Dissertations / Theses on the topic 'Algebraic fields'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Algebraic fields.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Hartsell, Melanie Lynne. "Algebraic Number Fields." Thesis, University of North Texas, 1991. https://digital.library.unt.edu/ark:/67531/metadc501201/.
Full textLötter, Ernest C. "On towers of function fields over finite fields /." Link to the online version, 2007. http://hdl.handle.net/10019.1/1283.
Full textGanz, Jürg Werner. "Algebraic complexity in finite fields /." Zürich, 1994. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10867.
Full textSwanson, Colleen M. "Algebraic number fields and codes /." Connect to online version, 2006. http://ada.mtholyoke.edu/setr/websrc/pdfs/www/2006/172.pdf.
Full textRovi, Carmen. "Algebraic Curves over Finite Fields." Thesis, Linköping University, Department of Mathematics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-56761.
Full textThis thesis surveys the issue of finding rational points on algebraic curves over finite fields. Since Goppa's construction of algebraic geometric codes, there has been great interest in finding curves with many rational points. Here we explain the main tools for finding rational points on a curve over a nite eld and provide the necessary background on ring and field theory. Four different articles are analyzed, the first of these articles gives a complete set of table showing the numbers of rational points for curves with genus up to 50. The other articles provide interesting constructions of covering curves: covers by the Hemitian curve, Kummer extensions and Artin-Schreier extensions. With these articles the great difficulty of finding explicit equations for curves with many rational points is overcome. With the method given by Arnaldo García in [6] we have been able to nd examples that can be used to define the lower bounds for the corresponding entries in the tables given in http: //wins.uva.nl/~geer, which to the time of writing this Thesis appear as "no information available". In fact, as the curves found are maximal, these entries no longer need a bound, they can be given by a unique entry, since the exact value of Nq(g) is now known.
At the end of the thesis an outline of the construction of Goppa codes is given and the NXL and XNL codes are presented.
Rozario, Rebecca. "The Distribution of the Irreducibles in an Algebraic Number Field." Fogler Library, University of Maine, 2003. http://www.library.umaine.edu/theses/pdf/RozarioR2003.pdf.
Full textAlm, Johan. "Universal algebraic structures on polyvector fields." Doctoral thesis, Stockholms universitet, Matematiska institutionen, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-100775.
Full textBode, Benjamin. "Knotted fields and real algebraic links." Thesis, University of Bristol, 2018. http://hdl.handle.net/1983/8527a201-2fba-4e7e-8481-3df228051413.
Full textMcCoy, Daisy Cox. "Irreducible elements in algebraic number fields." Diss., Virginia Tech, 1990. http://hdl.handle.net/10919/39950.
Full textAlnaser, Ala' Jamil. "Waring's problem in algebraic number fields." Diss., Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/2207.
Full textLotter, Ernest Christiaan. "On towers of function fields over finite fields." Thesis, Stellenbosch : University of Stellenbosch, 2007. http://hdl.handle.net/10019.1/1283.
Full textExplicit towers of algebraic function fields over finite fields are studied by considering their ramification behaviour and complete splitting. While the majority of towers in the literature are recursively defined by a single defining equation in variable separated form at each step, we consider towers which may have different defining equations at each step and with arbitrary defining polynomials. The ramification and completely splitting loci are analysed by directed graphs with irreducible polynomials as vertices. Algorithms are exhibited to construct these graphs in the case of n-step and -finite towers. These techniques are applied to find new tamely ramified n-step towers for 1 n 3. Various new tame towers are found, including a family of towers of cubic extensions for which numerical evidence suggests that it is asymptotically optimal over the finite field with p2 elements for each prime p 5. Families of wildly ramified Artin-Schreier towers over small finite fields which are candidates to be asymptotically good are also considered using our method.
Buyruk, Dilek. "On Algebraic Function Fields With Class Number Three." Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613080/index.pdf.
Full textulya T¨
ore. Let k := Fq(T) be the rational function field over the finite field Fq with q elements. For a polynomial N &isin
Fq[T], we construct the Nth cyclotomic function field KN. Cyclotomic function fields were investigated by Carlitz, studied by Hayes, M. Rosen, M. Bilhan and many other mathematicians. Classification of cyclotomic function fields and subfields of cyclotomic function fields with class number one is done by Kida, Murabayashi, Ahn and Jung. Also the classification of function fields with genus one and classification of those with class number two is done by Ahn and Jung. In this thesis, we classified all algebraic function fields and subfields of cyclotomic function fields over finite fields with class number three.
Röer, Andrew. "On vector fields on singular algebraic surfaces." Thesis, University of Warwick, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415254.
Full textAlaca, Saban Carleton University Dissertation Mathematics and Statistics. "P-Integral bases of algebraic number fields." Ottawa, 1994.
Find full textHan, Ilseop. "Tractibility of algebraic function fields in one variable over global fields /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1999. http://wwwlib.umi.com/cr/ucsd/fullcit?p9944223.
Full textVoloch, J. F. "Curves over finite fields." Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.355283.
Full textHughes, Garry. "Distribution of additive functions in algebraic number fields." Title page, contents and summary only, 1987. http://web4.library.adelaide.edu.au/theses/09SM/09smh893.pdf.
Full textJogia, Danesh Michael Mathematics & Statistics Faculty of Science UNSW. "Algebraic aspects of integrability and reversibility in maps." Publisher:University of New South Wales. Mathematics & Statistics, 2008. http://handle.unsw.edu.au/1959.4/40947.
Full textKosick, Pamela. "Commutative semifields of odd order and planar Dembowski-Ostrom polynomials." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 104 p, 2010. http://proquest.umi.com/pqdweb?did=1992491941&sid=3&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textRiccomagno, Eva M. "Algebraic geometry in experimental design and related fields." Thesis, University of Warwick, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263314.
Full textBerardini, Elena. "Algebraic geometry codes from surfaces over finite fields." Thesis, Aix-Marseille, 2020. http://www.theses.fr/2020AIXM0170.
Full textIn this thesis we provide a theoretical study of algebraic geometry codes from surfaces defined over finite fields. We prove lower bounds for the minimum distance of codes over surfaces whose canonical divisor is either nef or anti-strictly nef and over surfaces without irreducible curves of small genus. We sharpen these lower bounds for surfaces whose arithmetic Picard number equals one, surfaces without curves with small self-intersection and fibered surfaces. Then we apply these bounds to surfaces embedded in P3. A special attention is given to codes constructed from abelian surfaces. In this context we give a general bound on the minimum distance and we prove that this estimation can be sharpened under the assumption that the abelian surface does not contain absolutely irreducible curves of small genus. In this perspective we characterize all abelian surfaces which do not contain absolutely irreducible curves of genus up to 2. This approach naturally leads us to consider Weil restrictions of elliptic curves and abelian surfaces which do not admit a principal polarization
Wuria, Muhammad Ameen Hussein. "Invariant algebraic surfaces in three dimensional vector fields." Thesis, University of Plymouth, 2016. http://hdl.handle.net/10026.1/4417.
Full textAbbott, John Anthony. "On the factorization of polynomials over algebraic fields." Thesis, University of Bath, 1988. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234672.
Full textKribs, Richard A. "Fields with minimal discriminants : an empirical study." Virtual Press, 2005. http://liblink.bsu.edu/uhtbin/catkey/1314333.
Full textDepartment of Mathematical Sciences
曾紹祺 and Shiu-kei Tsang. "A survey on Golomb's Conjectures and Costas Arrays." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1999. http://hub.hku.hk/bib/B42575345.
Full textTsang, Shiu-kei. "A survey on Golomb's Conjectures and Costas Arrays." Click to view the E-thesis via HKUTO, 1999. http://sunzi.lib.hku.hk/hkuto/record/B42575345.
Full textBoulanger, Nicolas. "Algebraic aspects of gravity and higher spsin gauge fields." Doctoral thesis, Universite Libre de Bruxelles, 2003. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211290.
Full textPanario, Rodriguez Daniel Nelson. "Combinatorial and algebraic aspects of polynomials over finite fields." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape16/PQDD_0016/NQ28297.pdf.
Full textGrimm, David [Verfasser]. "Sums of Squares in Algebraic Function Fields / David Grimm." Konstanz : Bibliothek der Universität Konstanz, 2011. http://d-nb.info/1024034984/34.
Full textCobbe, Alessandro. "Steinitz classes of tamely rami ed Galois extensions of algebraic number fields." Doctoral thesis, Scuola Normale Superiore, 2009. http://hdl.handle.net/11384/85661.
Full textMinardi, John. "Iwasawa modules for [p-adic]-extensions of algebraic number fields /." Thesis, Connect to this title online; UW restricted, 1986. http://hdl.handle.net/1773/5742.
Full textPizzato, Marco. "Some Problems Concerning Polynomials over Finite Fields, or Algebraic Divertissements." Doctoral thesis, Università degli studi di Trento, 2013. https://hdl.handle.net/11572/367913.
Full textPizzato, Marco. "Some Problems Concerning Polynomials over Finite Fields, or Algebraic Divertissements." Doctoral thesis, University of Trento, 2013. http://eprints-phd.biblio.unitn.it/1121/1/PizzatoPhDThesisbis.pdf.
Full textBeyronneau, Robert Lewis. "The solvability of polynomials by radicals: A search for unsolvable and solvable quintic examples." CSUSB ScholarWorks, 2005. https://scholarworks.lib.csusb.edu/etd-project/2700.
Full textDucet, Virgile. "Construction of algebraic curves with many rational points over finite fields." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4043/document.
Full textThe study of the number of rational points of a curve defined over a finite field naturally falls into two cases: when the genus is small (typically g<=50), and when it tends to infinity. We devote one part of this thesis to each of these cases. In the first part of our study, we explain how to compute the equation of any abelian covering of a curve defined over a finite field. For this we use explicit class field theory provided by Kummer and Artin-Schreier-Witt extensions. We also detail an algorithm for the search of good curves, whose implementation provides new records of number of points over the finite fields of order 2 and 3. In the second part, we study a trace formula of Hecke operators on quaternionic modular forms, and we show that the associated Shimura curves of the form naturally form recursive sequences of asymptotically optimal curves over a quadratic extension of the base field. Moreover, we then prove that the essential contribution to the rational points is provided by supersingular points
Aubertin, Bruce Lyndon. "Algebraic numbers and harmonic analysis in the p-series case." Thesis, University of British Columbia, 1986. http://hdl.handle.net/2429/30282.
Full textScience, Faculty of
Mathematics, Department of
Graduate
Aleem, Hosam Abdel. "An algebraic approach to modelling the regulation of gene expression." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/an-algebraic-approach-to-modelling-the-regulation-of-gene-expression(d5d400b5-690e-4f32-9fd6-c80e4db455f3).html.
Full textSorolla, Bardají Jordi. "On the algebraic limit cycles of quadratic systems." Doctoral thesis, Universitat Autònoma de Barcelona, 2005. http://hdl.handle.net/10803/3089.
Full textLotter, Ernest Christiaan. "Explicit constructions of asymptotically good towers of function fields." Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53417.
Full textENGLISH ABSTRACT: A tower of global function fields :F = (FI, F2' ... ) is an infinite tower of separable extensions of algebraic function fields of one variable such that the constituent function fields have the same (finite) field of constants and the genus of these tend to infinity. A study can be made of the asymptotic behaviour of the ratio of the number of places of degree one over the genus of FJWq as i tends to infinity. A tower is called asymptotically good if this limit is a positive number. The well-known Drinfeld- Vladut bound provides a general upper bound for this limit. In practise, asymptotically good towers are rare. While the first examples were non-explicit, we focus on explicit towers of function fields, that is towers where equations recursively defining the extensions Fi+d F; are known. It is known that if the field of constants of the tower has square cardinality, it is possible to attain the Drinfeld- Vladut upper bound for this limit, even in the explicit case. If the field of constants does not have square cardinality, it is unknown how close the limit of the tower can come to this upper bound. In this thesis, we will develop the theory required to construct and analyse the asymptotic behaviour of explicit towers of function fields. Various towers will be exhibited, and general families of explicit formulae for which the splitting behaviour and growth of the genus can be computed in a tower will be discussed. When the necessary theory has been developed, we will focus on the case of towers over fields of non-square cardinality and the open problem of how good the asymptotic behaviour of the tower can be under these circumstances.
AFRIKAANSE OPSOMMING: 'n Toring van globale funksieliggame F = (FI, F2' ... ) is 'n oneindige toring van skeibare uitbreidings van algebraïese funksieliggame van een veranderlike sodat die samestellende funksieliggame dieselfde (eindige) konstante liggaam het en die genus streef na oneindig. 'n Studie kan gemaak word van die asimptotiese gedrag van die verhouding van die aantal plekke van graad een gedeel deur die genus van Fi/F q soos i streef na oneindig. 'n Toring word asimptoties goed genoem as hierdie limiet 'n positiewe getal is. Die bekende Drinfeld- Vladut grens verskaf 'n algemene bogrens vir hierdie limiet. In praktyk is asimptoties goeie torings skaars. Terwyl die eerste voorbeelde nie eksplisiet was nie, fokus ons op eksplisiete torings, dit is torings waar die vergelykings wat rekursief die uitbreidings Fi+d F; bepaal bekend is. Dit is bekend dat as die kardinaliteit van die konstante liggaam van die toring 'n volkome vierkant is, dit moontlik is om die Drinfeld- Vladut bogrens vir die limiet te behaal, selfs in die eksplisiete geval. As die konstante liggaam nie 'n kwadratiese kardinaliteit het nie, is dit onbekend hoe naby die limiet van die toring aan hierdie bogrens kan kom. In hierdie tesis salons die teorie ontwikkel wat benodig word om eksplisiete torings van funksieliggame te konstrueer, en hulle asimptotiese gedrag te analiseer. Verskeie torings sal aangebied word en algemene families van eksplisiete formules waarvoor die splitsingsgedrag en groei van die genus in 'n toring bereken kan word, sal bespreek word. Wanneer die nodige teorie ontwikkel is, salons fokus op die geval van torings oor liggame waarvan die kardinaliteit nie 'n volkome vierkant is nie, en op die oop probleem aangaande hoe goed die asimptotiese gedrag van 'n toring onder hierdie omstandighede kan wees.
Gould, Miles. "Coherence for categorified operadic theories." Connect to e-thesis, 2008. http://theses.gla.ac.uk/689/.
Full textPh.D. thesis submitted to the Faculty of Information and Mathematical Sciences, Department of Mathematics, University of Glasgow, 2008. Includes bibliographical references. Print version also available.
Hinkelmann, Franziska Babette. "Algebraic theory for discrete models in systems biology." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/28509.
Full textPh. D.
Hall-Seelig, Laura. "Asymptotically good towers of global function fields and bounds for the Ihara function." Amherst, Mass. : University of Massachusetts Amherst, 2009. http://scholarworks.umass.edu/dissertations/AAI3372263/.
Full textLavallee, Melisa Jean. "Dihedral quintic fields with a power basis." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/2788.
Full textKrapp, Lothar Sebastian [Verfasser]. "Algebraic and Model Theoretic Properties of O-minimal Exponential Fields / Lothar Sebastian Krapp." Konstanz : KOPS Universität Konstanz, 2019. http://d-nb.info/1202012558/34.
Full textMohamed, Mostafa Hosni [Verfasser]. "Algebraic decoding over finite and complex fields using reliability information / Mostafa Hosni Mohamed." Ulm : Universität Ulm, 2018. http://d-nb.info/1150781041/34.
Full textKurtaran, Ozbudak Elif. "Results On Some Authentication Codes." Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/2/12610350/index.pdf.
Full textOi, Masao. "On ramifications of Artin-Schreier extensions of surfaces over algebraically closed fields of positive characteristic I." 京都大学 (Kyoto University), 2014. http://hdl.handle.net/2433/193564.
Full textKyoto University (京都大学)
0048
新制・課程博士
博士(理学)
甲第18639号
理博第4018号
新制||理||1579(附属図書館)
31553
京都大学大学院理学研究科数学・数理解析専攻
(主査)教授 池田 保, 教授 雪江 明彦, 教授 上田 哲生
学位規則第4条第1項該当
Banaszak, Grzegorz. "Algebraic K-theory of number fields and rings of integers and the Stickelberger ideal /." The Ohio State University, 1990. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487676261012829.
Full textJacobs, G. Tony. "Reduced Ideals and Periodic Sequences in Pure Cubic Fields." Thesis, University of North Texas, 2015. https://digital.library.unt.edu/ark:/67531/metadc804842/.
Full textSolanki, Nikesh. "Uniform companions for expansions of large differential fields." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/uniform-companions-for-expansions-of-large-differential-fields(a565a0d0-24b5-40a6-a414-5ead1631bc8d).html.
Full text