Journal articles on the topic 'AIR COOLED BLAST'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'AIR COOLED BLAST.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Tole, Ilda, Magdalena Rajczakowska, Abeer Humad, Ankit Kothari, and Andrzej Cwirzen. "Geopolymer Based on Mechanically Activated Air-cooled Blast Furnace Slag." Materials 13, no. 5 (March 4, 2020): 1134. http://dx.doi.org/10.3390/ma13051134.
Full textRíos, José, Adelardo Vahí, Carlos Leiva, Antonio Martínez-De la Concha, and Héctor Cifuentes. "Analysis of the Utilization of Air-Cooled Blast Furnace Slag as Industrial Waste Aggregates in Self-Compacting Concrete." Sustainability 11, no. 6 (March 21, 2019): 1702. http://dx.doi.org/10.3390/su11061702.
Full textKováč, Marek, and Alena Sicakova. "Influence of Aggregate and Binder Content on the Properties of Pervious Concrete." Key Engineering Materials 838 (April 2020): 3–9. http://dx.doi.org/10.4028/www.scientific.net/kem.838.3.
Full textLee, Seung-Heun, Seol-Woo Park, Dong-Woo Yoo, and Dong-Hyun Kim. "Fluidity of Cement Paste with Air-Cooled Blast Furnace Slag." Journal of the Korean Ceramic Society 51, no. 6 (November 30, 2014): 584–90. http://dx.doi.org/10.4191/kcers.2014.51.6.584.
Full textGrubb, Dennis G., and Dusty R. V. Berggren. "Air-Cooled Blast Furnace Slag. I: Characterization and Leaching Context." Journal of Hazardous, Toxic, and Radioactive Waste 22, no. 4 (October 2018): 04018030. http://dx.doi.org/10.1061/(asce)hz.2153-5515.0000411.
Full textAhn, Byung-Hwan, Su-Jin Lee, and Chan-Gi Park. "Physical and Mechanical Properties of Rural-Road Pavement Concrete in South Korea Containing Air-Cooled Blast-Furnace Slag Aggregates." Applied Sciences 11, no. 12 (June 18, 2021): 5645. http://dx.doi.org/10.3390/app11125645.
Full textLuna-Galiano, Yolanda, Carlos Leiva Fernández, Rosario Villegas Sánchez, and Constantino Fernández-Pereira. "Development of Geopolymer Mortars Using Air-Cooled Blast Furnace Slag and Biomass Bottom Ashes as Fine Aggregates." Processes 11, no. 6 (May 23, 2023): 1597. http://dx.doi.org/10.3390/pr11061597.
Full textNisa, Ambreen u. "Study on Properties of Concrete After Incorporating Waste Materials." IOP Conference Series: Earth and Environmental Science 1110, no. 1 (February 1, 2023): 012064. http://dx.doi.org/10.1088/1755-1315/1110/1/012064.
Full textZhou, Lvshan, Tongjiang Peng, Hongjuan Sun, and Sanyuan Wang. "Thermodynamics analysis and experiments on Ti-bearing blast furnace slag leaching enhanced by sulfuric acid roasting." RSC Advances 12, no. 54 (2022): 34990–5001. http://dx.doi.org/10.1039/d2ra06237b.
Full textTripathy, Sunil Kumar, Jayalaxmi Dasu, Y. Rama Murthy, Gajanan Kapure, Atanu Ranajan Pal, and Lev O. Filippov. "Utilisation perspective on water quenched and air-cooled blast furnace slags." Journal of Cleaner Production 262 (July 2020): 121354. http://dx.doi.org/10.1016/j.jclepro.2020.121354.
Full textEndawati, Jul, Rochaeti, and R. Utami. "Optimization of Concrete Porous Mix Using Slag as Substitute Material for Cement and Aggregates." Applied Mechanics and Materials 865 (June 2017): 282–88. http://dx.doi.org/10.4028/www.scientific.net/amm.865.282.
Full textGáspár, László, and Zsolt Bencze. "Blast furnace slag in road construction and maintenance." Dorogi i mosti 2021, no. 23 (March 25, 2021): 53–59. http://dx.doi.org/10.36100/dorogimosti2021.23.053.
Full textShi, Jinyan, Baoju Liu, S. H. Chu, Yu Zhang, Zedi Zhang, and Kaidong Han. "Recycling air-cooled blast furnace slag in fiber reinforced alkali-activated mortar." Powder Technology 407 (July 2022): 117686. http://dx.doi.org/10.1016/j.powtec.2022.117686.
Full textGrubb, Dennis G., Dusty R. V. Berggren, and Todd B. Weik. "Air-Cooled Blast Furnace Slag. II: Phosphate Removal from Simulated Rainfall Events." Journal of Hazardous, Toxic, and Radioactive Waste 22, no. 4 (October 2018): 04018031. http://dx.doi.org/10.1061/(asce)hz.2153-5515.0000410.
Full textWang, Hong, Bin Ding, Xiao-Ying Liu, Xun Zhu, Xian-Yan He, and Qiang Liao. "Solidification behaviors of a molten blast furnace slag droplet cooled by air." Applied Thermal Engineering 127 (December 2017): 915–24. http://dx.doi.org/10.1016/j.applthermaleng.2017.07.215.
Full textWang, Hui, Su Ping Cui, and Ya Li Wang. "Influence of Process Conditions on the Structure and Hydraulic Activity of Air-Cooling Blast Furnace Slag." Materials Science Forum 814 (March 2015): 476–82. http://dx.doi.org/10.4028/www.scientific.net/msf.814.476.
Full textBao, Ze Fu, Hai Feng Dai, Peng Zang, and Jiang Ping Wang. "Design and Application of Forced Heat Dispersing Device of Superdeep Drilling Rig in High Temperature." Advanced Materials Research 339 (September 2011): 561–65. http://dx.doi.org/10.4028/www.scientific.net/amr.339.561.
Full textVerian, Kho Pin, Parth Panchmatia, Jan Olek, and Tommy Nantung. "Pavement Concrete with Air-Cooled Blast Furnace Slag and Dolomite as Coarse Aggregates." Transportation Research Record: Journal of the Transportation Research Board 2508, no. 1 (January 2015): 55–64. http://dx.doi.org/10.3141/2508-07.
Full textWang, Aiguo, Min Deng, Daosheng Sun, Bing Li, and Mingshu Tang. "Effect of crushed air-cooled blast furnace slag on mechanical properties of concrete." Journal of Wuhan University of Technology-Mater. Sci. Ed. 27, no. 4 (July 14, 2012): 758–62. http://dx.doi.org/10.1007/s11595-012-0543-y.
Full textTobo, Hiroyuki, Yoko Miyamoto, Keiji Watanabe, Michihiro Kuwayama, Tatsuya Ozawa, and Toshihiro Tanaka. "Solidification Conditions to Reduce Porosity of Air-cooled Blast Furnace Slag for Coarse Aggregate." Tetsu-to-Hagane 99, no. 8 (2013): 532–41. http://dx.doi.org/10.2355/tetsutohagane.99.532.
Full textLee, Seong-Ho, Joobeom Seo, Kwang-Suk You, Thenepalli Thriveni, and Ji-Whan Ahn. "Synthesis of calcium carbonate powder from air-cooled blast furnace slag under pressurized CO2atmosphere." Geosystem Engineering 15, no. 4 (October 30, 2012): 292–98. http://dx.doi.org/10.1080/12269328.2012.732317.
Full textTobo, Hiroyuki, Yoko Miyamoto, Keiji Watanabe, Michihiro Kuwayama, Tatsuya Ozawa, and Toshihiro Tanaka. "Solidification Conditions to Reduce Porosity of Air-cooled Blast Furnace Slag for Coarse Aggregate." ISIJ International 54, no. 3 (2014): 704–13. http://dx.doi.org/10.2355/isijinternational.54.704.
Full textYuan-Sheng, Shen, Liu Zong-Ming, Zhu Tao, Yan Fu-Sheng, Xin Hong-Ni, and Sun Rui-Lian. "The new technology and the partial thermotechnical computation for air-cooled blast furnace tuyere." Applied Thermal Engineering 29, no. 5-6 (April 2009): 1232–38. http://dx.doi.org/10.1016/j.applthermaleng.2008.06.026.
Full textWang, Guiqiang, Xiaohang Cheng, Zhiqiangè Kang, and Guohui Feng. "Influence of Airflow Field on Food Freezing and Energy Consumption in Cold Storage." E3S Web of Conferences 53 (2018): 01038. http://dx.doi.org/10.1051/e3sconf/20185301038.
Full textPanchmatia, Parth, Taehwan Kim, and Jan Olek. "Effects of Air-Cooled Blast Furnace Slag Aggregate on Pore Solution Chemistry of Cementitious Systems." Journal of Materials in Civil Engineering 32, no. 1 (January 2020): 04019317. http://dx.doi.org/10.1061/(asce)mt.1943-5533.0002960.
Full textCao, Qi, Usman Nawaz, Xin Jiang, Lihua Zhang, and Wajahat Sammer Ansari. "Effect of air-cooled blast furnace slag aggregate on mechanical properties of ultra-high-performance concrete." Case Studies in Construction Materials 16 (June 2022): e01027. http://dx.doi.org/10.1016/j.cscm.2022.e01027.
Full textWang, Aiguo, Min Deng, Daosheng Sun, Bing Li, and Mingshu Tang. "Physical properties of crushed air-cooled blast furnace slag and numerical representation of its morphology characteristics." Journal of Wuhan University of Technology-Mater. Sci. Ed. 27, no. 5 (October 2012): 973–78. http://dx.doi.org/10.1007/s11595-012-0584-2.
Full textde Matos, Paulo R., Jade C. P. Oliveira, Taísa M. Medina, Diego C. Magalhães, Philippe J. P. Gleize, Rudiele A. Schankoski, and Ronaldo Pilar. "Use of air-cooled blast furnace slag as supplementary cementitious material for self-compacting concrete production." Construction and Building Materials 262 (November 2020): 120102. http://dx.doi.org/10.1016/j.conbuildmat.2020.120102.
Full textNicula, Liliana Maria, Daniela Lucia Manea, Dorina Simedru, Oana Cadar, Mihai Liviu Dragomir, Ioan Ardelean, and Ofelia Corbu. "Potential Role of GGBS and ACBFS Blast Furnace Slag at 90 Days for Application in Rigid Concrete Pavements." Materials 16, no. 17 (August 29, 2023): 5902. http://dx.doi.org/10.3390/ma16175902.
Full textManni, Mattia, Claudia Fabiani, Andrea Nicolini, Anna Laura Pisello, Federico Rossi, and Franco Cotana. "Assessment of operating temperature within the new pavilion for slag management in Terni." Journal of Physics: Conference Series 2177, no. 1 (April 1, 2022): 012008. http://dx.doi.org/10.1088/1742-6596/2177/1/012008.
Full textPark, Se-Ho, Seung-Tae Lee, and Jae-Hong Jeong. "Experimental study on resistance of cement concrete pavement constructed using air-cooled and water-cooled ground blast-furnace slag exposed to combined carbonation and scaling." International Journal of Highway Engineering 22, no. 5 (October 30, 2020): 47–54. http://dx.doi.org/10.7855/ijhe.2020.22.5.047.
Full textPark, Yong-Kyu, and Ki-Won Yoon. "The Properties of Air-Cooled Blast Furnace Slag as Coarse Aggregates and the Applicability Evaluation to PHC Pile." Journal of Korea Society of Waste Management 31, no. 6 (September 30, 2014): 681–88. http://dx.doi.org/10.9786/kswm.2014.31.6.681.
Full textPark, Yong-Kyu, Hyun-Woo Kim, Seung-Il Kim, Kab-Soo Hur, and Ki-Won Yoon. "The Optimal Mixing Design of the PHC Piles Utilizing the Air Cooled Blast Furnace Slag as Coarse Aggregate." Journal of the Korean Recycled Construction Resources Institute 2, no. 2 (June 30, 2014): 137–44. http://dx.doi.org/10.14190/jrcr.2014.2.2.137.
Full textEndawati, Jul. "Permeability and Porosity of Pervious Concrete Containing Blast Furnace Slag as a Part of Binder Materials and Aggregate." Solid State Phenomena 266 (October 2017): 272–77. http://dx.doi.org/10.4028/www.scientific.net/ssp.266.272.
Full textEndawati, Jul. "Properties of GGBFS-Based Pervious Concrete Containing Fly Ash and Silica Fume." Solid State Phenomena 266 (October 2017): 278–82. http://dx.doi.org/10.4028/www.scientific.net/ssp.266.278.
Full textPanchmatia, Parth, Jan Olek, and Taehwan Kim. "The influence of air cooled blast furnace slag (ACBFS) aggregate on the concentration of sulfates in concrete’s pore solution." Construction and Building Materials 168 (April 2018): 394–403. http://dx.doi.org/10.1016/j.conbuildmat.2018.02.133.
Full textVerian, Kho Pin, and Ali Behnood. "Effects of deicers on the performance of concrete pavements containing air-cooled blast furnace slag and supplementary cementitious materials." Cement and Concrete Composites 90 (July 2018): 27–41. http://dx.doi.org/10.1016/j.cemconcomp.2018.03.009.
Full textAhn, Byung-Hwan, Su-Jin Lee, and Chan-Gi Park. "Chloride Ion Diffusion and Durability Characteristics of Rural-Road Concrete Pavement of South Korea Using Air-Cooled Slag Aggregates." Applied Sciences 11, no. 17 (September 4, 2021): 8215. http://dx.doi.org/10.3390/app11178215.
Full textSemenov, Yu S., E. I. Shumelchik, V. V. Horupakha, S. V. Vashchenko, O. Yu Khudyakov, K. P. Ermolina, I. Yu Semion, and I. V. Chychov. "INTRODUCTION OF DECISION SUPPORT SYSTEMS FOR BLAST SMELTING CONTROL IN THE CONDITIONS OF METALLURGICAL PRODUCTION OF PRJSC "DNIPROVSKYI COKE PLANT"." Fundamental and applied problems of ferrous metallurgy, no. 35 (2021): 78–94. http://dx.doi.org/10.52150/2522-9117-2021-35-78-94.
Full textShi, Jinyan, Jinxia Tan, Baoju Liu, Jiazhuo Chen, Jingdan Dai, and Zhihai He. "Experimental study on full-volume slag alkali-activated mortars: Air-cooled blast furnace slag versus machine-made sand as fine aggregates." Journal of Hazardous Materials 403 (February 2021): 123983. http://dx.doi.org/10.1016/j.jhazmat.2020.123983.
Full textAbdel-Ghani, Nour T., Hamdy A. El-Sayed, and Amel A. El-Habak. "Utilization of by-pass cement kiln dust and air-cooled blast-furnace steel slag in the production of some “green” cement products." HBRC Journal 14, no. 3 (December 2018): 408–14. http://dx.doi.org/10.1016/j.hbrcj.2017.11.001.
Full textOzbakkaloglu, Togay, Lei Gu, and Ali Fallah Pour. "Normal- and high-strength concretes incorporating air-cooled blast furnace slag coarse aggregates: Effect of slag size and content on the behavior." Construction and Building Materials 126 (November 2016): 138–46. http://dx.doi.org/10.1016/j.conbuildmat.2016.09.015.
Full textRios, J. D., C. Arenas, H. Cifuentes, B. Peceño, and C. Leiva. "Porous Structure by X-Ray Computed Tomography and Sound Absorption in Pervious Concretes with Air Cooled Blast Furnace Slag as Coarse Aggregate." Acoustics Australia 47, no. 3 (July 4, 2019): 271–76. http://dx.doi.org/10.1007/s40857-019-00162-5.
Full textHarmaji, Andrie, Andri Hardiansyah, Neneng Annisa Widianingsih, Rodulotum Minriyadlil Jannah, and Syoni Soepriyanto. "The effect of Basic Oxygen Furnace, Blast Furnace, and Kanbara Reactor Slag as Reinforcement to Cement Based Mortar." JPSE (Journal of Physical Science and Engineering) 7, no. 1 (April 9, 2022): 56–61. http://dx.doi.org/10.17977/um024v7i12022p056.
Full textKim, Jun, Abdul Qudoos, Sadam Jakhrani, Atta-ur-Rehman, Jeong Lee, Seong Kim, and Jae-Suk Ryou. "Mechanical Properties and Sulfate Resistance of High Volume Fly Ash Cement Mortars with Air-Cooled Slag as Fine Aggregate and Polypropylene Fibers." Materials 12, no. 3 (February 3, 2019): 469. http://dx.doi.org/10.3390/ma12030469.
Full textKokane, Rushikesh S., Chintamani R. Upadhye, and Avesahemad S. N. Husainy. "A Review on Recent Techniques for Food Preservation." Asian Review of Mechanical Engineering 10, no. 2 (November 5, 2021): 4–9. http://dx.doi.org/10.51983/arme-2021.10.2.3009.
Full textWang, Aiguo, Peng Liu, Kaiwei Liu, Yan Li, Gaozhan Zhang, and Daosheng Sun. "Application of Air-cooled Blast Furnace Slag Aggregates as Replacement of Natural Aggregates in Cement-based Materials: A Study on Water Absorption Property." Journal of Wuhan University of Technology-Mater. Sci. Ed. 33, no. 2 (April 2018): 445–51. http://dx.doi.org/10.1007/s11595-018-1843-6.
Full textNicula, Liliana Maria, Daniela Lucia Manea, Dorina Simedru, Oana Cadar, Anca Becze, and Mihai Liviu Dragomir. "The Influence of Blast Furnace Slag on Cement Concrete Road by Microstructure Characterization and Assessment of Physical-Mechanical Resistances at 150/480 Days." Materials 16, no. 9 (April 24, 2023): 3332. http://dx.doi.org/10.3390/ma16093332.
Full textAhadi, Khalif, Guntur Tri Setiadanu, Yohanes Gunawan, Subhan Nafis, and Dedi Suntoro. "Energy Consumption Analysis in Katsuwonus Pelamis sp. Freezing and Storaging Process." E3S Web of Conferences 232 (2021): 03017. http://dx.doi.org/10.1051/e3sconf/202123203017.
Full textNicula, Liliana Maria, Daniela Lucia Manea, Dorina Simedru, Oana Cadar, Ioan Ardelean, and Mihai Liviu Dragomir. "The Advantages on Using GGBS and ACBFS Aggregate to Obtain an Ecological Road Concrete." Coatings 13, no. 8 (August 3, 2023): 1368. http://dx.doi.org/10.3390/coatings13081368.
Full text