Academic literature on the topic 'Alborz Magmatic Belt'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Alborz Magmatic Belt.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Alborz Magmatic Belt"

1

AGHAZADEH, MEHRAJ, ANTONIO CASTRO, ZAHRA BADRZADEH, and KATHARINA VOGT. "Post-collisional polycyclic plutonism from the Zagros hinterland: the Shaivar Dagh plutonic complex, Alborz belt, Iran." Geological Magazine 148, no. 5-6 (June 24, 2011): 980–1008. http://dx.doi.org/10.1017/s0016756811000380.

Full text
Abstract:
AbstractThe petrological and geochronological study of the Cenozoic Shaivar Dagh composite intrusion in the Alborz Mountain belt (NW Iran) reveals important clues to decipher complex relations between magmatic and tectonic processes in the central sectors of the Tethyan (Alpine–Himalayan) orogenic belt. This pluton is formed by intrusion at different times of two main magmatic cycles. The older (Cycle 1) is formed by calc-alkaline silicic rocks, which range in composition from diorites to granodiorites and biotite granites, with abundant mafic microgranular enclaves. The younger cycle (Cycle 2) is formed by K-rich monzodiorite and monzonite of marked shoshonitic affinity. The latter form the larger volumes of the exposed plutonic rocks in the studied complex. Zircon geochronology (laser ablation ICP-MS analyses) gives a concordia age of 30.8 ± 2.1 Ma for the calc-alkaline rocks (Cycle 1) and a range from 23.3 ± 0.5 to 25.1 ± 0.9 Ma for the shoshonitic association (Cycle 2). Major and trace element relations strongly support distinct origins for each magmatic cycle. Rocks of Cycle 1 have all the characteristic features of active continental margins. Shoshonitic rocks (Cycle 2) define two continuous fractionation trends: one departing from a K-rich basaltic composition and the other from an intermediate, K-rich composition. A metasomatized-mantle origin for the two shoshonitic series of Cycle 2 is proposed on the basis of comparisons with experimental data. The origin of the calc-alkaline series is more controversial but it can be attributed to processes in the suprasubduction mantle wedge related to the incorporation of subducted mélanges in the form of silicic cold plumes. A time sequence can be established for the processes responsible of the generation of the two magmatic cycles: first a calc-alkaline cycle typical of active continental margins, and second a K-rich cycle formed by monzonites and monzodiorites. This sequence precludes the younger potassic magmas as precursors of the older calc-alkaline series. By contrast, the older calc-alkaline magmas may represent the metasomatic agents that modified the mantle wedge during the last stages of subduction and cooked a fertile mantle region for late potassic magmatism after continental collision.
APA, Harvard, Vancouver, ISO, and other styles
2

Nabatian, Ghasem, Majid Ghaderi, Farahnaz Daliran, and Nematollah Rashidnejad-Omran. "Sorkhe-Dizaj Iron Oxide-Apatite Ore Deposit in the Cenozoic Alborz-Azarbaijan Magmatic Belt, NW Iran." Resource Geology 63, no. 1 (December 20, 2012): 42–56. http://dx.doi.org/10.1111/j.1751-3928.2012.00209.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nabatian, Ghasem, Xian-Hua Li, Bo Wan, and Maryam Honarmand. "The genesis of Mo-Cu deposits and mafic igneous rocks in the Senj area, Alborz magmatic belt, Iran." Mineralogy and Petrology 112, no. 4 (November 21, 2017): 481–500. http://dx.doi.org/10.1007/s00710-017-0548-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Maghdour-Mashhour, Reza, Dariush Esmaeily, Amir Ali Tabbakh Shabani, Massimo Chiaradia, and Rais Latypov. "Petrology and geochemistry of the Karaj Dam basement sill: Implications for geodynamic evolution of the Alborz magmatic belt." Geochemistry 75, no. 2 (June 2015): 237–60. http://dx.doi.org/10.1016/j.chemer.2015.03.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ashrafi, Nasser, Ahmad Jahangiri, Noriko Hasebe, and G. Nelson Eby. "Petrology, geochemistry and geodynamic setting of Eocene-Oligocene alkaline intrusions from the Alborz-Azerbaijan magmatic belt, NW Iran." Geochemistry 78, no. 4 (December 2018): 432–61. http://dx.doi.org/10.1016/j.chemer.2018.10.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nabatian, Ghasem, Shao-Yong Jiang, Maryam Honarmand, and Franz Neubauer. "Zircon U–Pb ages, geochemical and Sr–Nd–Pb–Hf isotopic constraints on petrogenesis of the Tarom-Olya pluton, Alborz magmatic belt, NW Iran." Lithos 244 (February 2016): 43–58. http://dx.doi.org/10.1016/j.lithos.2015.11.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Castro, Antonio, Mehraj Aghazadeh, Zahra Badrzadeh, and Martim Chichorro. "Late Eocene–Oligocene post-collisional monzonitic intrusions from the Alborz magmatic belt, NW Iran. An example of monzonite magma generation from a metasomatized mantle source." Lithos 180-181 (November 2013): 109–27. http://dx.doi.org/10.1016/j.lithos.2013.08.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sepidbar, Fatemeh, Orhan Karsli, Richard M. Palin, and Federico Casetta. "Cenozoic temporal variation of crustal thickness in the Urumieh-Dokhtar and Alborz magmatic belts, Iran." Lithos 400-401 (November 2021): 106401. http://dx.doi.org/10.1016/j.lithos.2021.106401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

ETEMAD-SAEED, NAJMEH, and MAHDI NAJAFI. "Provenance and geochemical variations across the Ediacaran–Cambrian transition in the Soltanieh Formation, Alborz Mountains, Iran." Geological Magazine 156, no. 07 (July 9, 2018): 1157–74. http://dx.doi.org/10.1017/s001675681800050x.

Full text
Abstract:
AbstractThe Soltanieh Formation in the Alborz Mountains of northern Iran is not only a key lithostratigraphic unit for reconstruction of the Iranian geological history, but also a globally outstanding succession to reveal variations in seawater composition across the Precambrian–Cambrian (PC–C) transition. Mineralogical and geochemical data from a continuous stratigraphic record of Lower and Upper Shale members of the Soltanieh Formation are used to define their provenance, tectonic setting as well as geochemical variations during the PC–C transition. The Soltanieh mudrocks are composed of quartz and plagioclase, with minor constituents of illite, chlorite and montmorillonite. The chemical index of alteration, A-CN-K (Al2O3 – CaO + Na2O – K2O) relations, index of compositional variability, and Th/Sc versus Zr/Sc ratios indicate low chemical weathering in source areas, compositionally immature and first-cycle sediments. Immobile trace-element ratios and discrimination diagrams, chondrite-normalized rare Earth element (REE) patterns and negative Eu anomaly, along with low total REE abundances and negligible Ce anomalies, demonstrate that the Soltanieh Formation was mainly derived from proximal felsic-intermediate Cadomian magmatic arc sources and deposited in a continental-arc-related basin on the proto-Tethyan active margin of Gondwana. The palaeoredox indicators exhibit a remarkable change in environmental condition from a suboxic to an oxic state across the PC–C transition from the Kahar Formation to the Upper Shale Member of the Soltanieh Formation. Moreover, a significant upwards increase of P, Ba, and Ca is likely associated with enhanced fluxes of nutrient elements during the PC–C transition, coeval with the building of collisional mountain belts during the amalgamation of Gondwana.
APA, Harvard, Vancouver, ISO, and other styles
10

Faridazad, Morovvat, and Nasser Ashrafi. "Quaternary low-SiO2 adakites from the Alborz-Azerbaijan magmatic belt (NW Iran) and their geodynamic implications." Neues Jahrbuch für Mineralogie - Abhandlungen, May 16, 2023. http://dx.doi.org/10.1127/njma/2023/0319.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Alborz Magmatic Belt"

1

Alizadeh, Noudeh Shiva. "Evolution pétrologique des séries volcaniques du massif de Talysh (Iran du NW) à la transition Caucase-Caspienne et implications géodynamiques." Electronic Thesis or Diss., Chambéry, 2024. http://www.theses.fr/2024CHAMA053.

Full text
Abstract:
Le magmatisme cénozoïque de la ceinture orogénique qui relie les zones tectoniques de l'Iran, du bloc arménien méridional (petit Caucase) et de la Turquie, reste un sujet de débat. Cette recherche se concentre sur l'épaisse succession géologique de roches volcaniques shoshonitiques calco-alcalines riches en K exposées dans le massif de Talysh, qui fait partie de la ceinture magmatique de l'Alborz, dans le nord-ouest de l'Iran. L'objectif de cette étude est d'étudier les roches volcaniques relativement peu étudiées du massif de Talysh afin de mieux contraindre le cadre géodynamique du magmatisme pendant la convergence régionale. Une étude complète incluant de nouvelles données de terrain, la chimie minérale, la géochimie des éléments majeurs et traces des roches totales, la composition isotopique (Sr, Nd, Pb, Hf), la géochronologie 40Ar-39Ar, et le zircon U-Pb. Cette montre une série magmatique de basaltes riches en olivine, basaltes à clinopyroxène-phyrique, basaltes à clinopyroxène-phyrique, basaltes à amphibole-phyrique, téphrites, trachy-andésites et roches pyroclastiques. Ils contiennent de multiples populations de cristaux : olivine, clinopyroxène, amphibole et phlogopite, avec des textures de rééquilibrage ainsi qu'une zonation oscillatoire et inverse complexe, des textures criblées et des textures de résorption, ce qui suggère que les magmas ont été stockés dans et différenciés dans des chambres magmatiques avec des réinjections successives avant l'éruption. En outre, les âges 40Ar-39Ar de la biotite et des amphiboles des basaltes et les âges U-Pb du zircon des roches pyroclastiques indiquent que l'activité volcanique s'est déroulée pendant ~ 10 Myr (49-38 Myr). L'enrichissement en LILE et l'appauvrissement en Nb, Ta et Ti sont des caractéristiques des laves de Talysh, qui présentent des caractéristiques géochimiques d'arc. Leurs compositions isotopiques varient : 87Sr/86Sr (i) de 0,7045 à 0,7066, ɛNd(i) de ~-2,2 à +1,7, et ɛHf(i) de -2,5 à +3,6. Les roches ont des compositions radiogéniques en plomb (206Pb/204Pb de 18,51 à 19,04, 207Pb/204Pb de 15,59 à 15,63, et 208Pb/204Pb de 38,67 à 39,15). Les éléments majeurs de la plupart des échantillons primitifs (MgO > 5 % en poids) sont comparables à ceux des fusions partielles à faible degré (4-9%) d'une lherzolite à grenat et spinelle avec des rapports grenat:spinelle de 40:60 à 20:80. Les résultats obtenus par géothermobarométrie clinopyroxène-liquide indiquent une variété de réservoirs magmatiques, allant de niveaux profonds (79-60 km) à des niveaux moins profonds (2 km). Les rapports isotopiques de Sr, Nd, Pb et Hf, ainsi que les profils similaires d'éléments traces incompatibles normalisés par la chondrite et par le manteau primitif, ainsi que les estimations thermobarométriques sur les cristaux d'olivine, de clinopyroxène et d'amphibole, suggèrent que la source mantellique est une source asthénosphérique enrichie et que de la croûte continentale a été mélangée au cours du processus de différenciation. Les données sont cohérentes avec la fusion partielle d'un manteau sous-continental à grenat modifié par subduction et les interactions avec un manteau à spinelle pendant l'ascension magmatique. La phase magmatique éocène pourrait avoir été déclenchée par une remontée de l'Asthénosphère liée au début de la subduction à pendage sud du bassin transcaucasien. L'ascension magmatique a probablement été facilitée par des failles décrochantes trans-lithosphériques mises en évidence par les données paléomagnétiques. Le passage d'une composante magmatique calco-alcaline à une composante magmatique plus alcaline avec le temps, du sud au nord du massif de Talysh, suggère un raidissement de la plaque en réponse à un retournement à l'Éocène supérieur. Après cette période, le volcanisme s'est arrêté dans le Talysh Sud et a considérablement diminué dans le massif du Talysh Nord, où il a évolué vers un magmatisme de type adakitique au cours du Miocène supérieur et du Quaternaire
The Cenozoic magmatism of the Central Tethyan orogenic belt, which links the tectonic zones of Iran, the South Armenian Block (lesser Caucasus), and Turkey, remains a topic of debate. This research focuses on the thick geological succession of high-K calc-alkaline shoshonitic volcanic rocks exposed in the Talysh Massif, part of the Alborz magmatic belt, northwestern Iran. The aim of this study is to investigate the relatively unstudied volcanic rocks of the Talysh Massif to better constrain the geodynamic setting of magmatism during regional convergence. A comprehensive study including new field data, mineral chemistry, bulk-rock major and trace element geochemistry, isotope composition (Sr, Nd, Pb, Hf), geochronology 40Ar-39Ar, and zircon U-Pb. We classify them as olivine, clinopyroxene-phyric basalts, clinopyroxene-phyric basalts, amphibole-phyric basalts, tephrites, trachy-andesites, and pyroclastic rocks. They contain multiple crystal populations, including phenocrysts, antecrysts, and xenocrysts: olivine, clinopyroxene, amphibole, and re-equilibrium phlogopite, along with complex oscillatory and reverse zoning, sieve textures, and resorption textures, which suggests that the magmas stalled and differentiated in the crust prior to eruption. Olivine-clinopyroxene-phyric samples in the southern part of the study area exhibit olivine phenocrysts chemically balanced with their host rock, with a slight zoning from high-Mg# cores (Mg# = 90) to rims (Mg# = 80). Furthermore, the amphiboles, biotite 40Ar-39Ar ages of basalts, and zircon U-Pb ages of pyroclastic rocks indicate that volcanic activity took place for ~ 10 Myr (between 49 and 38 Myr). Enrichment in LILE and depletion in Nb, Ta, and Ti are characteristics of the Talysh lavas, which exhibit arc geochemical features. They have isotopic compositions that vary, for 87Sr/86Sr (i) from 0.7045 to 0.7066, for ɛNd(i) from ~-2.2 to +1.7, and ɛHf(i) from -2.5 to +3.6. The rocks have radiogenic lead 206Pb/204Pb ratios from 18.51 to 19.04, 207Pb/204Pb from 15.59 to 15.63, and 208Pb/204Pb from 38.67 to 39.15. The major elements of most primitive samples (MgO > 5 wt%) are comparable to those of melts obtained from low-degree (4–9%) partial melting of a spinel-garnet lherzolite with garnet:spinel ratios of 40:60 to 20:80. The results obtained from clinopyroxene-liquid geothermobarometry indicate a variety of magma reservoirs, ranging from deep levels (79–60 km) to shallower levels (2 km). The isotopic ratios of Sr, Nd, Pb, and Hf, as well as the similar chondrite-normalized REE and primitive-mantle-normalized incompatible trace element patterns along thermobarometry estimates on olivine, clinopyroxene, and amphibole crystals, suggests that the mantle source is an enriched asthenospheric source, and that continental crust was mixed in during the differentiation process. The data are consistent with the partial melting of a garnet-bearing subduction-modified subcontinental mantle and interactions with a spinel-bearing mantle during magmatic ascent. This magmatic flare-up could have been triggered by an asthenosphere upwelling related to the onset of south-dipping subduction of the Transcaucasus basin. Asthenosphere flow and magmatic ascent were likely facilitated by trans-lithospheric strike-slip faults and block rotations highlighted by paleomagnetic data. A transition from calc-alkaline towards a more alkaline magmatic component with time, from south to north of the Talysh massif, suggests a slab steepening in response to roll-back in the Late Eocene. After this period, volcanism stopped in the South Talysh and significantly decreased in the North Talysh massif, where it evolved into an adakitic-type magmatism during the Late Miocene and Quaternary
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Alborz Magmatic Belt"

1

Abdollah, Saidi, Khan Nazer Nasser, Hadi Pourjamali Zahra, and Farzad Kiana. "The Breaking of the Iranian Block during the Cretaceous and the Opening of New Oceanic Basins within the Tethys Ocean: The Case of the Sabzevar-Nain Basin and Its Geodynamic History." In Earth’s Crust and Its Evolution - From Pangea to the Present Continents. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.105440.

Full text
Abstract:
The Jurassic subduction of the Neo-Tethys oceanic crust under the western continental margin of the Iranian Block has led to the fragmentation of the Iranian Block in the back-arc basin, leading to the opening of three oceanic basins around it. The ophiolitic belts surrounding central Iran are the indicators of the closure of these basins. The Sabzevar-Nain Basin is one of these basins, which has been created between the micro-block of central Iran in the south and the Alborz Mountain Ranges in the north. This basin opened in the late Jurassic as a rift and then became a trough in the early Cretaceous. Finally, this basin developed into an oceanic basin in the early late Cretaceous. The sedimentation in this basin can be divided into pre-rift, syn-rift and oceanic environments. All of these sediments are strongly folded and faulted. The closure of this basin started during the Paleocene with a subduction under the southern margin of the Alborz Mountain Ranges. The collision event between the northern margin of the micro-block of central Iran and the southern margin of the Alborz Mountain Ranges occurred in the early Eocene. The result of this event was the creation of a wide collision zone, forming a volcanic arc and a back arc basin on the active of the Alborz Mountain Ranges, an ophiolitic belt, and post- collision intrusion masses that appear everywhere in the collision zone. In the point of lithology, these intrusion masses are composed of granite, diorite, and granodiorite. The magmatic activities that started in the Paleocene-early Eocene continued until early Quaternary.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography