Academic literature on the topic 'Algebraic; Topological'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Algebraic; Topological.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Algebraic; Topological"

1

Swamy, U. M., and R. Seshagiri Rao. "Algebraic Topological Closure Operators." Southeast Asian Bulletin of Mathematics 26, no. 4 (June 2003): 669–78. http://dx.doi.org/10.1007/s100120200071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kuijpers, Bart, Jan Paredaens, and Jan Van den Bussche. "Topological elementary equivalence of closed semi-algebraic sets in the real plane." Journal of Symbolic Logic 65, no. 4 (December 2000): 1530–55. http://dx.doi.org/10.2307/2695063.

Full text
Abstract:
AbstractWe investigate topological properties of subsets S of the real plane, expressed by first-order logic sentences in the language of the reals augmented with a binary relation symbol for S. Two sets are called topologically elementary equivalent if they have the same such first-order topological properties. The contribution of this paper is a natural and effective characterization of topological elementary equivalence of closed semi-algebraic sets.
APA, Harvard, Vancouver, ISO, and other styles
3

Kalai, Gil, Isabella Novik, Francisco Santos, and Volkmar Welker. "Geometric, Algebraic, and Topological Combinatorics." Oberwolfach Reports 16, no. 3 (September 9, 2020): 2395–472. http://dx.doi.org/10.4171/owr/2019/39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hernández-Arzusa, Julio, and Salvador Hernández. "Reflections in topological algebraic structures." Topology and its Applications 281 (August 2020): 107204. http://dx.doi.org/10.1016/j.topol.2020.107204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chan, Onn, Ivan Gutman, Tao-Kai Lam, and Russell Merris. "Algebraic Connections between Topological Indices." Journal of Chemical Information and Computer Sciences 38, no. 1 (January 19, 1998): 62–65. http://dx.doi.org/10.1021/ci970059y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Meinke, Karl. "Topological methods for algebraic specification." Theoretical Computer Science 166, no. 1-2 (October 1996): 263–90. http://dx.doi.org/10.1016/0304-3975(95)00261-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

HINDMAN, NEIL. "The Topological-Algebraic System(?N, +, ?)." Annals of the New York Academy of Sciences 704, no. 1 Papers on Gen (December 1993): 155–63. http://dx.doi.org/10.1111/j.1749-6632.1993.tb52519.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

BẮnicẮ, Constantin, and Mihai Putinar. "On complex vector bundles on rational threefolds." Mathematical Proceedings of the Cambridge Philosophical Society 97, no. 2 (March 1985): 279–88. http://dx.doi.org/10.1017/s0305004100062824.

Full text
Abstract:
It is known [14] that every topological complex vector bundle on a smooth rational surface admits an algebraic structure. In [10] one constructs algebraic vector bundles of rank 2 on with arbitrary Chern classes c1, c2 subject to the necessary topological condition c1 c2 = 0 (mod 2). However, in dimensions greater than 2 the Chern classes don't determine the topological type of a vector bundle. In [2] one classifies the topological complex vector bundles of rank 2 on and one proves that any such bundle admits an algebraic structure.
APA, Harvard, Vancouver, ISO, and other styles
9

Kucharz, Wojciech, and Krzysztof Kurdyka. "Stratified-algebraic vector bundles." Journal für die reine und angewandte Mathematik (Crelles Journal) 2018, no. 745 (December 1, 2018): 105–54. http://dx.doi.org/10.1515/crelle-2015-0105.

Full text
Abstract:
Abstract We investigate stratified-algebraic vector bundles on a real algebraic variety X. A stratification of X is a finite collection of pairwise disjoint, Zariski locally closed subvarieties whose union is X. A topological vector bundle ξ on X is called a stratified-algebraic vector bundle if, roughly speaking, there exists a stratification {\mathcal{S}} of X such that the restriction of ξ to each stratum S in {\mathcal{S}} is an algebraic vector bundle on S. In particular, every algebraic vector bundle on X is stratified-algebraic. It turns out that stratified-algebraic vector bundles have many surprising properties, which distinguish them from algebraic and topological vector bundles.
APA, Harvard, Vancouver, ISO, and other styles
10

HOSONO, SHINOBU. "ALGEBRAIC DEFINITION OF TOPOLOGICAL W GRAVITY." International Journal of Modern Physics A 07, no. 21 (August 20, 1992): 5193–211. http://dx.doi.org/10.1142/s0217751x92002374.

Full text
Abstract:
We propose a definition of the topological W gravity using some properties of the principal three-dimensional subalgebra of a simple Lie algebra due to Kostant. In our definition, structures of the two-dimensional topological gravity are naturally embedded in the extended theories. In accordance with the definition, we will present some explicit calculations for the W3 gravity.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Algebraic; Topological"

1

Deshpande, D. V. "Topological methods in algebraic geometry : cohomology rings, algebraic cobordism and higher Chow groups." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.598515.

Full text
Abstract:
This thesis is divided into three chapters. The first chapter is about the cohomology ring of the space of rotational functions. In the second chapter, we define algebraic cobordism of classifying spaces, Ω*(BG) and G-equivariant algebraic cobordism Ω*G(-) for a linear algebraic group G. We prove some properties of the coniveau filtration on algebraic cobordism, denoted Fj(Ω*(-)); which are required for the definition to work. We show that G-equivariant cobordism satisfies the localization exact sequence. We compute Ω*(BG) for algebraic groups over the complex numbers corresponding to classical Lie groups GL(n), SL(n), Sp(n), O(n) and SO(2n + 1). We also compute Ω*(BG) when G is a finite abelian group. A finite non-abelian group for which we compute Ω*(BG) is the quaternion group of order 8. In all the above cases we check that Ω*(BG) is isomorphic to MU*(BG). The third chapter is work-in-progress on Steenrod operations on higher Chow groups. Voevodsky has defined motivic Steenrod operations on motivic cohomology and used them in his proof of the Minor Conjecture.
APA, Harvard, Vancouver, ISO, and other styles
2

Brecht, Matthew de. "Topological and Algebraic Aspects of Algorithmic Learning Theory." 京都大学 (Kyoto University), 2010. http://hdl.handle.net/2433/120375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wüthrich, Samuel. "I-adic towers in algebraic and topological derived categories /." [S.l.] : [s.n.], 2004. http://www.zb.unibe.ch/download/eldiss/04wuethrich_s.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dowerk, Philip. "Algebraic and Topological Properties of Unitary Groups of II_1 Factors." Doctoral thesis, Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-165242.

Full text
Abstract:
The thesis is concerned with group theoretical properties of unitary groups, mainly of II_1 factors. The author gives a new and elementary proof of an result on extreme amenability, defines the bounded normal generation property and invariant automatic continuity property and proves these for various unitary groups of functional analytic types.
APA, Harvard, Vancouver, ISO, and other styles
5

Larsen, Nicholas Guy. "A New Family of Topological Invariants." BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/6757.

Full text
Abstract:
We define an extension of the nth homotopy group which can distinguish a larger class of spaces. (E.g., a converging sequence of disjoint circles and the disjoint union of countably many circles, which have isomorphic fundamental groups, regardless of choice of basepoint.) We do this by introducing a generalization of homotopies, called component-homotopies, and defining the nth extended homotopy group to be the set of component-homotopy classes of maps from compact subsets of (0,1)n into a space, with a concatenation operation. We also introduce a method of tree-adjoinment for "connecting" disconnected metric spaces and show how this method can be used to calculate the extended homotopy groups of an arbitrary metric space.
APA, Harvard, Vancouver, ISO, and other styles
6

Mateus, de Oliveira L. M. "Partial Jordan *-triples." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Erninger, Klas. "Algebraic Simplifications of Metric Information." Thesis, KTH, Matematik (Avd.), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-277744.

Full text
Abstract:
This thesis is about how to interpret metric data with topological tools, such as homology. We show how to go from a metric space to a topological space via Vietoris-Rips complexes. We use the usual approach to Topological Data Analysis (TDA), and transform our metric space into tame parametrised vector spaces. It is then shown how to simplify tame parametrised vector spaces. We also present another approach to TDA, where we transform our metric space into a filtrated tame parametrised chain complex. We then show how to simplify chain complexes over fields in order to simplify tame parametrised filtrated chain complexes.
Denna uppsats handlar om att tolka metrisk data med hjälp utav topologiska verktyg, som exempelvis homologi. Vi visar hur man går från ett metriskt rum till ett topologiskt rum via Vieteris-Rips komplex. Vi använder den vanliga metoden till Topologisk Data Analys (TDA), och transformerar vårat metriska rum till tama parametriserade vektorrum. Det visas sedan hur vi kan förenkla tama parametriserade vektorrum. Vi presenterar även en annan metod för TDA, där vi går från ett metriskt rum till ett filtrerat tamt parametriserat kedjekomplex. Sedan visar vi hur man förenklar kedjekomplex över kroppar för att kunna förenkla filtrerade tama parametriserade kedjekomplex.
APA, Harvard, Vancouver, ISO, and other styles
8

Chatzigiannis, Georgios [Verfasser], and Christoph [Akademischer Betreuer] Wockel. "Topological and Algebraic Properties of Topological Group Cohomology and LHS-type Spectral Sequences / Georgios Chatzigiannis. Betreuer: Christoph Wockel." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2016. http://d-nb.info/1093411392/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chatzigiannis, Georgios Verfasser], and Christoph [Akademischer Betreuer] [Wockel. "Topological and Algebraic Properties of Topological Group Cohomology and LHS-type Spectral Sequences / Georgios Chatzigiannis. Betreuer: Christoph Wockel." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2016. http://nbn-resolving.de/urn:nbn:de:gbv:18-77677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kettner, Michael. "Algorithmic and topological aspects of semi-algebraic sets defined by quadratic polynomials." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19704.

Full text
Abstract:
Thesis (Ph.D)--Mathematics, Georgia Institute of Technology, 2008.
Committee Chair: Basu, Saugata; Committee Member: Etnyre, John; Committee Member: Ghomi, Mohammad; Committee Member: Gonzalez-Vega, Laureano; Committee Member: Powers, Victoria.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Algebraic; Topological"

1

Kolyada, Sergiy, Yuri Manin, and Thomas Ward, eds. Algebraic and Topological Dynamics. Providence, Rhode Island: American Mathematical Society, 2005. http://dx.doi.org/10.1090/conm/385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Topological methods in algebraic geometry. Berlin: Springer, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jordan algebras and algebraic groups. Berlin: Springer, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Karoubi, M. Algebraic topology via differential geometry. Cambridge: Cambridge University Press, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ranicki, Andrew. Algebraic L̲-theory and topological manifolds. Cambridge [England]: Cambridge University Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kraft, Hanspeter, Ted Petrie, and Gerald W. Schwarz, eds. Topological Methods in Algebraic Transformation Groups. Boston, MA: Birkhäuser Boston, 1989. http://dx.doi.org/10.1007/978-1-4612-3702-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ranicki, Andrew. Algebraic L-theory and topological manifolds. Cambridge: Cambridge University Press, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Topological modular forms. Providence, Rhode Island: American Mathematical Society, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Heal, Geoffrey M. Topological Social Choice. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Adler, Mark. Algebraic Integrability, Painlevé Geometry and Lie Algebras. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Algebraic; Topological"

1

Wedhorn, Torsten. "Algebraic Topological Preliminaries." In Manifolds, Sheaves, and Cohomology, 21–40. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-10633-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pym, David J. "Algebraic, Topological, Categorical." In The Semantics and Proof Theory of the Logic of Bunched Implications, 33–49. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-0091-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mumford, David. "Topological Properties of Algebaraic Surfaces." In Algebraic Surfaces, 129–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-61991-5_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mitchell, Stephen A. "On p-Adic Topological K-Theory." In Algebraic K-Theory and Algebraic Topology, 197–204. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-0695-7_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Springer, T. A. "Topological Properties of Morphisms, Applications." In Linear Algebraic Groups, 78–97. Boston, MA: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4840-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Meinke, Karl. "Topological methods for algebraic specification." In Recent Trends in Data Type Specification, 368–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/bfb0014439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Catanese, Fabrizio. "Topological methods in algebraic geometry." In Colloquium De Giorgi 2013 and 2014, 37–77. Pisa: Scuola Normale Superiore, 2015. http://dx.doi.org/10.1007/978-88-7642-515-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Baez, John C., and Danny Stevenson. "The Classifying Space of a Topological 2-Group." In Algebraic Topology, 1–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01200-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dundas, Bjørn Ian, Thomas G. Goodwillie, and Randy McCarthy. "Topological Hochschild Homology." In The Local Structure of Algebraic K-Theory, 143–78. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4393-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dundas, Bjørn Ian, Thomas G. Goodwillie, and Randy McCarthy. "Topological Cyclic Homology." In The Local Structure of Algebraic K-Theory, 227–79. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4393-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Algebraic; Topological"

1

Rognes, John. "Topological logarithmic structures." In New topological contexts for Galois theory and algebraic geometry. Mathematical Sciences Publishers, 2009. http://dx.doi.org/10.2140/gtm.2009.16.401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Grant, Mark. "Topological complexity of motion planning and Massey products." In Algebraic Topology - Old and New. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2009. http://dx.doi.org/10.4064/bc85-0-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Speranzon, Alberto, and Shaunak D. Bopardikar. "An algebraic topological perspective to privacy." In 2016 American Control Conference (ACC). IEEE, 2016. http://dx.doi.org/10.1109/acc.2016.7525226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Derdar, Salah, Madjid Allili, and Djemel Ziou. "Topological feature extraction using algebraic topology." In Electronic Imaging 2007, edited by Longin Jan Latecki, David M. Mount, and Angela Y. Wu. SPIE, 2007. http://dx.doi.org/10.1117/12.705555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Angeltveit, Vigleik, Michael Hill, and Tyler Lawson. "The spectra ko and ku are not Thom spectra: an approach using THH." In New topological contexts for Galois theory and algebraic geometry. Mathematical Sciences Publishers, 2009. http://dx.doi.org/10.2140/gtm.2009.16.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hovey, Mark. "Intersection homological algebra." In New topological contexts for Galois theory and algebraic geometry. Mathematical Sciences Publishers, 2009. http://dx.doi.org/10.2140/gtm.2009.16.133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jardine, John F. "The K–theory presheaf of spectra." In New topological contexts for Galois theory and algebraic geometry. Mathematical Sciences Publishers, 2009. http://dx.doi.org/10.2140/gtm.2009.16.151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lawson, Tyler. "An overview of abelian varieties in homotopy theory." In New topological contexts for Galois theory and algebraic geometry. Mathematical Sciences Publishers, 2009. http://dx.doi.org/10.2140/gtm.2009.16.179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

May, J. P. "What precisely are E∞ring spaces and E∞ring spectra?" In New topological contexts for Galois theory and algebraic geometry. Mathematical Sciences Publishers, 2009. http://dx.doi.org/10.2140/gtm.2009.16.215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

May, J. P. "The construction of E∞ring spaces from bipermutative categories." In New topological contexts for Galois theory and algebraic geometry. Mathematical Sciences Publishers, 2009. http://dx.doi.org/10.2140/gtm.2009.16.283.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Algebraic; Topological"

1

Baryshnikov, Yuliy. Algebraic-Topological Structures for Hidden Modes. Fort Belvoir, VA: Defense Technical Information Center, April 2011. http://dx.doi.org/10.21236/ada540133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Anderson, Mitchell J., and Robert Mathews. Algebraic and Topological Structure of QOS (End to End) Within Large Scale Distributed Information Systems. Fort Belvoir, VA: Defense Technical Information Center, January 1999. http://dx.doi.org/10.21236/ada359965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography