ISO, and other styles
20

Dowerk, Philip [Verfasser], Andreas [Akademischer Betreuer] Thom, Andreas [Gutachter] Thom, and Alain [Gutachter] Valette. "Algebraic and Topological Properties of Unitary Groups of II_1 Factors / Philip Dowerk ; Gutachter: Andreas Thom, Alain Valette ; Betreuer: Andreas Thom." Leipzig : Universitätsbibliothek Leipzig, 2015. http://d-nb.info/1239565216/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Moreira, Charles dos Anjos. "Linguagem de categorias e o Teorema de van Kampen /." Rio Claro, 2017. http://hdl.handle.net/11449/152195.

Full text
Abstract:
Orientador: Elíris Cristina Rizziolli
Banca: Aldício José Miranda
Banca: João Peres Vieira
Resumo: Esse trabalho trata de elementos da Topologia Algébrica, a qual tem como fundamental aplicação abordar questões acerca de Espaços Topológicos sob o ponto de vista algébrico. Uma das questões é tentar responder se dois espaços topológicos X e Y são homeomorfos. Neste sentido, o grupo fundamental é uma ferramenta algébrica útil por se tratar de um invariante topológico. Além disso, apresentamos o Teorema de van Kampen do ponto de vista da Linguagem de Categorias e Funtores
Abstract: This work treats of elements of the Algebraic Topology, which has as fundamental application to approach subjects concerning Topological Spaces under the algebraic point of view. One of the subjects is to try to answer if two topological spaces X and Y are homeomorphics. In this sense, the fundamental group is an useful algebraic tool for treating of an topological invariant. In addition, we presented the van Kampen's Theorem of the point of view of the language of Categories and Functors
Mestre
APA, Harvard, Vancouver, ISO, and other styles
22

Srivastava, Gaurav. "Efficient topology control algorithms for ad hoc networks." Access electronically, 2006. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20080506.144718/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Juer, Rosalinda. "1 + 1 dimensional cobordism categories and invertible TQFT for Klein surfaces." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:b9a8fc3b-4abd-49a1-b47c-c33f919a95ef.

Full text
Abstract:
We discuss a method of classifying 2-dimensional invertible topological quantum field theories (TQFTs) whose domain surface categories allow non-orientable cobordisms. These are known as Klein TQFTs. To this end we study the 1+1 dimensional open-closed unoriented cobordism category K, whose objects are compact 1-manifolds and whose morphisms are compact (not necessarily orientable) cobordisms up to homeomorphism. We are able to compute the fundamental group of its classifying space BK and, by way of this result, derive an infinite loop splitting of BK, a classification of functors K → Z, and a classification of 2-dimensional open-closed invertible Klein TQFTs. Analogous results are obtained for the two subcategories of K whose objects are closed or have boundary respectively, including classifications of both closed and open invertible Klein TQFTs. The results obtained throughout the paper are generalisations of previous results by Tillmann [Til96] and Douglas [Dou00] regarding the 1+1 dimensional closed and open-closed oriented cobordism categories. Finally we consider how our results should be interpreted in terms of the known classification of 2-dimensional TQFTs in terms of Frobenius algebras.
APA, Harvard, Vancouver, ISO, and other styles
24

Wasserman, Thomas A. "A reduced tensor product of braided fusion categories over a symmetric fusion category." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:58c6aae3-cb0e-4381-821f-f7291ff95657.

Full text
Abstract:
The main goal of this thesis is to construct a tensor product on the 2-category BFC-A of braided fusion categories containing a symmetric fusion category A. We achieve this by introducing the new notion of Z(A)-crossed braided categories. These are categories enriched over the Drinfeld centre Z(A) of the symmetric fusion category. We show that Z(A) admits an additional symmetric tensor structure, which makes it into a 2-fold monoidal category. ByTannaka duality, A= Rep(G) (or Rep(G; w)) for a finite group G (or finite super-group (G,w)). Under this identication Z(A) = VectG[G], the category of G-equivariant vector bundles over G, and we show that the symmetric tensor product corresponds to (a super version of) to the brewise tensor product. We use the additional symmetric tensor product on Z(A) to define the composition in Z(A)-crossed braided categories, whereas the usual tensor product is used for the monoidal structure. We further require this monoidal structure to be braided for the switch map that uses the braiding in Z(A). We show that the 2-category Z(A)-XBF is equivalent to both BFC=A and the 2-category of (super)-G-crossed braided categories. Using the former equivalence, the reduced tensor product on BFC-A is dened in terms of the enriched Cartesian product of Z(A)-enriched categories on Z(A)-XBF. The reduced tensor product obtained in this way has as unit Z(A). It induces a pairing between minimal modular extensions of categories having A as their Mueger centre.
APA, Harvard, Vancouver, ISO, and other styles
25

Moreira, Charles dos Anjos [UNESP]. "Linguagem de categorias e o Teorema de van Kampen." Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/152195.

Full text
Abstract:
Submitted by Charles dos Anjos Moreira null (charles.anjos@hotmail.com) on 2017-11-30T00:05:25Z No. of bitstreams: 1 Versão Final - Charles dos Anjos Moreira.pdf: 1350502 bytes, checksum: bbaf5a250d792183c0b0e14bfc5f34dd (MD5)
Approved for entry into archive by Adriana Aparecida Puerta null (dripuerta@rc.unesp.br) on 2017-11-30T12:32:37Z (GMT) No. of bitstreams: 1 moreira_ca_me_rcla.pdf: 1350502 bytes, checksum: bbaf5a250d792183c0b0e14bfc5f34dd (MD5)
Made available in DSpace on 2017-11-30T12:32:37Z (GMT). No. of bitstreams: 1 moreira_ca_me_rcla.pdf: 1350502 bytes, checksum: bbaf5a250d792183c0b0e14bfc5f34dd (MD5) Previous issue date: 2017-11-01
Esse trabalho trata de elementos da Topologia Algébrica, a qual tem como fundamental aplicação abordar questões acerca de Espaços Topológicos sob o ponto de vista algébrico. Uma das questões é tentar responder se dois espaços topológicos X e Y são homeomorfos. Neste sentido, o grupo fundamental é uma ferramenta algébrica útil por se tratar de um invariante topológico. Além disso, apresentamos o Teorema de van Kampen do ponto de vista da Linguagem de Categorias e Funtores.
This work treats of elements of the Algebraic Topology, which has as fundamental application to approach subjects concerning Topological Spaces under the algebraic point of view. One of the subjects is to try to answer if two topological spaces X and Y are homeomorphics. In this sense, the fundamental group is an useful algebraic tool for treating of an topological invariant. In addition, we presented the van Kampen's Theorem of the point of view of the language of Categories and Functors.
APA, Harvard, Vancouver, ISO, and other styles
26

Byttner, Wolf. "Classifying RGB Images with multi-colour Persistent Homology." Thesis, Linköpings universitet, Matematiska institutionen, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-157641.

Full text
Abstract:
In Image Classification, pictures of the same type of object can have very different pixel values. Traditional norm-based metrics therefore fail to identify objectsin the same category. Topology is a branch of mathematics that deals with homeomorphic spaces, by discarding length. With topology, we can discover patterns in the image that are invariant to rotation, translation and warping. Persistent Homology is a new approach in Applied Topology that studies the presence of continuous regions and holes in an image. It has been used successfully for image segmentation and classification [12]. However, current approaches in image classification require a grayscale image to generate the persistence modules. This means information encoded in colour channels is lost. This thesis investigates whether the information in the red, green and blue colour channels of an RGB image hold additional information that could help algorithms classify pictures. We apply two recent methods, one by Adams [2] and the other by Hofer [25], on the CUB-200-2011 birds dataset [40] andfind that Hofer’s method produces significant results. Additionally, a modified method based on Hofer that uses the RGB colour channels produces significantly better results than the baseline, with over 48 % of images correctly classified, compared to 44 % and with a more significant improvement at lower resolutions.This indicates that colour channels do provide significant new information and generating one persistence module per colour channel is a viable approach to RGB image classification.
APA, Harvard, Vancouver, ISO, and other styles
27

Chu, Casey. "The Geometry of Data: Distance on Data Manifolds." Scholarship @ Claremont, 2016. https://scholarship.claremont.edu/hmc_theses/74.

Full text
Abstract:
The increasing importance of data in the modern world has created a need for new mathematical techniques to analyze this data. We explore and develop the use of geometry—specifically differential geometry—as a means for such analysis, in two parts. First, we provide a general framework to discover patterns contained in time series data using a geometric framework of assigning distance, clustering, and then forecasting. Second, we attempt to define a Riemannian metric on the space containing the data in order to introduce a notion of distance intrinsic to the data, providing a novel way to probe the data for insight.
APA, Harvard, Vancouver, ISO, and other styles
28

Morita, Ana Maria Mathias [UNESP]. "Algumas generalizações do teorema clássico de Borsuk-Ulam." Universidade Estadual Paulista (UNESP), 2014. http://hdl.handle.net/11449/122188.

Full text
Abstract:
Made available in DSpace on 2015-04-09T12:28:27Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-02-20Bitstream added on 2015-04-09T12:47:32Z : No. of bitstreams: 1 000811736.pdf: 442400 bytes, checksum: 037b5d630eff63eb854ef35fecab8412 (MD5)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
O teorema clássico de Borsuk-Ulam afirma que se f : Sn ! Rn e uma aplicação contínua, então existe um ponto x na esfera tal que f(x) = f(x). Desde a publicação, diversas generalizações desse resultado têm sido abordadas. Algumas generalizações consistem em substituir o domínio (Sn;A), onde A e a involução antipodal, por outros pares (X; T) de involuções livres, ou o contradomínio Rn por espaços topológicos mais gerais Y . Nesse caso, dizemos que ((X; T); Y ) satisfaz a propriedade de Borsuk-Ulam se dada uma aplicação contínua f : X ! Y , existe um ponto x em X tal que f(x) = f(T(x)). Neste trabalho, detalhamos a demonstração de um resultado de classificação apresentado por Gonçalves em [6], que fornece condições necessárias e suficientes para que uma superfície fechada satisfaça a propriedade de Borsuk-Ulam. Mostramos também uma prova detalhada de um resultado apresentado por Desideri, Pergher e Vendrúsculo em [3], que estabele um critério algébrico para que um espaço topológico qualquer satisfaça a propriedade de Borsuk-Ulam
The classic Borsuk-Ulam theorem states that if f : Sn ! Rn is a continuous map, then there exists a point x in the sphere such that f(x) = f(x). Since the publication, many generalizations of that result have been studied. Some generalizations consist in replacing either the domain (Sn;A), where A is the antipodal involution, by other free involution pair (X; T), or the target space Rn by more general topological spaces Y . In that case, we say that ((X; T); Y ) satisfies the Borsuk-Ulam property if given any continuous map f : X ! Y , there exists a point x in X such that f(x) = f(T(x)). In this work, we detail the proof of a classification result presented by Gonçalves in [6], that provides necessary and suficient conditions for a closed surface satisfy the Borsuk-Ulam property. We also show a detailed proof of a result presented by, Desideri, Pergher and Vendrúsculo in [3], that establishes an algebraic criterion for any topological space satisfy the Borsuk-Ulam property
APA, Harvard, Vancouver, ISO, and other styles
29

Morita, Ana Maria Mathias. "Algumas generalizações do teorema clássico de Borsuk-Ulam /." São José do Rio Preto, 2014. http://hdl.handle.net/11449/122188.

Full text
Abstract:
Orientador: Maria Gorete Carreira Andrade
Banca: Ermínia de Lourdes Campello Fanti
Banca: Denise de Mattos
Resumo: O teorema clássico de Borsuk-Ulam afirma que se f : Sn ����! Rn e uma aplicação contínua, então existe um ponto x na esfera tal que f(x) = f(����x). Desde a publicação, diversas generalizações desse resultado têm sido abordadas. Algumas generalizações consistem em substituir o domínio (Sn;A), onde A e a involução antipodal, por outros pares (X; T) de involuções livres, ou o contradomínio Rn por espaços topológicos mais gerais Y . Nesse caso, dizemos que ((X; T); Y ) satisfaz a propriedade de Borsuk-Ulam se dada uma aplicação contínua f : X ����! Y , existe um ponto x em X tal que f(x) = f(T(x)). Neste trabalho, detalhamos a demonstração de um resultado de classificação apresentado por Gonçalves em [6], que fornece condições necessárias e suficientes para que uma superfície fechada satisfaça a propriedade de Borsuk-Ulam. Mostramos também uma prova detalhada de um resultado apresentado por Desideri, Pergher e Vendrúsculo em [3], que estabele um critério algébrico para que um espaço topológico qualquer satisfaça a propriedade de Borsuk-Ulam
Abstract: The classic Borsuk-Ulam theorem states that if f : Sn ����! Rn is a continuous map, then there exists a point x in the sphere such that f(x) = f(����x). Since the publication, many generalizations of that result have been studied. Some generalizations consist in replacing either the domain (Sn;A), where A is the antipodal involution, by other free involution pair (X; T), or the target space Rn by more general topological spaces Y . In that case, we say that ((X; T); Y ) satisfies the Borsuk-Ulam property if given any continuous map f : X ����! Y , there exists a point x in X such that f(x) = f(T(x)). In this work, we detail the proof of a classification result presented by Gonçalves in [6], that provides necessary and suficient conditions for a closed surface satisfy the Borsuk-Ulam property. We also show a detailed proof of a result presented by, Desideri, Pergher and Vendrúsculo in [3], that establishes an algebraic criterion for any topological space satisfy the Borsuk-Ulam property
Mestre
APA, Harvard, Vancouver, ISO, and other styles
30

Araújo, Judith de Paula. "Introdução à teoria de homotopia /." Rio Claro : [s.n.], 2011. http://hdl.handle.net/11449/94374.

Full text
Abstract:
Orientador: João Peres Vieira
Banca: Daniel Vendrúscolo
Banca: Thiago de Melo
Resumo: O principal objetivo deste trabalho é demonstrar teoremas relevantes como o Teorema Fundamental da Álgebra e o Teorema do Ponto Fixo de Brouwer no plano, além dos problemas de extensão e levantamento e o Teorema de Mayer-Vietoris. Para isto, primeiramente associamos a cada espaço topológico X uma estrutura de grupo ou de conjunto G(X), e a cada função contínua f : X → Y um homomor smo de estruturas f∗ : G(X) → G(Y ) ou f∗ : G(Y ) → G(X) satisfazendo determinadas propriedades
Abstract: The main objective is to prove relevant theorems as the Fundamental Theorem of Algebra and Brouwer's Fixed Point Theorem in the plane, besides the problems of extension and lifting theorem and the Mayer-Vietoris Theorem. For this, rst we associate to each topological space X a group structure or set G(X), and every continuous function f : X → Y a homomorphism f∗ : G(X) → G(Y ) or f∗ : G(Y ) → G(X) satisfying certain properties
Mestre
APA, Harvard, Vancouver, ISO, and other styles
31

Silva, Anderson Alves da. "Construção de uma teoria quântica dos campos topológica a partir do invariante de Kuperberg." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-26102015-133218/.

Full text
Abstract:
Resumo Neste trabalho apresentamos, em detalhes, a construção de uma teoria quântica dos campos topológica (TQCT). Podemos definir uma TQCT como um funtor simétrico monoidal da categoria dos cobordismos para a categoria dos espaços vetoriais. Em duas dimensões podemos encontrar uma descrição completa da categoria dos cobordismos e classificar todas as TQCT\'s. Em três dimensões é possível estender alguns invariantes para 3-variedades e construir uma TQCT 3D. Nossa construção é baseada no invariante para 3-variedades de Kuperberg, o qual envolve diagramas de Heegaard e álgebras de Hopf. Começamos com a apresentação do invariante de Kuperberg definido para toda variedade 3D compacta, orientável e sem bordo. Para cada álgebra de Hopf de dimensão finita constrói-se um invariante. Por fim, apresentamos a TQCT associada com o invariante de Kuperberg. Isto é feito usando-se o fato de que o invariante de Kuperberg é definido como uma soma de pesos locais tal qual uma função de partição. A TQCT decorre dos operadores advindos de variedades com bordo.
Abstract In this work we present in detail a construction of a topological quantum field theory (TQFT). We can define a TQFT as a symmetric monoidal functor from cobordism categories to category of vector spaces. In two dimension, we can give a complete description of cobordism categories and classify all TQFT\'s. In three dimension it is possible to extend some specific 3-manifold invariants and to construct a TQFT 3D. Our construction is based on the Kuperberg 3-manifold invariant which involves Heegaard diagrams and Hopf algebras. We start with the presentation of the Kuperberg invariant defined for every orientable compact 3-manifold without boundary. For each finite-dimensional Hopf algebra we can construct a invariant. Finally we presente the TQFT associated with the Kuperberg invariant. This is made using the fact that the Kuperberg invariant is defined like a sum of local weights in the same way as a partition function. The TQFT is constructed from the operators given by manifolds with boundary.
APA, Harvard, Vancouver, ISO, and other styles
32

Weinstein, Madeleine. "Adinkras and Arithmetical Graphs." Scholarship @ Claremont, 2016. http://scholarship.claremont.edu/hmc_theses/85.

Full text
Abstract:
Adinkras and arithmetical graphs have divergent origins. In the spirit of Feynman diagrams, adinkras encode representations of supersymmetry algebras as graphs with additional structures. Arithmetical graphs, on the other hand, arise in algebraic geometry, and give an arithmetical structure to a graph. In this thesis, we will interpret adinkras as arithmetical graphs and see what can be learned. Our work consists of three main strands. First, we investigate arithmetical structures on the underlying graph of an adinkra in the specific case where the underlying graph is a hypercube. We classify all such arithmetical structures and compute some of the corresponding volumes and linear ranks. Second, we consider the case of a reduced arithmetical graph structure on the hypercube and explore the wealth of relationships that exist between its linear rank and several notions of genus that appear in the literature on graph theory and adinkras. Third, we study modifications of the definition of an arithmetical graph that incorporate some of the properties of an adinkra, such as the vertex height assignment or the edge dashing. To this end, we introduce the directed arithmetical graph and the dashed arithmetical graph. We then explore properties of these modifications in an attempt to see if our definitions make sense, answering questions such as whether the volume is still an integer and whether there are still only finitely many arithmetical structures on a given graph.
APA, Harvard, Vancouver, ISO, and other styles
33

Araújo, Judith de Paula [UNESP]. "Introdução à teoria de homotopia." Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/94374.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:27:10Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-06-17Bitstream added on 2014-06-13T20:47:44Z : No. of bitstreams: 1 araujo_jp_me_rcla.pdf: 571397 bytes, checksum: aa8e71371a3c485d93ebe5d75dc6a465 (MD5)
O principal objetivo deste trabalho é demonstrar teoremas relevantes como o Teorema Fundamental da Álgebra e o Teorema do Ponto Fixo de Brouwer no plano, além dos problemas de extensão e levantamento e o Teorema de Mayer-Vietoris. Para isto, primeiramente associamos a cada espaço topológico X uma estrutura de grupo ou de conjunto G(X), e a cada função contínua f : X → Y um homomor smo de estruturas f∗ : G(X) → G(Y ) ou f∗ : G(Y ) → G(X) satisfazendo determinadas propriedades
The main objective is to prove relevant theorems as the Fundamental Theorem of Algebra and Brouwer's Fixed Point Theorem in the plane, besides the problems of extension and lifting theorem and the Mayer-Vietoris Theorem. For this, rst we associate to each topological space X a group structure or set G(X), and every continuous function f : X → Y a homomorphism f∗ : G(X) → G(Y ) or f∗ : G(Y ) → G(X) satisfying certain properties
APA, Harvard, Vancouver, ISO, and other styles
34

Dutra, Aline Cristina Bertoncelo [UNESP]. "Grupo topológico." Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/94331.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:27:09Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-11-10Bitstream added on 2014-06-13T18:30:56Z : No. of bitstreams: 1 dutra_acb_me_rcla.pdf: 707752 bytes, checksum: 003487414f094d392a97a22a4efb885b (MD5)
Neste trabalho tratamos do objeto matemático Grupo Topológico. Para este desenvolvimento, abordamos elementos básicos de Grupo e Espaço Topológico
In this work we consider the mathematical object Topological Group. For this development, we discuss the basic elements of the Group and Topological Space
APA, Harvard, Vancouver, ISO, and other styles
35

Rodríguez, Ordóñez Hugo. "Topological study of nonsingular bilinear maps /." view abstract or download file of text, 2006. http://proquest.umi.com/pqdweb?did=1251841791&sid=5&Fmt=2&clientId=11238&RQT=309&VName=PQD.

Full text
Abstract:
Thesis (Ph. D.)--University of Oregon, 2006.
Typescript. Includes vita and abstract. Includes bibliographical references (leaves - ). Also available for download via the World Wide Web; free to University of Oregon users.
APA, Harvard, Vancouver, ISO, and other styles
36

Valente, Gustavo Felisberto. "Cohomologia associada a ladrilhamentos de substituição." [S. l.], 2013. https://repositorio.ufsc.br/handle/123456789/107157.

Full text
Abstract:
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências Físicas e Matemáticas, Programa de Pós-Graduação em Matemática Pura e Aplicada, Florianópolis, 2013
Made available in DSpace on 2013-12-05T23:22:46Z (GMT). No. of bitstreams: 1 317580.pdf: 1015354 bytes, checksum: 52b9f27b4cc4ebcc38570dea415cea4c (MD5)
Neste trabalho serão descritas propriedades de ladrilhamentos nas mais diversas áreas da matemática como topologia, sistemas dinâmicos e topologia algébrica. Veremos um método para construir ladrilhamentos que não admitem simetrias de translação, isto é, não são periódicos. Tais ladrilhamentos são chamados de ladrihamentos de substituição e iremos construir um complexo celular associado e determinar sua cohomologia. O estudo será aplicado a alguns exemplos.

Abstract : In this essay we show properties of tilings in many areas of mathematics like topology, dynamic systems and algebraic topology. We describe a method to build a tiling that doesn't admit a symmetry of translation, i.e., it is not periodic. Such tilings are called substitution tilings and we will construct an associated cell complex in order to determine its cohomology. The study will be applied to some examples.
APA, Harvard, Vancouver, ISO, and other styles
37

Ouzomgi, S. "Factorization in topological algebras." Thesis, University of Leeds, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.353810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Cobra, Thiago Taglialatela Lima. "Carlos Benjamin de Lyra e a topologia algébrica no Brasil /." Rio Claro, 2014. http://hdl.handle.net/11449/110487.

Full text
Abstract:
Orientador: Sergio Roberto Nobre
Banca: Alice Kimie Miwa Libardi
Banca: Edson de Oliveira
Banca: Mariana Feiteiro Cavalari Silva
Banca: Rosa Lucia Sverzut Baroni
Resumo: Este trabalho buscou contemplar três objetivos principais: investigar o início da pesquisa em Topologia Algébrica no Brasil, a trajetória do professor e pesquisador Carlos Benjamin de Lyra (1927 - 1974) e seu legado acadêmico. Inicialmente, apresentamos o surgimento da Topologia em termos mundiais. Em seguida, falamos sobre o início da pesquisa em Topologia Algébrica no Brasil, para tanto, trazemos um breve histórico do curso de Matemática na criação da Faculdade de Filosofia, Ciências e Letras da Universidade de São Paulo (USP). Neste contexto, destacamos o papel desempenhado por Lyra nessa Universidade e sua contribuição para o início da pesquisa em Topologia Algébrica no Brasil, além da influência científica que exerceu sobre estudantes de sua época. Apresentamos uma biografia de nosso pesquisado, na qual constam detalhes sobre sua criação, suas mudanças e viagens ao exterior e o que o levou a escolher a Matemática e, posteriormente, a Topologia Algébrica como campos de atuação. Por fim, fazemos uma análise comentada de sua obra "Introdução à Topologia Algébrica", que serviu de texto para um curso ministrado por ele no "Primeiro Colóquio Brasileiro de Matemática", em 1957
Abstract: This work concerns three main areas: the investigation of the early research on Algebraic Topology in Brazil, the life of the educator and researcher Carlos Benjamin de Lyra (1927 - 1974), and his academic legacy. Initially, we present the beginning of Topology in the world. Next, we present the beginning of research on algebraic topology in Brazil. To this end, we show a brief history of Mathematics course in the creation of the Faculdade de Filosofia, Ciências e Letras of the Universidade de São Paulo (USP). In this context, we point out the relevant work of Lyra in this University and his contribution to the beginning of research in algebraic topology in Brazil, besides the scientific influence exerted over students of his day. We present a biography of Lyra including details about his life, which is changed by trips abroad and what led him to choose Mathematics and subsequently the Algebraic Topology as a field of work. Finally, we make a commented analysis of his work "Introdução à Topologia Algébrica", which served as a text book for a course taught by him in the "Primeiro Colóquio Brasileiro de Matemática", in 1957
Doutor
APA, Harvard, Vancouver, ISO, and other styles
39

Dutra, Aline Cristina Bertoncelo. "Grupo topológico /." Rio Claro : [s.n.], 2011. http://hdl.handle.net/11449/94331.

Full text
Abstract:
Orientador: Elíris Cristina Rizziolli
Banca: Edivaldo Lopes da Silva
Banca: João Peres Vieira
Resumo: Neste trabalho tratamos do objeto matemático Grupo Topológico. Para este desenvolvimento, abordamos elementos básicos de Grupo e Espaço Topológico
Abstract: In this work we consider the mathematical object Topological Group. For this development, we discuss the basic elements of the Group and Topological Space
Mestre
APA, Harvard, Vancouver, ISO, and other styles
40

Rees, Michael K. "Topological uniqueness results for the special linear and other classical Lie Algebras." Thesis, University of North Texas, 2001. https://digital.library.unt.edu/ark:/67531/metadc3000/.

Full text
Abstract:
Suppose L is a complete separable metric topological group (ring, field, etc.). L is topologically unique if the Polish topology on L is uniquely determined by its underlying algebraic structure. More specifically, L is topologically unique if an algebraic isomorphism of L with any other complete separable metric topological group (ring, field, etc.) induces a topological isomorphism. A local field is a locally compact topological field with non-discrete topology. The only local fields (up to isomorphism) are the real, complex, and p-adic numbers, finite extensions of the p-adic numbers, and fields of formal power series over finite fields. We establish the topological uniqueness of the special linear Lie algebras over local fields other than the complex numbers (for which this result is not true) in the context of complete separable metric Lie rings. Along the way the topological uniqueness of all local fields other than the field of complex numbers is established, which is derived as a corollary to more general principles which can be applied to a larger class of topological fields. Lastly, also in the context of complete separable metric Lie rings, the topological uniqueness of the special linear Lie algebra over the real division algebra of quaternions, the special orthogonal Lie algebras, and the special unitary Lie algebras is proved.
APA, Harvard, Vancouver, ISO, and other styles
41

Caritá, Lucas Antonio. "O índice dos pontos fixos /." Rio Claro, 2014. http://hdl.handle.net/11449/94352.

Full text
Abstract:
Orientador: João Peres Vieira
Banca: Alice Kimie Miwa Libardi
Banca: Ermínia de Lourdes Campello Fanti
Resumo: Este trabalho é espelhado no livro "Teoria do Índice" [1] de Daciberg Lima Gonçalves e José Carlos de Souza Kiihl, publicado em 1983 no 14o Colóquio Brasileiro de Matemática pelo IMPA. Para a leitura deste trabalho é necessário uma familiaridade prévia com Topologia Algébrica, na qual indicamos [2] e [3] para consulta. Inicialmente apresentaremos alguns pré-requisitos algébricos e topológicos necessários para o desenvolvimento do trabalho e a seguir estudaremos: pontos fixos de aplicações contínuas de X em X, em que X é um espaço topológico; Grau de Brouwer de aplicações contínuas de Sn em Sn (ou respectivamente (Bn+1; Sn) em (Bn+1; Sn)); Grau Local de uma aplicação contínua f de V em Sn em torno de um ponto Q 2 Sn, em que V Sn é um aberto e f����1(Q) é um compacto e Índices dos Pontos Fixos de uma aplicação contínua de V em Sn, em que V Rn é um aberto
Abstract: This work is based on the book titled "Teoria do Índice" [1] by Daciberg Lima Gonçalves and José Carlos de Souza Kiihl , published in 1983 in the 14o Brazilian Math Colloquium held by IMPA . In order to perform the reading of this work, a basic acquaintance from the algebraic topology is needed, on which we can indicate the following [2] and [3] references. Firstly, for the development of the work, some previous necessary algebraic and topological requirements are shown and the next topics will be studied: fixed points of continuous maps from X to X, where X is a topological space, Brouwer's degree of continuous maps from Sn to Sn ( or respectively (Bn+1; Sn) to (Bn+1; Sn)), Local Degree of continuous maps from V to Sn around a point Q 2 Sn, where V Sn is an open set and f����1(Q) is a compact set and Fixed Points Index of continuous maps from V to Sn, where V Rn is an open set
Mestre
APA, Harvard, Vancouver, ISO, and other styles
42

Mendoza-Smith, Rodrigo. "Numerical algorithms for the mathematics of information." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:451a418b-eca0-454f-8b54-7b6476056969.

Full text
Abstract:
This thesis presents a series of algorithmic innovations in Combinatorial Compressed Sensing and Persistent Homology. The unifying strategy across these contributions is in translating structural patterns in the underlying data into specific algorithmic designs in order to achieve: better guarantees in computational complexity, the ability to operate on more complex data, highly efficient parallelisations, or any combination of these.
APA, Harvard, Vancouver, ISO, and other styles
43

Evans, Julia. "The algebra of topological quantum computing." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=107687.

Full text
Abstract:
Topological quantum computing is an approach to the problem of implementingquantum gates accurately and robustly. The idea is to exploit topological propertiesof certain quasiparticles called anyons to obtain a proposed implementation of quan-tum computing which is inherently fault-tolerant. The mathematical structure thatdescribes anyons is that of modular tensor categories. These modular tensor cate-gories can be constructed from the representations of certain algebraic objects calledquantum groups. In this thesis we give an explanation of modular tensor categoriesand quantum groups as they relate to topological quantum computing. It is intendedthat it can be read with some basic knowledge of algebra and category theory. Thehope is to give a concrete account accessible to computer scientists of the theory ofmodular tensor categories obtained from quantum groups. The emphasis is on thecategory theoretic and algebraic point of view rather than on the physical point ofview.
Le calcul quantique topologique est une approche au problème d'implementationde circuits quantique d'une façon robuste et precisé. L'idée s'agit d'exploiter certaines propriétés de quasiparticules, dites "anyons", pour obtenir une implémentation du calcul quantique qui est intrinsequement tolerante aux pannes. La structure mathématique qui décrit ces anyons est celle des catégories modulaires. Ces objets peuvent être construites à partir de représentations de certaines algèbres, appelées groupes quantiques. Dans ce mémoire, nous donnerons une exposition des catégories modulaires, des groupes quantiques et du lien qu'ils partagent avec le calcul quantique. Le mémoire ne devrait requérir qu'une connaissance de base en algèbre et en théorie des categories. L'espoir étant de donner un model concret pour les informaticiens de la théorie de catégories obtenus à partir de groupes quantiques. L'emphase sera sur le point de vu algèbrique et catégorique plutôt que celui physique.
APA, Harvard, Vancouver, ISO, and other styles
44

Charalambides, Stelios. "The topological algebra of implicit operations." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0023/MQ51311.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Pinto, Guilherme Vituri Fernandes. "Sobre os grupos de Gottlieb /." São José do Rio Preto, 2016. http://hdl.handle.net/11449/137924.

Full text
Abstract:
Orientador: Thiago de Melo
Banca: Alice Kimie Miwa Libardi
Banca: Oziride Manzoli Neto
Resumo: O objetivo deste trabalho é estudar grande parte do artigo [6], no qual Gottlieb define o subgrupo G(X, x0) de 'pi'1(X, x0) (em que X é um CW-complexo conexo por caminhos), posteriormente chamado de "grupo de Gottlieb"; o calculamos para diversos espaços, como as esferas, o toro, os espaços projetivos, a garrafa de Klein, etc; posteriormente, estudamos o artigo [22] de Varadarajan, que generalizou o grupo de Gottlieb para um subconjunto G(A, X) de [A, X]*. Por fim, calculamos G(S[n], S[n])
Abstract: The goal of this work is to study partialy the article [6], in which Gottlieb has defined a subgroup G(X, x0) of 'pi'1(X, x0) (where X is a path-connected CW-complex based at x0), called "Gottlieb group" in the literature. This group is computed in this work for some spaces, namely the spheres, the torus, the projective spaces, and the Klein bottle. Further, a paper by Varadarajan[22] who has generalized Gottlieb group to a subset G(A, X)of [A, X]* is studied. Finally, the groups G(S[n], S[n]) is computed
Mestre
APA, Harvard, Vancouver, ISO, and other styles
46

Rosellen, Markus. "OPE- Algebras." Bonn : Mathematisches Institut der Universität, 2002. http://catalog.hathitrust.org/api/volumes/oclc/52337099.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Schneider, Friedrich Martin. "A Relational Localisation Theory for Topological Algebras." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-93424.

Full text
Abstract:
In this thesis, we develop a relational localisation theory for topological algebras, i.e., a theory that studies local approximations of a topological algebra’s relational counterpart. In order to provide an appropriate framework for our considerations, we first introduce a general Galois theory between continuous functions and closed relations on an arbitrary topological space. Subsequently to this rather foundational discussion, we establish the desired localisation theory comprising the identification of suitable subsets, the description of local structures, and the retrieval of global information from local data. Among other results, we show that the restriction process with respect to a sufficiently large collection of local approximations of a Hausdorff topological algebra extends to a categorical equivalence between the topological quasivariety generated by the examined structure and the one generated by its localisation. Furthermore, we present methods for exploring topological algebras possessing certain operational compactness properties. Finally, we explain the developed concepts and obtained results in the particular context of three important classes of topological algebras by analysing the local structure of essentially unary topological algebras, topological lattices, and topological modules of compact Hausdorff topological rings.
APA, Harvard, Vancouver, ISO, and other styles
48

Vera, Daniel Joseph. "Topological Hochschild homology of twisted group algebras." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/34615.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2006.
Includes bibliographical references (p. 61-62).
Let G be a group and A be a ring. There is a stable equivalence of orthogonal spectra ... between the topological Hochschild homology of the group algebra A[G] and the smash product of the topological Hochschild homology of A and the cyclic bar construction of G. This thesis generalizes this result to a twisted group algebra AT[G]. As an A-module, Ar[G] = A[G], but the multiplication is given by ag. a'g' = ag(a') gg', where G acts on A from the left through ring automorphisms. The main result is given in terms of a variant THH9(A) of the topological Hochschild spectrum that is equipped with a twisted cyclic structure inherited from the cyclic structure of the cyclic pointed space THH(A)[-]. We first define a parametrized orthogonal spectrum E(A, G) over the cyclic bar construction NCY(G). We prove there is a stable equivalence of spectra between the associated Thom spectrum of E(A, G) and THH(AT[G]). We then prove there is a stable equivalence of orthogonal spectra ... where the wedge-sum on the left hand side ranges over the conjugacy classes of elements of G and the equivalence depends on a choice of representative g E (g) of every conjugacy class of elements in G.
by Daniel Joseph Vera.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
49

Cobra, Thiago Taglialatela Lima [UNESP]. "Carlos Benjamin de Lyra e a topologia algébrica no Brasil." Universidade Estadual Paulista (UNESP), 2014. http://hdl.handle.net/11449/110487.

Full text
Abstract:
Made available in DSpace on 2014-11-10T11:09:47Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-05-26Bitstream added on 2014-11-10T11:58:04Z : No. of bitstreams: 1 000789815.pdf: 4206098 bytes, checksum: ab4b148aff874cb0df2ac514092858e8 (MD5)
Este trabalho buscou contemplar três objetivos principais: investigar o início da pesquisa em Topologia Algébrica no Brasil, a trajetória do professor e pesquisador Carlos Benjamin de Lyra (1927 - 1974) e seu legado acadêmico. Inicialmente, apresentamos o surgimento da Topologia em termos mundiais. Em seguida, falamos sobre o início da pesquisa em Topologia Algébrica no Brasil, para tanto, trazemos um breve histórico do curso de Matemática na criação da Faculdade de Filosofia, Ciências e Letras da Universidade de São Paulo (USP). Neste contexto, destacamos o papel desempenhado por Lyra nessa Universidade e sua contribuição para o início da pesquisa em Topologia Algébrica no Brasil, além da influência científica que exerceu sobre estudantes de sua época. Apresentamos uma biografia de nosso pesquisado, na qual constam detalhes sobre sua criação, suas mudanças e viagens ao exterior e o que o levou a escolher a Matemática e, posteriormente, a Topologia Algébrica como campos de atuação. Por fim, fazemos uma análise comentada de sua obra “Introdução à Topologia Algébrica”, que serviu de texto para um curso ministrado por ele no “Primeiro Colóquio Brasileiro de Matemática”, em 1957
This work concerns three main areas: the investigation of the early research on Algebraic Topology in Brazil, the life of the educator and researcher Carlos Benjamin de Lyra (1927 - 1974), and his academic legacy. Initially, we present the beginning of Topology in the world. Next, we present the beginning of research on algebraic topology in Brazil. To this end, we show a brief history of Mathematics course in the creation of the Faculdade de Filosofia, Ciências e Letras of the Universidade de São Paulo (USP). In this context, we point out the relevant work of Lyra in this University and his contribution to the beginning of research in algebraic topology in Brazil, besides the scientific influence exerted over students of his day. We present a biography of Lyra including details about his life, which is changed by trips abroad and what led him to choose Mathematics and subsequently the Algebraic Topology as a field of work. Finally, we make a commented analysis of his work “Introdução à Topologia Algébrica”, which served as a text book for a course taught by him in the “Primeiro Colóquio Brasileiro de Matemática”, in 1957
APA, Harvard, Vancouver, ISO, and other styles
50

Caritá, Lucas Antonio [UNESP]. "O índice dos pontos fixos." Universidade Estadual Paulista (UNESP), 2014. http://hdl.handle.net/11449/94352.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:27:09Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-02-18Bitstream added on 2014-06-13T20:16:07Z : No. of bitstreams: 1 000753998.pdf: 885291 bytes, checksum: e06a634b31c2012fc0b6d5e72ec13aa3 (MD5)
Este trabalho é espelhado no livro “Teoria do Índice” [1] de Daciberg Lima Gonçalves e José Carlos de Souza Kiihl, publicado em 1983 no 14o Colóquio Brasileiro de Matemática pelo IMPA. Para a leitura deste trabalho é necessário uma familiaridade prévia com Topologia Algébrica, na qual indicamos [2] e [3] para consulta. Inicialmente apresentaremos alguns pré-requisitos algébricos e topológicos necessários para o desenvolvimento do trabalho e a seguir estudaremos: pontos fixos de aplicações contínuas de X em X, em que X é um espaço topológico; Grau de Brouwer de aplicações contínuas de Sn em Sn (ou respectivamente (Bn+1; Sn) em (Bn+1; Sn)); Grau Local de uma aplicação contínua f de V em Sn em torno de um ponto Q 2 Sn, em que V Sn é um aberto e f1(Q) é um compacto e Índices dos Pontos Fixos de uma aplicação contínua de V em Sn, em que V Rn é um aberto
This work is based on the book titled “Teoria do Índice” [1] by Daciberg Lima Gonçalves and José Carlos de Souza Kiihl , published in 1983 in the 14o Brazilian Math Colloquium held by IMPA . In order to perform the reading of this work, a basic acquaintance from the algebraic topology is needed, on which we can indicate the following [2] and [3] references. Firstly, for the development of the work, some previous necessary algebraic and topological requirements are shown and the next topics will be studied: fixed points of continuous maps from X to X, where X is a topological space, Brouwer’s degree of continuous maps from Sn to Sn ( or respectively (Bn+1; Sn) to (Bn+1; Sn)), Local Degree of continuous maps from V to Sn around a point Q 2 Sn, where V Sn is an open set and f1(Q) is a compact set and Fixed Points Index of continuous maps from V to Sn, where V Rn is an open set
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!