Academic literature on the topic 'Aleatoric uncertainty'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aleatoric uncertainty.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Aleatoric uncertainty"
Pamungkas, Yayi Wira. "Penggunaan Aturan Ular Tangga dalam Musik Aleatorik Berbasis Serialisme Integral." Journal of Music Science, Technology, and Industry 3, no. 2 (October 21, 2020): 201–22. http://dx.doi.org/10.31091/jomsti.v3i2.1157.
Full textHong, Ming, Jianzhuang Liu, Cuihua Li, and Yanyun Qu. "Uncertainty-Driven Dehazing Network." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 1 (June 28, 2022): 906–13. http://dx.doi.org/10.1609/aaai.v36i1.19973.
Full textLyu, Yufeng, Zhenyu Liu, Xiang Peng, Jianrong Tan, and Chan Qiu. "Unified Reliability Measure Method Considering Uncertainties of Input Variables and Their Distribution Parameters." Applied Sciences 11, no. 5 (March 4, 2021): 2265. http://dx.doi.org/10.3390/app11052265.
Full textMehltretter, M. "JOINT ESTIMATION OF DEPTH AND ITS UNCERTAINTY FROM STEREO IMAGES USING BAYESIAN DEEP LEARNING." ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences V-2-2022 (May 17, 2022): 69–78. http://dx.doi.org/10.5194/isprs-annals-v-2-2022-69-2022.
Full textRajbhandari, E., N. L. Gibson, and C. R. Woodside. "Quantifying uncertainty with stochastic collocation in the kinematic magentohydrodynamic framework." Journal of Physics: Conference Series 2207, no. 1 (March 1, 2022): 012007. http://dx.doi.org/10.1088/1742-6596/2207/1/012007.
Full textZhong, Z., and M. Mehltretter. "MIXED PROBABILITY MODELS FOR ALEATORIC UNCERTAINTY ESTIMATION IN THE CONTEXT OF DENSE STEREO MATCHING." ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences V-2-2021 (June 17, 2021): 17–26. http://dx.doi.org/10.5194/isprs-annals-v-2-2021-17-2021.
Full textPham, Nam, and Sergey Fomel. "Uncertainty and interpretability analysis of encoder-decoder architecture for channel detection." GEOPHYSICS 86, no. 4 (July 1, 2021): O49—O58. http://dx.doi.org/10.1190/geo2020-0409.1.
Full textChowdhary, Kamaljit, and Paul Dupuis. "Distinguishing and integrating aleatoric and epistemic variation in uncertainty quantification." ESAIM: Mathematical Modelling and Numerical Analysis 47, no. 3 (March 29, 2013): 635–62. http://dx.doi.org/10.1051/m2an/2012038.
Full textSenge, Robin, Stefan Bösner, Krzysztof Dembczyński, Jörg Haasenritter, Oliver Hirsch, Norbert Donner-Banzhoff, and Eyke Hüllermeier. "Reliable classification: Learning classifiers that distinguish aleatoric and epistemic uncertainty." Information Sciences 255 (January 2014): 16–29. http://dx.doi.org/10.1016/j.ins.2013.07.030.
Full textHüllermeier, Eyke, and Willem Waegeman. "Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods." Machine Learning 110, no. 3 (March 2021): 457–506. http://dx.doi.org/10.1007/s10994-021-05946-3.
Full textDissertations / Theses on the topic "Aleatoric uncertainty"
Depeweg, Stefan [Verfasser], Thomas A. [Akademischer Betreuer] Runkler, Laura [Gutachter] Leal-Taixé, José Miguel [Gutachter] Hernández-Lobato, and Thomas A. [Gutachter] Runkler. "Modeling Epistemic and Aleatoric Uncertainty with Bayesian Neural Networks and Latent Variables / Stefan Depeweg ; Gutachter: Laura Leal-Taixé, José Miguel Hernández-Lobato, Thomas A. Runkler ; Betreuer: Thomas A. Runkler." München : Universitätsbibliothek der TU München, 2019. http://d-nb.info/1199537667/34.
Full textNguyen, Vu-Linh. "Imprecision in machine learning problems." Thesis, Compiègne, 2018. http://www.theses.fr/2018COMP2433.
Full textWe have focused on imprecision modeling in machine learning problems, where available data or knowledge suffers from important imperfections. In this work, imperfect data refers to situations where either some features or the labels are imperfectly known, that is can be specified by sets of possible values rather than precise ones. Learning from partial data are commonly encountered in various fields, such as bio-statistics, agronomy, or economy. These data can be generated by coarse or censored measurements, or can be obtained from expert opinions. On the other hand, imperfect knowledge refers to the situations where data are precisely specified, however, there are classes, that cannot be distinguished due to a lack of knowledge (also known as epistemic uncertainty) or due to a high uncertainty (also known as aleatoric uncertainty). Considering the problem of learning from partially specified data, we highlight the potential issues of dealing with multiple optimal classes and multiple optimalmodels in the inference and learning step, respectively. We have proposed active learning approaches to reduce the imprecision in these situations. Yet, the distinction epistemic/aleatoric uncertainty has been well-studied in the literature. To facilitate subsequent machine learning applications, we have developed practical procedures to estimate these degrees for popular classifiers. In particular, we have explored the use of this distinction in the contexts of active learning and cautious inferences
Blumer, Joel David. "Cross-scale model validation with aleatory and epistemic uncertainty." Thesis, Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53571.
Full textGrabaskas, David. "Analysis of Transient Overpower Scenarios in Sodium Fast Reactors." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1265726176.
Full textWatson, Jason Daniel. "A Multi-Objective Optimization Method for Maximizing the Value of System Evolvability Under Uncertainty." BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/5598.
Full textSui, Liqi. "Uncertainty management in parameter identification." Thesis, Compiègne, 2017. http://www.theses.fr/2017COMP2330/document.
Full textIn order to obtain more predictive and accurate simulations of mechanical behaviour in the practical environment, more and more complex material models have been developed. Nowadays, the characterization of material properties remains a top-priority objective. It requires dedicated identification methods and tests in conditions as close as possible to the real ones. This thesis aims at developing an effective identification methodology to find the material property parameters, taking advantages of all available information. The information used for the identification is theoretical, experimental, and empirical: the theoretical information is linked to the mechanical models whose uncertainty is epistemic; the experimental information consists in the full-field measurement whose uncertainty is aleatory; the empirical information is related to the prior information with epistemic uncertainty as well. The main difficulty is that the available information is not always reliable and its corresponding uncertainty is heterogeneous. This difficulty is overcome by the introduction of the theory of belief functions. By offering a general framework to represent and quantify the heterogeneous uncertainties, the performance of the identification is improved. The strategy based on the belief function is proposed to identify macro and micro elastic properties of multi-structure materials. In this strategy, model and measurement uncertainties arc analysed and quantified. This strategy is subsequently developed to take prior information into consideration and quantify its corresponding uncertainty
Burgos, Simón Clara. "Advances on Uncertainty Quantification Techniques for Dynamical Systems: Theory and Modelling." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/166442.
Full text[CA] La quantificació de la incertesa està composada per una sèrie de mètodes i tècniques computacionals, l'objectiu principal de les quals és descriure l'aleatorietat present en problemes de diversa índole. Aquests mètodes són d'utilitat en la modelització de processos biològics, físics, naturals o socials, ja que en ells apareixen certs aspectes que no poden ser determinats de manera exacta. Per exemple, la taxa de contagi d'una malaltia epidemiològica o el factor de creixement d'un volum tumoral depenen de factors genètics, ambientals o conductuals. Aquests no sempre poden definir-se íntegrament i per tant, comporten una aleatorietat intrínseca que afecta en el desenvolupament final. L'objectiu principal d'aquesta tesi doctoral és estendre tècniques per a quantificar la incertesa en dues àrees de les matemàtiques: el càlcul d'equacions diferencials fraccionàries i la modelització matemàtica. Les derivades d'ordre fraccionari permeten modelitzar comportaments que les derivades clàssiques no poden, com per exemple, els efectes de memòria o la viscoelasticitat en alguns materials. En aquesta tesi, des d'un punt de vista teòric, s'estendrà el càlcul fraccionari a un ambient d'incertesa, concretament en el sentit de la mitjana quadràtica. Es presentaran problemes de valors inicials fraccionaris aleatoris. El càlcul de la solució, l'obtenció de les aproximacions de la mitjana i, la variància de la solució i l'aproximació de la primera funció de densitat de probabilitat de la solució són conceptes que s'abordaran en els pròxims capítols. No obstant això, no sempre és senzill obtindre la solució exacta d'un problema de valors inicials fraccionari aleatori. Per això en aquesta tesi també es dedicarà un capítol per a descriure un procediment numèric que aproxime la seua solució. D'altra banda, des d'un punt de vista més aplicat, es desenvolupen tècniques computacionals per a quantificar la incertesa en models matemàtics. Combinant aquestes tècniques juntament amb models matemàtics apropiats, s'estudiaran problemes de dinàmica biològica. En primer lloc, es determinarà la quantitat de portadors de meningococ a Espanya amb un model de competència de Lotka-Volterra fraccionari aleatori. A continuació, el volum d'un tumor mamari es modelitzará mitjançant un model logístic amb incertesa. Finalment ajudant-nos d'un model matemàtic que descriu el nivell de glucosa en sang d'un pacient diabètic, es pretén donar una recomanació de carbohidrats i insulina que s'ha d'ingerir perquè el nivell de glucosa del pacient estiga dins d'una banda de confiança saludable. És important subratllar que per a poder realitzar aquests estudis es requereixen dades reals, els quals poden estar alterats a causa dels errors de mesurament o per la forma en que s'han obtés. Per aquest motiu, modelitzar correctament el problema juntament amb la incertesa en les dades és de vital importància.
[EN] Uncertainty quantification collects different methods and computational techniques aimed at describing the randomness in real phenomena. These methods are useful in the modelling of different processes as biological, physical, natural or social, since they present some aspects that can not be determined exactly. For example, the contagious rate of a epidemiological disease or the growth factor of a tumour volume depend on genetic, environmental or behavioural factors. They may not always be fully described and therefore involve uncertainties that affects on the final result. The main objective of this PhD thesis is to extend techniques to quantify the uncertainty in two mathematical areas: fractional calculus and mathematical modelling. Fractional derivatives allow us to model some behaviours that classical derivatives cannot, such as memory effects or the viscoelasticity of some materials. In this PhD thesis, from a theoretical point of view, fractional calculus is extended into the random framework, concretely in the mean square sense. Initial value problems will be studied. The calculus of the analytic solution, approximations for the mean and for the variance and the computation of the first probability density function are concepts we deal with them thought the following chapters. Nevertheless, it is not always possible to obtain the analytic solution of an initial value problem. Therefore, in this dissertation a chapter is addressed to describe a numerical procedure to approximate the solution for an initial value problem. On the other hand, from a modelling point of view, computational techniques to quantify the uncertainty in mathematical models are developed. Merging these techniques with appropriate mathematical models, problems of biological dynamics are studied. Firstly, the carriers of meningococcus in Spain are determined using a competition Lotka-Volterra random fractional model. Then, the volume of breast tumours is modelled by a random logistic model. Finally, taking advantage of a mathematical model which describes the glucose level of a diabetic patient, a recommendation of insulin shots and carbohydrate intakes is proposed to a patient in order to maintain her/his glucose level in a healthy confidence range. An important observation is that to carry out these studies real data is required and they may include uncertainties contained in the measurements on the process to perform the corresponding study. This it is the reason why it is crucial to properly model the problem taking also into account the randomness of the data.
Burgos Simón, C. (2021). Advances on Uncertainty Quantification Techniques for Dynamical Systems: Theory and Modelling [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/166442
TESIS
Shahtaheri, Yasaman. "A Probabilistic Decision Support System for a Performance-Based Design of Infrastructures." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/96804.
Full textPHD
Oskarsson, Joel. "Probabilistic Regression using Conditional Generative Adversarial Networks." Thesis, Linköpings universitet, Statistik och maskininlärning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166637.
Full textBooks on the topic "Aleatoric uncertainty"
Franklin, James. Pre-history of Probability. Edited by Alan Hájek and Christopher Hitchcock. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199607617.013.3.
Full textBook chapters on the topic "Aleatoric uncertainty"
Segalman, Daniel J., and Matthew R. W. Brake. "Epistemic and Aleatoric Uncertainty in Modeling." In The Mechanics of Jointed Structures, 593–603. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56818-8_33.
Full textShaker, Mohammad Hossein, and Eyke Hüllermeier. "Aleatoric and Epistemic Uncertainty with Random Forests." In Lecture Notes in Computer Science, 444–56. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44584-3_35.
Full textRobertson, Brett A., Matthew S. Bonney, Chiara Gastaldi, and Matthew R. W. Brake. "Quantifying Epistemic and Aleatoric Uncertainty in the Ampair 600 Wind Turbine." In Dynamics of Coupled Structures, Volume 4, 125–38. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15209-7_12.
Full textRobertson, Brett A., Matthew S. Bonney, Chiara Gastaldi, and Matthew R. W. Brake. "Quantifying Epistemic and Aleatoric Uncertainty in the Ampair 600 Wind Turbine." In The Mechanics of Jointed Structures, 651–72. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56818-8_36.
Full textUrbina, Angel, and Sankaran Mahadevan. "Quantification of Aleatoric and Epistemic Uncertainty in Computational Models of Complex Systems." In Structural Dynamics, Volume 3, 519–35. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9834-7_47.
Full textKepp, Timo, Julia Andresen, Helge Sudkamp, Claus von der Burchard, Johann Roider, Gereon Hüttmann, Jan Ehrhardt, and Heinz Handels. "Epistemic and Aleatoric Uncertainty Estimation for PED, Segmentation in Home OCT Images." In Informatik aktuell, 32–37. Wiesbaden: Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-36932-3_7.
Full textValiuddin, M. M. Amaan, Christiaan G. A. Viviers, Ruud J. G. van Sloun, Peter H. N. de With, and Fons van der Sommen. "Improving Aleatoric Uncertainty Quantification in Multi-annotated Medical Image Segmentation with Normalizing Flows." In Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Perinatal Imaging, Placental and Preterm Image Analysis, 75–88. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87735-4_8.
Full textDutta, Palash, and Tazid Ali. "Aleatory and Epistemic Uncertainty Quantification." In Applied Mathematics, 209–17. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2547-8_20.
Full textMcFarland, John, and David Riha. "Variance Decomposition in the Presence of Epistemic and Aleatory Uncertainty." In Linking Models and Experiments, Volume 2, 417–30. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9305-2_32.
Full textGiupponi, Carlo. "Operationalizing Climate Proofing in Decision/Policy Making." In Springer Climate, 225–32. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-86211-4_26.
Full textConference papers on the topic "Aleatoric uncertainty"
Segalman, Daniel J., Matthew R. Brake, Lawrence A. Bergman, Alexander F. Vakakis, and Kai Willner. "Epistemic and Aleatoric Uncertainty in Modeling." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-13234.
Full textLiu, Jiawei, Jing Zhang, and Nick Barnes. "Modeling Aleatoric Uncertainty for Camouflaged Object Detection." In 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). IEEE, 2022. http://dx.doi.org/10.1109/wacv51458.2022.00267.
Full textSingh Sambyal, Abhishek, Narayanan C. Krishnan, and Deepti R. Bathula. "Towards Reducing Aleatoric Uncertainty for Medical Imaging Tasks." In 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI). IEEE, 2022. http://dx.doi.org/10.1109/isbi52829.2022.9761638.
Full textSingh Sambyal, Abhishek, Narayanan C. Krishnan, and Deepti R. Bathula. "Towards Reducing Aleatoric Uncertainty for Medical Imaging Tasks." In 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI). IEEE, 2022. http://dx.doi.org/10.1109/isbi52829.2022.9761638.
Full textNguyen, Vu-Linh, Sébastien Destercke, Marie-Hélène Masson, and Eyke Hüllermeier. "Reliable Multi-class Classification based on Pairwise Epistemic and Aleatoric Uncertainty." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/706.
Full textBae, Gwangbin, Ignas Budvytis, and Roberto Cipolla. "Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation." In 2021 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2021. http://dx.doi.org/10.1109/iccv48922.2021.01289.
Full textLiu, Qi, Yanjie Li, Yuecheng Liu, Meiling Chen, Shaohua Lv, and Yunhong Xu. "Exploration via Distributional Reinforcement Learning with Epistemic and Aleatoric Uncertainty Estimation." In 2021 IEEE 17th International Conference on Automation Science and Engineering (CASE). IEEE, 2021. http://dx.doi.org/10.1109/case49439.2021.9551544.
Full textKawashima, Takumi, Qina Yu, Akari Asai, Daiki Ikami, and Kiyoharu Aizawa. "The Aleatoric Uncertainty Estimation Using a Separate Formulation with Virtual Residuals." In 2020 25th International Conference on Pattern Recognition (ICPR). IEEE, 2021. http://dx.doi.org/10.1109/icpr48806.2021.9412324.
Full textHuseljic, Denis, Bernhard Sick, Marek Herde, and Daniel Kottke. "Separation of Aleatoric and Epistemic Uncertainty in Deterministic Deep Neural Networks." In 2020 25th International Conference on Pattern Recognition (ICPR). IEEE, 2021. http://dx.doi.org/10.1109/icpr48806.2021.9412616.
Full textMey, Oliver, Andre Schneider, Olaf Enge-Rosenblatt, Yesnier Bravo, and Pit Stenzel. "Prediction of Energy Consumption for Variable Customer Portfolios Including Aleatoric Uncertainty Estimation." In 2021 10th International Conference on Power Science and Engineering (ICPSE). IEEE, 2021. http://dx.doi.org/10.1109/icpse53473.2021.9656857.
Full textReports on the topic "Aleatoric uncertainty"
Johnson, Jay Dean, Jon Craig Helton, William Louis Oberkampf, and Cedric J. Sallaberry. Representation of analysis results involving aleatory and epistemic uncertainty. Office of Scientific and Technical Information (OSTI), August 2008. http://dx.doi.org/10.2172/940535.
Full textSwiler, Laura Painton, and Michael Scott Eldred. Efficient algorithms for mixed aleatory-epistemic uncertainty quantification with application to radiation-hardened electronics. Part I, algorithms and benchmark results. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/972887.
Full textHelton, Jon C., Dusty Marie Brooks, and Cedric Jean-Marie Sallaberry. Probability of Loss of Assured Safety in Systems with Multiple Time-Dependent Failure Modes: Incorporation of Delayed Link Failure in the Presence of Aleatory Uncertainty. Office of Scientific and Technical Information (OSTI), February 2018. http://dx.doi.org/10.2172/1423532.
Full textUnwin, Stephen D., Paul W. Eslinger, and Kenneth I. Johnson. Robustness of RISMC Insights under Alternative Aleatory/Epistemic Uncertainty Classifications: Draft Report under the Risk-Informed Safety Margin Characterization (RISMC) Pathway of the DOE Light Water Reactor Sustainability Program. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1051995.
Full text