Academic literature on the topic 'Algebraic number theory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Algebraic number theory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Algebraic number theory"

1

Blackmore, G. W., I. N. Stewart, and D. O. Tall. "Algebraic Number Theory." Mathematical Gazette 73, no. 463 (March 1989): 65. http://dx.doi.org/10.2307/3618234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

S., R., and Michael E. Pohst. "Computational Algebraic Number Theory." Mathematics of Computation 64, no. 212 (October 1995): 1763. http://dx.doi.org/10.2307/2153389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Karve, Aneesh, and Sebastian Pauli. "GiANT: Graphical Algebraic Number Theory." Journal de Théorie des Nombres de Bordeaux 18, no. 3 (2006): 721–27. http://dx.doi.org/10.5802/jtnb.569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lenstra Jr., H. W. "Algorithms in Algebraic Number Theory." Bulletin of the American Mathematical Society 26, no. 2 (October 1, 1992): 211–45. http://dx.doi.org/10.1090/s0273-0979-1992-00284-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Platonov, V. P., and A. S. Rapinchuk. "Algebraic groups and number theory." Russian Mathematical Surveys 47, no. 2 (April 30, 1992): 133–61. http://dx.doi.org/10.1070/rm1992v047n02abeh000879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Appleby, Marcus, Steven Flammia, Gary McConnell, and Jon Yard. "SICs and Algebraic Number Theory." Foundations of Physics 47, no. 8 (April 24, 2017): 1042–59. http://dx.doi.org/10.1007/s10701-017-0090-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Belabas, Karim. "Topics in computational algebraic number theory." Journal de Théorie des Nombres de Bordeaux 16, no. 1 (2004): 19–63. http://dx.doi.org/10.5802/jtnb.433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schoof, Ren\'e. "Book Review: Algorithmic algebraic number theory." Bulletin of the American Mathematical Society 29, no. 1 (July 1, 1993): 111–14. http://dx.doi.org/10.1090/s0273-0979-1993-00392-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Krishna, Amalendu, and Jinhyun Park. "Algebraic cobordism theory attached to algebraic equivalence." Journal of K-Theory 11, no. 1 (February 2013): 73–112. http://dx.doi.org/10.1017/is013001028jkt210.

Full text
Abstract:
AbstractBased on the algebraic cobordism theory of Levine and Morel, we develop a theory of algebraic cobordism modulo algebraic equivalence.We prove that this theory can reproduce Chow groups modulo algebraic equivalence and the semi-topological K0-groups. We also show that with finite coefficients, this theory agrees with the algebraic cobordism theory.We compute our cobordism theory for some low dimensional varieties. The results on infinite generation of some Griffiths groups by Clemens and on smash-nilpotence by Voevodsky and Voisin are also lifted and reinterpreted in terms of this cobordism theory.
APA, Harvard, Vancouver, ISO, and other styles
10

Cremona, J. E., and Henri Cohen. "A Course in Computational Algebraic Number Theory." Mathematical Gazette 78, no. 482 (July 1994): 221. http://dx.doi.org/10.2307/3618596.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Algebraic number theory"

1

Röttger, Christian Gottfried Johannes. "Counting problems in algebraic number theory." Thesis, University of East Anglia, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Swanson, Colleen M. "Algebraic number fields and codes /." Connect to online version, 2006. http://ada.mtholyoke.edu/setr/websrc/pdfs/www/2006/172.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hughes, Garry. "Distribution of additive functions in algebraic number fields." Title page, contents and summary only, 1987. http://web4.library.adelaide.edu.au/theses/09SM/09smh893.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

McCoy, Daisy Cox. "Irreducible elements in algebraic number fields." Diss., Virginia Tech, 1990. http://hdl.handle.net/10919/39950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gaertner, Nathaniel Allen. "Special Cases of Density Theorems in Algebraic Number Theory." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/33153.

Full text
Abstract:
This paper discusses the concepts in algebraic and analytic number theory used in the proofs of Dirichlet's and Cheboterev's density theorems. It presents special cases of results due to the latter theorem for which greatly simplified proofs exist.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
6

PASINI, FEDERICO WILLIAM. "Classifying spaces for knots: new bridges between knot theory and algebraic number theory." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2016. http://hdl.handle.net/10281/129230.

Full text
Abstract:
In this thesis we discuss how, in the context of knot theory, the classifying space of a knot group for the family of meridians arises naturally. We provide an explicit construction of a model for that space, which is particularly nice in the case of a prime knot. We then show that this classifying space controls the behaviour of the finite branched coverings of the knot. We present a 9-term exact sequence for knot groups that strongly resembles the Poitou-Tate exact sequence for algebraic number fields. Finally, we show that the homology of the classifying space behaves towards the former sequence as Shafarevich groups do towards the latter.
APA, Harvard, Vancouver, ISO, and other styles
7

Rozario, Rebecca. "The Distribution of the Irreducibles in an Algebraic Number Field." Fogler Library, University of Maine, 2003. http://www.library.umaine.edu/theses/pdf/RozarioR2003.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nyqvist, Robert. "Algebraic Dynamical Systems, Analytical Results and Numerical Simulations." Doctoral thesis, Växjö : Växjö University Press, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-1142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yan, Song Yuan. "On the algebraic theories and computations of amicable numbers." Thesis, University of York, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Haydon, James Henri. "Étale homotopy sections of algebraic varieties." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:88019ba2-a589-4179-ad7f-1eea234d284c.

Full text
Abstract:
We define and study the fundamental pro-finite 2-groupoid of varieties X defined over a field k. This is a higher algebraic invariant of a scheme X, analogous to the higher fundamental path 2-groupoids as defined for topological spaces. This invariant is related to previously defined invariants, for example the absolute Galois group of a field, and Grothendieck’s étale fundamental group. The special case of Brauer-Severi varieties is considered, in which case a “sections conjecture” type theorem is proved. It is shown that a Brauer-Severi variety X has a rational point if and only if its étale fundamental 2-groupoid has a special sort of section.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Algebraic number theory"

1

Weiss, Edwin. Algebraic number theory. Mineola, N.Y: Dover Publications, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fr"ohlich, A. Algebraic number theory. Cambridge: C.U.P., 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Koch, H. Algebraic Number Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-58095-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lang, Serge. Algebraic Number Theory. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4684-0296-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Neukirch, Jürgen. Algebraic Number Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03983-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jarvis, Frazer. Algebraic Number Theory. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07545-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lang, Serge. Algebraic Number Theory. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-0853-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Orme, Tall David, ed. Algebraic number theory. 2nd ed. London: Chapman and Hall, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Martin, Taylor, ed. Algebraic number theory. Cambridge: Cambridge University Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mollin, Richard A. Algebraic number theory. Boca Raton, Fla: CRC Press, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Algebraic number theory"

1

Geroldinger, Alfred. "Factorizations of algebraic integers." In Number Theory, 63–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0086545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ireland, Kenneth, and Michael Rosen. "Algebraic Number Theory." In A Classical Introduction to Modern Number Theory, 172–87. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4757-2103-4_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Stillwell, John. "Algebraic Number Theory." In Undergraduate Texts in Mathematics, 404–30. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4684-9281-1_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stillwell, John. "Algebraic Number Theory." In Undergraduate Texts in Mathematics, 439–66. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6053-5_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Weil, André. "Algebraic number-fields." In Basic Number Theory, 80–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-61945-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fine, Benjamin, and Gerhard Rosenberger. "Primes and Algebraic Number Theory." In Number Theory, 285–370. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43875-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kolmogorov, A. N., and A. P. Yushkevich. "Algebra and Algebraic Number Theory." In Mathematics of the 19th Century, 35–135. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8293-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bashmakova, I. G., and A. N. Rudakov. "Algebra and Algebraic Number Theory." In Mathematics of the 19th Century, 35–135. Basel: Birkhäuser Basel, 1992. http://dx.doi.org/10.1007/978-3-0348-5112-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bourbaki, Nicolas. "Commutative Algebra. Algebraic Number Theory." In Elements of the History of Mathematics, 93–115. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-61693-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Koch, H. "Basic Number Theory." In Algebraic Number Theory, 8–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-58095-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Algebraic number theory"

1

Lam, S. P., and K. P. Shum. "Algebraic Structures and Number Theory." In First International Symposium on Algebraic Structures and Number Theory. WORLD SCIENTIFIC, 1990. http://dx.doi.org/10.1142/9789814540209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Huang, Yu-Chih. "Lattice index codes from algebraic number fields." In 2015 IEEE International Symposium on Information Theory (ISIT). IEEE, 2015. http://dx.doi.org/10.1109/isit.2015.7282903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

van Dam, Wim, and Yoshitaka Sasaki. "QUANTUM ALGORITHMS FOR PROBLEMS IN NUMBER THEORY, ALGEBRAIC GEOMETRY, AND GROUP THEORY." In Summer School on Diversities in Quantum Computation/Information. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814425988_0003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tsuboi, Shoji. "The Euler number of the normalization of an algebraic threefold with ordinary singularities." In Geometric Singularity Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc65-0-17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Feng, Ke-Qin, and Ke-Zheng Li. "Proceedings of the Special Program at Nankai Institute of Mathematics ALGEBRAIC GEOMETRY and ALGEBRAIC NUMBER THEORY." In Special Program at Nankai Institute of Mathematics. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814537681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Limniotis, Konstantinos, Nicholas Kolokotronis, and Nicholas Kalouptsidis. "Constructing Boolean functions in odd number of variables with maximum algebraic immunity." In 2011 IEEE International Symposium on Information Theory - ISIT. IEEE, 2011. http://dx.doi.org/10.1109/isit.2011.6034059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xiaowen Xiong, Xia Yang, and Chi Ma. "Analysis of the number of even-variable boolean functions with maximum algebraic immunity." In Symposium on ICT and Energy Efficiency and Workshop on Information Theory and Security (CIICT 2012). Institution of Engineering and Technology, 2012. http://dx.doi.org/10.1049/cp.2012.1869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Suleimenov, Ibragim E., and Dinara K. Matrassulova. "Using the Relationship between the Theory of Algebraic Fields and Number Theory for Developing Promising Methods of Digital Signal Processing." In 2022 3rd Asia Conference on Computers and Communications (ACCC). IEEE, 2022. http://dx.doi.org/10.1109/accc58361.2022.00027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alekseev, Yaroslav, Dima Grigoriev, Edward A. Hirsch, and Iddo Tzameret. "Semi-algebraic proofs, IPS lower bounds, and the τ-conjecture: can a natural number be negative?" In STOC '20: 52nd Annual ACM SIGACT Symposium on Theory of Computing. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3357713.3384245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Z. X., B. Kang, J. B. Gou, Y. X. Chu, and M. Yeung. "Fundamentals of Workpiece Localization: Theory and Algorithms." In ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-0811.

Full text
Abstract:
Abstract In this paper, we present an algebraic algorithm for workpiece localization. First, we formulate the problem as a least-square problem in the configuration space Q = SE(3) × ℝ3n, where SE(3) is the Euclidean group, and n is the number of measurement points to be matched by corresponding home surface points of the workpiece. Then, we use the geometric properties of the Euclidean group to compute for the critical points of the objective function. Doing so we derive an algebraic formula for the optimal Euclidean transformation in terms of the measurement points and the corresponding home surface points. We also give for each measurement point a system of two nonlinear equations from which the corresponding home surface point nearest to the measurement point can be solved. Finally, based on these analytic results we present an iterative algorithm for obtaining the complete solution of the least-square problem.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Algebraic number theory"

1

Xia, Xiang-Gen. Space-Time Coding Using Algebraic Number Theory for Broadband Wireless Communications. Fort Belvoir, VA: Defense Technical Information Center, May 2008. http://dx.doi.org/10.21236/ada483791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sultanov, S. R. Electronic textbook " Algebra and number theory. Part 2 "direction of training 02.03.03" Mathematical support and administration of information systems". OFERNIO, June 2018. http://dx.doi.org/10.12731/ofernio.2018.23685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography