Academic literature on the topic 'Al/AlN'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Al/AlN.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Al/AlN"

1

Makino, Yukio, Kesami Saito, Yoshihiro Murakami, and Katsuhiko Asami. "Phase Change of Zr-Al-N and Nb-Al-N Films Prepared by Magnetron Sputtering Method." Solid State Phenomena 127 (September 2007): 195–200. http://dx.doi.org/10.4028/www.scientific.net/ssp.127.195.

Full text
Abstract:
In order to examine the critical content of AlN for phase change from B1 type to B4 type, Zr-Al-N and Nb-Al-N pseudobinary films were synthesized with an inductively combined rf-plasma assisted magnetron sputtering method. From phase identification of these films by XRD and Raman scattering methods, it is found that phase change from B1 structure to B4 one occurs in the range from 30mol%AlN to 35mol%AlN for Zr-Al-N pseudobinary films and from 62mol%AlN to 70mol%AlN for Nb-Al-N pseudobinary films. The critical AlN content for Zr-Al-N pseudobinary films shows excellent agreement with the value (33mol%AlN) predicted by band parameters. The critical content for Nb-Al-N pseudobinary films is larger than the predicted value (53mol%AlN). It is suggested that the disagreement is attributed to a highly defective structure in Nb-Al-N pseudobinary films.
APA, Harvard, Vancouver, ISO, and other styles
2

Goujon, C., P. Goeuriot, M. Chedru, J. Vicens, J. L. Chermant, F. Bernard, J. C. Niepce, P. Verdier, and Y. Laurent. "Cryomilling of Al/AlN powders." Powder Technology 105, no. 1-3 (November 1999): 328–36. http://dx.doi.org/10.1016/s0032-5910(99)00155-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Amosov, Aleksandr P., Y. V. Titova, I. Y. Timoshkin, and Antonina A. Kuzina. "Fabrication of Al-AlN Nanocomposites." Key Engineering Materials 684 (February 2016): 302–9. http://dx.doi.org/10.4028/www.scientific.net/kem.684.302.

Full text
Abstract:
A review of the methods of obtaining and properties of aluminum matrix composites, discretely reinforced with ceramic particles and nanoparticles of aluminum nitride AlN, is given. The survey shows that at low weight, nanocomposites Al-AlN possess improved physical and mechanical properties, including at high temperatures up to 400-550°C, which makes them very attractive for applications in automotive, aerospace and semiconductor technology. However, due to the long duration and energy consumption, expensive and complicated equipment, low productivity of existing solid-phase methods of powder metallurgy and liquid-phase metallurgical processes of fabrication of nanocomposites of Al-AlN, there are not yet the mastered technologies of industrial production of these composites. Azide technology of self-propagating high-temperature synthesis (SHS-AZ) using sodium azide NaN3 as a solid nitriding reagent allows you to get relatively inexpensive nanopowder of aluminum nitride in the form of nanofibers along with side salt of cryolite Na3AlF6, which can play the role of flux when working with molten aluminum. A new simple ex-situ method of introduction of AlN particles in the molten aluminum alloy in the form of a composite master alloy obtained by fusing together a flux carnallite KCl·MgCl2 with AlN nanopowder mixed with cryolite Na3AlF6 was proposed. Results of experiments on the application of the proposed method for obtaining nanocomposite with matrix made of aluminum-magnesium alloy AlMg6 containing up to 1 % of the reinforcing phase AlN are presented.
APA, Harvard, Vancouver, ISO, and other styles
4

UDA, Masahiro, Satoru OHNO, and Hideo OKUYAMA. "Preparation of Ultrafine Powders of AlN and (AlN+Al) by Nitrogen Plasma-Al Reaction." Journal of the Ceramic Association, Japan 95, no. 1097 (1987): 86–90. http://dx.doi.org/10.2109/jcersj1950.95.86.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Uda, Masahiro, Satoru Ohno, and Hideo Okuyama. "Preparation of ultrafine powders of AlN and (AlN + Al) by nitrogen plasma-Al reaction." International Journal of High Technology Ceramics 3, no. 4 (January 1987): 333. http://dx.doi.org/10.1016/0267-3762(87)90101-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Daud, Abdul Razak, and Mahamad Noor Wahab. "Microstructure and Phases of As-Cast and Heat-Treated Al-Si-Mg/AlN Composites Prepared by Stir Casting." Advanced Materials Research 501 (April 2012): 155–59. http://dx.doi.org/10.4028/www.scientific.net/amr.501.155.

Full text
Abstract:
Al-Si-Mg/AlN composites were prepared by stir casting technique. The amount of AlN added to Al-Si-Mg alloy was from 2 to 10 wt%. As-cast composites were solutionised at 540 °C for 4 h, quenched in warm water, 60 °C then artificially aged at 180 °C for 4 h. The microstructure of Al-Si-Mg matrix alloy contained dendritic α-Al, needle-like Si and very little inter-metallic compounds. As-cast Al-Si-Mg/AlN composites have rounded α-Al phase and needle-like Si where AlN particles dispersed surrounding α-Al. Needle-like Si transformed to spheroid after artificial aging. The size of α-Al phases of heat-treated composites containing 2 and 5 wt% AlN was bigger than that of as-cast composites whereas the heat-treated Al-Si-Mg/10% AlN composite has thin and elongated dendritic α-Al phases, and larger AlN particles.
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Jie, Chonggao Bao, Yana Ma, and Zihan Chen. "Distribution control of AlN particles in Mg-Al/AlN composites." Journal of Alloys and Compounds 695 (February 2017): 162–70. http://dx.doi.org/10.1016/j.jallcom.2016.10.190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

OGAWA, Soichi, Masatoshi KONDO, Masami SHIMIZU, Bohyom LEE, and Masatomo YASUDA. "Optical Properties of the Sputter-Deposited AlN/Al/AlN Multilayer Nanofilms." Journal of The Surface Finishing Society of Japan 64, no. 5 (2013): 311–14. http://dx.doi.org/10.4139/sfj.64.311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, C. W., D. Y. Chen, C. Y. Hsu, Y. H. Chang, and K. H. Hou. "Spectrally selective Al/AlN/Al/AlN tandem solar absorber by inline reactive ac magnetron sputtering." Surface Engineering 27, no. 8 (September 2011): 616–22. http://dx.doi.org/10.1179/026708410x12786785573436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tang, Y. B., Y. Q. Liu, C. H. Sun, and H. T. Cong. "AlN nanowires for Al-based composites with high strength and low thermal expansion." Journal of Materials Research 22, no. 10 (October 2007): 2711–18. http://dx.doi.org/10.1557/jmr.2007.0368.

Full text
Abstract:
Based on the synthesis of a sufficient amount of AlN nanowires (AlN-NWs), AlN-NWs/Al composites with homogenously distributed AlN-NWs were fabricated. Microstructural observations reveal that the interface between AlN-NWs and Al matrix is clean and bonded well, and no interfacial reaction product was formed at the nanowire-matrix boundary. Mechanical properties including yield and tensile strength of the composites were improved with AlN-NWs volume fraction changing from 5 to 15 vol%, and the maximum yield and tensile strengths of the composite were about 6 and 5 times, respectively, as high as those of Al matrix. Meanwhile, AlN-NWs effectively decreased the coefficient of thermal expansion (CTE) of the composites, and the CTE of 15 vol% composite was about one half that of Al matrix. The results obtained suggest that AlN nanowire is a promising reinforcement for optimizing the mechanical and thermal properties of metal matrix composites.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Al/AlN"

1

DEPARDIEU, GILLES. "Proprietes optiques des nanocomposites al-aln." Paris 6, 1995. http://www.theses.fr/1995PA066580.

Full text
Abstract:
Le developpement rapide de nouveaux materiaux composites est une occasion de mieux comprendre leur interaction avec les rayonnements electromagnetiques. De nombreuses applications en decoulent comme la realisation de capteurs selectifs, de revetements pour des applications esthetiques ou de furtivite. Cette etude presente une synthese des modeles anciens jusqu'aux plus modernes des proprietes optiques des materiaux heterogenes desordonnes. En particulier, sont discutees l'application des theories du groupe de renormalisation et de la percolation, ainsi que les differentes variantes de theories de milieux effectifs. L'etude est menee sur un composite original: l'al-aln. L'importance de la morphologie 3d est soulignee, et celle-ci est prise en compte dans le modele propose, a l'aide d'outils de traitement d'image et de la programmation hyperparallele. Une comparaison theorie - experience permet enfin de valider le nouveau modele de renormalisation optique 3d
APA, Harvard, Vancouver, ISO, and other styles
2

BANAL, RYAN GANIPAN. "MOVPE Growth of AlN and AlGaN/AlN Quantum Wells and their Optical Polarization Properties." 京都大学 (Kyoto University), 2009. http://hdl.handle.net/2433/78005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

TABARY, PATRICK. "Etude du diagramme de phases al#2o#3-aln." Paris 11, 1997. http://www.theses.fr/1997PA112219.

Full text
Abstract:
Cette etude du diagramme al#2o#3-aln pour des compositions moyennes comprises entre 0 et 50%mol aln a ete realisee par plusieurs techniques incluant le dosage par microsonde de castaing, la microscopie electronique en transmission, la diffraction des neutrons et l'analyse thermique differentielle a haute temperature. Les principaux elements du nouveau diagramme sont les temperatures de fusion des phases spinelles (entre 2045 et 2085c), la composition du point eutectique 12h+liquide+gamma-alon (40%mol aln) et le domaine de stabilite en composition de la phase phi'-alon au voisinage de la fusion (de 10 a 20%mol aln). Les temperatures d'equilibre des polytypes 21r, 12h et 27r ont ete reevaluees et une nouvelle phase du systeme quaternaire al#2o#3-aln-al#4c#3 a ete decrite. A l'aide de la met, de la diffraction des r. X et des neutrons nous avons determine les mailles, la position des lacunes et les maclages des phases modulees phi' et delta-alon, et confirme l'existence de domaines d'antiphase. La modelisation thermodynamique du diagramme a l'aide du programme thermocalc a ete realisee apres description des sous-reseaux des phases phi' et delta-alon et en introduisant les enthalpies de fusion des phases spinelles obtenues par atd. L'evaluation des contraintes residuelles dans le materiau a montre l'influence de la relaxation plastique au cours du refroidissement. Le procede industriel de nitruration de l'aluminium en presence d'alumine a ete reproduit en laboratoire et a une echelle semi-industrielle. Les temperatures d'initiation de la reaction, les temperatures maximales atteintes et les taux de nitruration ont ainsi pu etre determines.
APA, Harvard, Vancouver, ISO, and other styles
4

Troadec, Carole. "Composite à matrice métallique Al-AlN : de la poudre au matériau." Grenoble INPG, 1996. http://www.theses.fr/1996INPG4205.

Full text
Abstract:
Cette etude s'inscrit dans le cadre de l'elaboration de composites a matrice metallique aluminium/nitrure d'aluminium, par metallurgie des poudres. Deux types de poudres sont utilisees: une poudre dite composite synthetisee par nitruration directe de l'aluminium par l'azote et une poudre dite melange obtenue a partir d'un melange de poudres commerciales elementaires aluminium et nitrure d'aluminium. Ces deux types de poudres subissent un broyage hautement energetique par melangeur planetaire sous argon, puis sont frittes par compression a chaud en phase solide. La microstructure de ces materiaux, etudiee en met et nanoanalyse edx, est relativement heterogene, constituee de zones denses polycristallines et de zones a forte porosite constituees de nanocristaux. La taille de ces zones microporeuses est superieure dans les materiaux melanges et varie en fonction du taux de nitrure d'aluminium et du temps de broyage. Les zones denses sont composees de grains d'aluminium entoures de nanocristaux de nitrure d'aluminium, avec des aiguilles d'alumine et quelques cristaux d'oxynitrure d'aluminium. L'ordre de grandeur des cristaux (<1 m) est confirme par diffraction des rayons x. Les proprietes physico-chimiques (coefficient de dilatation, conductivites thermique et electrique) et mecaniques (durete, module de young, limite d'elasticite, contrainte a la rupture) different en fonction du type des poudres de depart et evoluent avec la teneur en aln. Le comportement des deux types de materiaux differe egalement en usure et en corrosion. Ces nouveaux materiaux ont dans l'ensemble, a teneur en renfort similaire, des proprietes equivalentes a celles des materiaux al/sic ou al/al#2o#3
APA, Harvard, Vancouver, ISO, and other styles
5

Řihák, Radek. "Depozice Al a AlN ultratenkých vrstev na křemíkový a grafenový substrát." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-254277.

Full text
Abstract:
This master's thesis deals with preparation and analysis of ultrathin films of aluminum and aluminum nitride. Films were prepared by effusion cells designed in previous bachelor's thesis. Cell construction and testing is included in this thesis. Behavior of aluminum on silicon dioxide, silicon and graphene was studied. Preparation of aluminum nitride by effusion cell and nitrogen ion source is described.
APA, Harvard, Vancouver, ISO, and other styles
6

Nepal, Neeraj. "Deep ultraviolet photoluminescence studies of Al-rich AlGaN and AlN epilayers and nanostructures." Diss., Manhattan, Kan. : Kansas State University, 2006. http://hdl.handle.net/2097/221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Al, Tahtamouni Talal Mohammed Ahmad. "MOCVD growth and characterization of al-rich ALN/ALGAN epilayers and quantum wells." Diss., Manhattan, Kan. : Kansas State University, 2007. http://hdl.handle.net/2097/431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Xiao, Xiaoling, and S3060677@student rmit edu au. "Characterization of nano-structured coatings containing aluminium, aluminium-nitride and carbon." RMIT University. Applied Sciences, 2008. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20081217.100453.

Full text
Abstract:
There is an every increasing need to develop more durable and higher performing coatings for use in a range of products including tools, devices and bio-implants. Nano-structured coatings either in the form of a nanocomposite or a multilayer is of considerable interest since they often exhibit outstanding properties. The objective of this thesis was to use advanced plasma synthesis methods to produce novel nano-structured coatings with enhanced properties. Coatings consisting of combinations of aluminum (Al), aluminum nitride (AlN) and amorphous carbon (a-C) were investigated. Cathodic vacuum arc deposition and unbalanced magnetron sputtering were used to prepare the coatings. By varying the deposition conditions such as substrate bias and temperature, coatings with a variety of microstructures were formed. A comprehensive range of analytical methods have been employed to investigate the stoichiometry and microstructure of the coatings. These include Transmission Electron Microscopy (TEM), Scanning Transmission Electron Microscopy (STEM), Electron Energy Loss Spectroscopy, Auger Electron Spectroscopy, X-ray diffraction and Raman spectroscopy. In addition to the investigation of microstructure, the physical properties of the coatings were measured. Residual stress has been recognized as an important property in the study of thin film coatings since it can greatly affect the quality of the coatings. For this reason, residual stress has been extensively studied here. Hardness measurements were performed using a nano indentation system, which is sensitive to the mechanical properties of thin films. This thesis undertook the most comprehensive investigation of the Al/AlN multilayer system. A major finding was the identification of the conditions under which layers or nanocomposite form in this system. A model was developed based on energetics and diffusion limited aggregation that is consistent with the experimental data. Multilayers of a-C and Al were also found to form nanocomposites. No hardness enhancement as a function of layer thickness or feature size was observed in either the Al/AlN or a-C/a-C systems. It was found that the most important factor which determines hardness is the intrinsic stress, with films of high compressive stress exhibiting the highest hardness. Nano-structured multilayers of alternating high and low density a-C were investigated. For a-C multilayers prepared using two levels of DC bias, evidence of ion beam induced damage was observed at the interfaces of both the low and high density layers. In addition, the structure of the high density (ta-C, known as tetrahedral amorphous carbon) layers was found to be largely unchanged by annealing. These results extend our understanding of how a-C form from energetic ion beams and confirms the thermal stability of ta-C in a multilayer. This thesis also presented the first attempt to synthesis a-C multilayered films with a continuously varying DC bias in sinusoidal pattern. The resulting films were shown to have a structurally graded interface between layers and verified that ion energy and stress are the most important factors which determine the structure of a-C films.
APA, Harvard, Vancouver, ISO, and other styles
9

Ive, Tommy. "Growth and investigation of AlN/GaN and (Al,In)N/GaN based Bragg reflectors." [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=978915607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Burghartz, S. [Verfasser]. "Thermophysikalische Eigenschaften von α-Al₂O₃, MgAl₂O₄ und AlN im Tieftemperaturbereich / S. Burghartz." Karlsruhe : KIT-Bibliothek, 1995. http://d-nb.info/1099432189/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Al/AlN"

1

Maqrān, Ṣāliḥī. Jabhat al-Taḥrīr al-Waṭanī, Jaysh al-Taḥrīr al-Waṭanī =: FLN, ALN. Algiers?: s.n., 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Al/AlN"

1

Ogata, Shigenobu, and Hiroshi Kitagawa. "Ab initio Tensile Testing Simulation of Al, AlN and Al/AlN Composite." In Mesoscopic Dynamics of Fracture, 176–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-35369-1_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fang, Bin Xiang, Bo Quan Zhu, Wen Jie Zhang, Xue Dong Li, and Zheng Yun Fan. "Hydration Resistance of Al/AlN Bonded Corundum Based Multiphase Material." In High-Performance Ceramics V, 1133–36. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/0-87849-473-1.1133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Song, Xiu Feng, Ren Li Fu, Hong He, and De Liu Wang. "Structure and Dielectric Properties of AlN Multilayered Film on Al Substrate." In High-Performance Ceramics V, 1383–85. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/0-87849-473-1.1383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jang, Jung-Mock, Do-Hyeong Kim, Min-Kyu Paek, and Jong-Jin Pak. "Aln Formation in High-Al and High-Mn Alloyed Advanced High Strength Steels." In EPD Congress 2014, 285–90. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118889664.ch33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jin, Sheng Li, Ya Wei Li, Jing Liu, Yuan Bing Li, Lei Zhao, Xiao Hua Liu, Yu Ee Ni, and Ze Ya Li. "Microstructure and Phase Composition of AlN/Al Composite Fabricated by Directed Melt Nitridation." In High-Performance Ceramics V, 977–79. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/0-87849-473-1.977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kong, J. H., M. Okumiya, Y. Tsunekawa, K. Y. Yun, S. G. Kim, and M. Yoshida. "Growth of the AlN and Fe-Al Intermetallic Compound Multilayer as Different Nickel Concentration." In PRICM, 1257–63. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118792148.ch156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yang, Hong, Yuanding Huang, Karl Ulrich Kainer, and Hajo Dieringa. "Improving the Creep Resistance of Elektron21 by Adding AlN/Al Nanoparticles Using the High Shear Dispersion Technique." In The Minerals, Metals & Materials Series, 57–69. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72432-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Qi, Jian Qi, Tie Cheng Lu, Ji Cheng Zhou, Wei Pang, Jin Song Wen, Hai Ping Wang, Jun Feng He, et al. "Preparation of Transparent AlON Ceramics Using Powder Synthesized from Nano-Sized Al2O3 and AlN." In High-Performance Ceramics V, 447–49. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/0-87849-473-1.447.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, Cheng Fu, Chien Min Cheng, Ho Hua Chung, and Chao Chin Chan. "Sintering AlN Ceramics Below 1500°C with MgO-CaO-Al2O3-SiO2 Glass Addition." In Key Engineering Materials, 1868–71. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-410-3.1868.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

dos Santos, Claudinei, Kurt Strecker, M. J. R. Barboza, Sandro Aparecido Baldacim, F. Piorino Neto, Olivério Moreira Macedo Silva, and Cosme Roberto Moreira Silva. "Compressive Creep of Hot-Pressed Si3N4 Ceramics Using CRE2O3-Al2O3 or CRE2O3-AlN Additive Mixtures." In Advanced Powder Technology IV, 104–10. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-984-9.104.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Al/AlN"

1

Kanhe, Nilesh S., A. B. Nawale, N. V. Kulkarni, S. V. Bhoraskar, V. L. Mathe, A. K. Das, Alka B. Garg, R. Mittal, and R. Mukhopadhyay. "Synthesis of AlN∕Al Polycrystals along with Al Nanoparticles Using Thermal Plasma Route." In SOLID STATE PHYSICS, PROCEEDINGS OF THE 55TH DAE SOLID STATE PHYSICS SYMPOSIUM 2010. AIP, 2011. http://dx.doi.org/10.1063/1.3606345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bilokur, M., A. Gentle, M. Arnold, M. B. Cortie, and G. B. Smith. "Optical properties of refractory TiN, AlN and (Ti,Al)N coatings." In SPIE Micro+Nano Materials, Devices, and Applications, edited by Benjamin J. Eggleton and Stefano Palomba. SPIE, 2015. http://dx.doi.org/10.1117/12.2202403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ming Chang Shih, Hsuan Yang Lin, Jia Wei Tan, Cheng Sen Chen, and Shih Wei Feng. "A Si-based Al/AlN/Si mis device and its photo responsivity." In 2010 Conference on Precision Electromagnetic Measurements (CPEM 2010). IEEE, 2010. http://dx.doi.org/10.1109/cpem.2010.5544757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Guowang, Tom Zimmermann, Yu Cao, Chuanxin Lian, Xiu Xing, Ronghua Wang, Patrick Fay, Huili Grace Xing, and Debdeep Jena. "Work-function engineering in novel high Al composition Al0.72Ga0.28N/AlN/GaN HEMTs." In 2010 68th Annual Device Research Conference (DRC). IEEE, 2010. http://dx.doi.org/10.1109/drc.2010.5551983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Yingge, Lianxiang Ma, Dian Zhang, and Ximei Liu. "FEM simulation of SAW temperature sensor based on Al/AlN/Si structure." In 2017 Chinese Automation Congress (CAC). IEEE, 2017. http://dx.doi.org/10.1109/cac.2017.8243987.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Horikawa, Shotaro, Sho Morita, Jianbo Liang, Yoshihisa Kaneko, Yoshitaka Nishio, Moeko Matsubara, Hiroshi Asahi, and Naoteru Shigekawa. "Bonding strength evaluation of Al foil/AlN junctions by surface activated bonding." In 2019 6th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D). IEEE, 2019. http://dx.doi.org/10.23919/ltb-3d.2019.8735417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Alizadeh, M., B. Shokri, and N. Abd Rahim. "Growth And Characterization of Al-AlN Films By Plasma-Assisted Reactive Evaporation." In 5th IET International Conference on Clean Energy and Technology (CEAT2018). Institution of Engineering and Technology, 2018. http://dx.doi.org/10.1049/cp.2018.1294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yusoff, Mohd Zaki Mohd, Azzafeerah Mahyuddin, Zainuriah Hassan, Haslan Abu Hassan, and Mat Johar Abdullah. "The investigation of Al[sub 0.29]Ga[sub 0.71]N/GaN/AlN and AlN/GaN/AlN thin films grown on Si (111) by RF plasma-assisted MBE." In 2ND ASEAN - APCTP WORKSHOP ON ADVANCED MATERIALS SCIENCE AND NANOTECHNOLOGY: (AMSN 2010). AIP, 2012. http://dx.doi.org/10.1063/1.4732500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Libin, Guo Zhu, Kuan Sun, Zhiyin Gan, and Xiaobing Luo. "Molecular Dynamics Simulation of AlN Deposition: Effect of N:Al Flux Ratio." In ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/ipack2018-8315.

Full text
Abstract:
In order to study the optimal N:Al flux ratio during the deposition of AlN, the effects of N:Al flux ratio on the crystal quality (crystallinity and surface roughness) of homoepitaxial AlN are investigated. The growth temperature ranges from 1600 K to 2000 K with an increment of 200 K. When the N:Al flux ratios are changed from 0.8 to 2.8, the good crystallinity is obtained at 1600 K with the N:Al flux ratio of 2.4, while it is obtained at 1800 K with the N:Al flux ratio of 2.4 and with the N:Al flux ratio of 2.0 at 2000 K. The crystallinity at 1800 K with N:Al flux ratio of 2.4 stands out among these three. At 1800 K with varied N:Al flux ratios, the minimum surface roughness is also obtained at the N:Al flux ratio of 2.4. Further more, the distribution of deposited Al atoms at 1800 K is explored, the result shows that the uniform distribution of Al atoms appears at N:Al flux ratio of 2.4.
APA, Harvard, Vancouver, ISO, and other styles
10

Ebata, K., J. Nishinaka, Y. Taniyasu, and K. Kumakura. "Enhanced Hole Generation in Mg-doped AlN/AlGaN Superlattices with High Average Al Content." In 2017 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2017. http://dx.doi.org/10.7567/ssdm.2017.g-2-04.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Al/AlN"

1

Virkar, A. V. Fabrication, phase transformation studies and characterization of SiC-AlN-Al sub 2 OC ceramics. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/5053027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Virkar, A. V. Fabrication, phase transformation studies and characterization of SiC-AlN-Al sub 2 OC ceramics. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/5932831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Virkar, A. V. Fabrication, phase transformation studies, and characterization of SiC-AlN-Al{sub 2}OC ceramics. Final report. Office of Scientific and Technical Information (OSTI), February 1994. http://dx.doi.org/10.2172/10141373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Batyrev, Iskander G., Chi-Chin Wu, Peter W. Chung, N. S. Weingarten, and Kenneth A. Jones. Control of Defects in Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates. Fort Belvoir, VA: Defense Technical Information Center, February 2013. http://dx.doi.org/10.21236/ada571048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Virkar, A. V. Fabrication, phase transformation studies and characterization of SiC-AlN-Al{sub 2}OC ceramics. Progress report. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/10120132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Virkar, A. V., Qiang Tian, and Jong Chen. Fabrication, phase transformation studies and characterization of SiC-AlN-Al{sub 2}OC ceramics. [Annual report, February 1, 1993--July 30, 1993]. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/10134690.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography