Journal articles on the topic 'Air-blood barrier'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Air-blood barrier.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Simionescu, Maya. "Cellular components of the air-blood barrier." Journal of Cellular and Molecular Medicine 5, no. 3 (July 2001): 320–21. http://dx.doi.org/10.1111/j.1582-4934.2001.tb00167.x.
Full textFu, Anchen, Mingyang Chang, Haiyan Zhu, Hongrui Liu, Danhong Wu, and Hulie Zeng. "Air-blood barrier (ABB) on a chip." TrAC Trends in Analytical Chemistry 159 (February 2023): 116919. http://dx.doi.org/10.1016/j.trac.2023.116919.
Full textElliott, Rebekah Omarkhail, and Mei He. "Unlocking the Power of Exosomes for Crossing Biological Barriers in Drug Delivery." Pharmaceutics 13, no. 1 (January 19, 2021): 122. http://dx.doi.org/10.3390/pharmaceutics13010122.
Full textKhadzhieva, M. B., A. S. Gracheva, A. V. Ershov, Yu V. Chursinova, V. A. Stepanov, L. S. Avdeikina, O. A. Grebenchikov, et al. "Biomarkers of Air-Blood Barrier Damage In COVID-19." General Reanimatology 17, no. 3 (July 3, 2021): 16–31. http://dx.doi.org/10.15360/1813-9779-2021-3-2-0.
Full textBajanowski, T., and B. Brinkmann. "Thickness of the air-blood tissue barrier in infants." International Journal of Legal Medicine 113, no. 6 (October 17, 2000): 332–37. http://dx.doi.org/10.1007/s004149900103.
Full textMcElroy, Mary C., Helen R. Harty, Gayle E. Hosford, Gráinne M. Boylan, Jean-François Pittet, and Timothy J. Foster. "Alpha-Toxin Damages the Air-Blood Barrier of the Lung in a Rat Model of Staphylococcus aureus-Induced Pneumonia." Infection and Immunity 67, no. 10 (October 1, 1999): 5541–44. http://dx.doi.org/10.1128/iai.67.10.5541-5544.1999.
Full textJohansson, Barbro B. "Cerebral air embolism and the blood-brain barrier in the rat." Acta Neurologica Scandinavica 62, no. 4 (January 29, 2009): 201–9. http://dx.doi.org/10.1111/j.1600-0404.1980.tb03027.x.
Full textTsuda, Akira, Thomas C. Donaghey, Nagarjun V. Konduru, Georgios Pyrgiotakis, Laura S. Van Winkle, Zhenyuan Zhang, Patricia Edwards, Jessica-Miranda Bustamante, Joseph D. Brain, and Phillip Demokritou. "Age-Dependent Translocation of Gold Nanoparticles across the Air–Blood Barrier." ACS Nano 13, no. 9 (August 9, 2019): 10095–102. http://dx.doi.org/10.1021/acsnano.9b03019.
Full textKo, Myung-Ah, Jung Hwa Lee, and Sang-Beom Jeon. "Ischemic Penumbra and Blood–Brain Barrier Disruption in Cerebral Air Embolism." American Journal of Respiratory and Critical Care Medicine 201, no. 3 (February 1, 2020): 369–70. http://dx.doi.org/10.1164/rccm.201809-1620im.
Full textZagorul'ko, A. K., A. A. Birkun, G. V. Kobozev, and L. G. Safronova. "Correlation of ultrastructure of the air-blood barrier and surfactant activity." Bulletin of Experimental Biology and Medicine 106, no. 5 (November 1988): 1637–41. http://dx.doi.org/10.1007/bf00840866.
Full textSeredenko, M. M., A. A. Moibenko, E. V. Rozova, and L. A. Grabovskii. "Changes in the air-blood barrier of the lungs during hyperthermia." Bulletin of Experimental Biology and Medicine 106, no. 2 (August 1988): 1189–92. http://dx.doi.org/10.1007/bf00840398.
Full textConforti, Elena, Carla Fenoglio, Graziella Bernocchi, Ombretta Bruschi, and Giuseppe A. Miserocchi. "Morpho-functional analysis of lung tissue in mild interstitial edema." American Journal of Physiology-Lung Cellular and Molecular Physiology 282, no. 4 (April 1, 2002): L766—L774. http://dx.doi.org/10.1152/ajplung.00313.2001.
Full textSchulze, Christine, Ulrich F. Schaefer, Matthias Voetz, Wendel Wohlleben, Cornel Venzago, and Claus-Michael Lehr. "Transport of Metal Oxide Nanoparticles Across Calu-3 Cell Monolayers Modelling the Air-Blood Barrier." EURO-NanoTox-Letters 3, no. 1 (December 1, 2011): 1–10. http://dx.doi.org/10.1515/entl-2015-0003.
Full textBarni, Sergio, Franco Bernini, and Paola De Piceis Polver. "Ultrastructural changes of the air-blood barrier in the lung of Rana esculenta during natural hibernation." Amphibia-Reptilia 17, no. 2 (1996): 141–47. http://dx.doi.org/10.1163/156853896x00171.
Full textWest, John B. "Comparative physiology of the pulmonary blood-gas barrier: the unique avian solution." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 297, no. 6 (December 2009): R1625—R1634. http://dx.doi.org/10.1152/ajpregu.00459.2009.
Full textMaina, John N., and John B. West. "Thin and Strong! The Bioengineering Dilemma in the Structural and Functional Design of the Blood-Gas Barrier." Physiological Reviews 85, no. 3 (July 2005): 811–44. http://dx.doi.org/10.1152/physrev.00022.2004.
Full textFakhri, Yadolah. "Association Between Fine Particulate Matter (PM2.5) and the Reproductive System: A Narrative Review." Journal of Clinical and Nursing Research 6, no. 3 (May 30, 2022): 190–96. http://dx.doi.org/10.26689/jcnr.v6i3.3761.
Full textAl-Kadhomiy, N. K., and G. M. Hughes. "Histological study of different regions of the skin and gills in the mudskipper, Boleophthalmus boddarti with respect to their respiratory function." Journal of the Marine Biological Association of the United Kingdom 68, no. 3 (August 1988): 413–22. http://dx.doi.org/10.1017/s0025315400043319.
Full textBao, Jun, Shanjun Tan, Wenkui Yu, Zhiliang Lin, Yi Dong, Qiyi Chen, Jialiang Shi, et al. "The Effect of Peritoneal Air Exposure on Intestinal Mucosal Barrier." Gastroenterology Research and Practice 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/674875.
Full textMetcalfe, Su M. "LIF and the lung’s stem cell niche: is failure to use LIF to protect against COVID-19 a grave omission in managing the pandemic?" Future Virology 15, no. 10 (October 2020): 659–62. http://dx.doi.org/10.2217/fvl-2020-0340.
Full textBeretta, Egidio, Francesca Lanfranconi, Gabriele Simone Grasso, Manuela Bartesaghi, Hailu Kinfu Alemayehu, Lorenza Pratali, Bruna Catuzzo, Guido Giardini, and Giuseppe Miserocchi. "Air blood barrier phenotype correlates with alveolo-capillary O 2 equilibration in hypobaric hypoxia." Respiratory Physiology & Neurobiology 246 (December 2017): 53–58. http://dx.doi.org/10.1016/j.resp.2017.08.006.
Full textKreyling, Wolfgang G., Stephanie Hirn, Winfried Möller, Carsten Schleh, Alexander Wenk, Gülnaz Celik, Jens Lipka, et al. "Air–Blood Barrier Translocation of Tracheally Instilled Gold Nanoparticles Inversely Depends on Particle Size." ACS Nano 8, no. 1 (December 30, 2013): 222–33. http://dx.doi.org/10.1021/nn403256v.
Full textBräuner, Elvira Vaclavik, Jann Mortensen, Peter Møller, Alfred Bernard, Peter Vinzents, Peter Wåhlin, Marianne Glasius, and Steffen Loft. "Effects of Ambient Air Particulate Exposure on Blood–Gas Barrier Permeability and Lung Function." Inhalation Toxicology 21, no. 1 (January 2009): 38–47. http://dx.doi.org/10.1080/08958370802304735.
Full textFridman, Gregory, Marie Peddinghaus, Manjula Balasubramanian, Halim Ayan, Alexander Fridman, Alexander Gutsol, and Ari Brooks. "Blood Coagulation and Living Tissue Sterilization by Floating-Electrode Dielectric Barrier Discharge in Air." Plasma Chemistry and Plasma Processing 26, no. 4 (June 15, 2006): 425–42. http://dx.doi.org/10.1007/s11090-006-9024-4.
Full textFridman, Gregory, Marie Peddinghaus, Manjula Balasubramanian, Halim Ayan, Alexander Fridman, Alexander Gutsol, Ari Brooks, and Gary Friedman. "Blood Coagulation and Living Tissue Sterilization by Floating-Electrode Dielectric Barrier Discharge in Air." Plasma Chemistry and Plasma Processing 27, no. 1 (November 5, 2006): 113–14. http://dx.doi.org/10.1007/s11090-006-9038-y.
Full textZhang, Dan, Chichi Li, Jian Zhou, Yuanlin Song, Xiaocong Fang, Jiaxian Ou, Jing Li, and Chunxue Bai. "Autophagy protects against ischemia/reperfusion-induced lung injury through alleviating blood–air barrier damage." Journal of Heart and Lung Transplantation 34, no. 5 (May 2015): 746–55. http://dx.doi.org/10.1016/j.healun.2014.12.008.
Full textHuang, Longfei, Lijuan Yang, Jianfang Liu, and Xiaojuan Cao. "Comparative Histological Analysis of Intestines of Loach, Grass Carp and Catfish Provide Insights into Adaptive Characteristics in Air-Breathing Fish." Croatian Journal of Fisheries 78, no. 2 (June 1, 2020): 91–98. http://dx.doi.org/10.2478/cjf-2020-0009.
Full textMokhtar, Doaa M., Manal T. Hussein, Marwa M. Hussein, Enas A. Abd-Elhafez, and Gamal Kamel. "New Insight into the Development of the Respiratory Acini in Rabbits: Morphological, Electron Microscopic Studies, and TUNEL Assay." Microscopy and Microanalysis 25, no. 3 (February 14, 2019): 769–85. http://dx.doi.org/10.1017/s1431927619000059.
Full textNamba, Y., S. S. Kurdak, Z. Fu, O. Mathieu-Costello, and J. B. West. "Effect of reducing alveolar surface tension on stress failure in pulmonary capillaries." Journal of Applied Physiology 79, no. 6 (December 1, 1995): 2114–21. http://dx.doi.org/10.1152/jappl.1995.79.6.2114.
Full textSalomon, Johanna Jessica, and Carsten Ehrhardt. "Organic cation transporters in the blood–air barrier: expression and implications for pulmonary drug delivery." Therapeutic Delivery 3, no. 6 (June 2012): 735–47. http://dx.doi.org/10.4155/tde.12.51.
Full textMeng, Ge, Jian Zhao, He‐Mei Wang, Ri‐Gao Ding, Xian‐Cheng Zhang, Chun‐Qian Huang, and Jin‐Xiu Ruan. "Cell Injuries of the Blood‐Air Barrier in Acute Lung Injury Caused by Perfluoroisobutylene Exposure." Journal of Occupational Health 52, no. 1 (January 2010): 48–57. http://dx.doi.org/10.1539/joh.l9047.
Full textPalestini, Paola, Chiara Calvi, Elena Conforti, Rossella Daffara, Laura Botto, and Giuseppe Miserocchi. "Compositional changes in lipid microdomains of air-blood barrier plasma membranes in pulmonary interstitial edema." Journal of Applied Physiology 95, no. 4 (October 2003): 1446–52. http://dx.doi.org/10.1152/japplphysiol.00208.2003.
Full textBengalli, Rossella, Paride Mantecca, Marina Camatini, and Maurizio Gualtieri. "Effect of Nanoparticles and Environmental Particles on a Cocultures Model of the Air-Blood Barrier." BioMed Research International 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/801214.
Full textBengalli, R., M. Gualtieri, M. Camatini, C. Urani, and P. Mantecca. "Effects of zinc oxide nanoparticles on an in vitro model of the air–blood barrier." Toxicology Letters 221 (August 2013): S241. http://dx.doi.org/10.1016/j.toxlet.2013.05.593.
Full textCevik, Nihal Gunes, Nurcan Orhan, Canan Ugur Yilmaz, Nadir Arican, Bulent Ahishali, Mutlu Kucuk, Mehmet Kaya, and Akin Savas Toklu. "The effects of hyperbaric air and hyperbaric oxygen on blood–brain barrier integrity in rats." Brain Research 1531 (September 2013): 113–21. http://dx.doi.org/10.1016/j.brainres.2013.07.052.
Full textZagorul'ko, A. K., A. A. Birkun, E. E. Fisik, and L. G. Safronova. "Changes in surfactant activity and ultrastructure of the air-blood barrier in experimental alcohol poisoning." Bulletin of Experimental Biology and Medicine 109, no. 5 (May 1990): 649–53. http://dx.doi.org/10.1007/bf00839892.
Full textYao, Xiao-Hong, Tao Luo, Yu Shi, Zhi-Cheng He, Rui Tang, Pei-Pei Zhang, Jun Cai, et al. "A cohort autopsy study defines COVID-19 systemic pathogenesis." Cell Research 31, no. 8 (June 16, 2021): 836–46. http://dx.doi.org/10.1038/s41422-021-00523-8.
Full textFrost, Timothy S., Linan Jiang, and Yitshak Zohar. "Pharmacokinetic Analysis of Epithelial/Endothelial Cell Barriers in Microfluidic Bilayer Devices with an Air–Liquid Interface." Micromachines 11, no. 5 (May 25, 2020): 536. http://dx.doi.org/10.3390/mi11050536.
Full textSapich, Sandra, Marius Hittinger, Remi Hendrix-Jastrzebski, Urska Repnik, Gareth Griffiths, Tobias May, Dagmar Wirth, Robert Bals, Nicole Schneider-Daum, and Claus-Michael Lehr. "Murine Alveolar Epithelial Cells and Their Lentivirus-mediated Immortalisation." Alternatives to Laboratory Animals 46, no. 2 (May 2018): 73–89. http://dx.doi.org/10.1177/026119291804600207.
Full textKasper, Jennifer Y., Lisa Feiden, Maria I. Hermanns, Christoph Bantz, Michael Maskos, Ronald E. Unger, and C. James Kirkpatrick. "Pulmonary surfactant augments cytotoxicity of silica nanoparticles: Studies on an in vitro air–blood barrier model." Beilstein Journal of Nanotechnology 6 (February 20, 2015): 517–28. http://dx.doi.org/10.3762/bjnano.6.54.
Full textViola, Hannah, Kendra Washington, Cauviya Selva, Jocelyn Grunwell, Rabindra Tirouvanziam, and Shuichi Takayama. "A High‐Throughput Distal Lung Air–Blood Barrier Model Enabled By Density‐Driven Underside Epithelium Seeding." Advanced Healthcare Materials 10, no. 15 (June 26, 2021): 2100879. http://dx.doi.org/10.1002/adhm.202100879.
Full textViola, Hannah, Kendra Washington, Cauviya Selva, Jocelyn Grunwell, Rabindra Tirouvanziam, and Shuichi Takayama. "A High‐Throughput Distal Lung Air–Blood Barrier Model Enabled By Density‐Driven Underside Epithelium Seeding." Advanced Healthcare Materials 11, no. 1 (January 2022): 2102450. http://dx.doi.org/10.1002/adhm.202102450.
Full textJackson, George, Courtney Mankus, Jonathan Oldach, Matthew Child, Maureen Spratt, Helena Kandarova, Seyoum Ayehunie, and Patrick Hayden. "A triple cell co-culture model of the air–blood barrier reconstructed from primary human cells." Toxicology Letters 221 (August 2013): S138. http://dx.doi.org/10.1016/j.toxlet.2013.05.270.
Full textBengalli, Rossella, Maurizio Gualtieri, Laura Capasso, Chiara Urani, and Marina Camatini. "Impact of zinc oxide nanoparticles on an in vitro model of the human air-blood barrier." Toxicology Letters 279 (September 2017): 22–32. http://dx.doi.org/10.1016/j.toxlet.2017.07.877.
Full textBeretta, Egidio, Francesca Lanfranconi, Gabriele Simone Grasso, Manuela Bartesaghi, Hailu Kinfu Alemayehu, and Giuseppe Miserocchi. "Reappraisal of DLCO adjustment to interpret the adaptive response of the air-blood barrier to hypoxia." Respiratory Physiology & Neurobiology 238 (April 2017): 59–65. http://dx.doi.org/10.1016/j.resp.2016.08.009.
Full textNaota, Misaki, Akinori Shimada, Takehito Morita, Yuko Yamamoto, Kenichiro Inoue, and Hirohisa Takano. "Caveolae-mediated Endocytosis of Intratracheally Instilled Gold Colloid Nanoparticles at the Air–Blood Barrier in Mice." Toxicologic Pathology 41, no. 3 (August 23, 2012): 487–96. http://dx.doi.org/10.1177/0192623312457271.
Full textTolkach, P. G., V. A. Basharin, S. V. Chepur, A. N. Gorshkov, and D. T. Sizova. "Ultrastructural Changes in the Air—Blood Barrier of Rats in Acute Intoxication with Furoplast Pyrolysis Products." Bulletin of Experimental Biology and Medicine 169, no. 2 (June 2020): 270–75. http://dx.doi.org/10.1007/s10517-020-04866-x.
Full textZagorul'ko, A. K., and E. E. Fisik. "Ultrastructural morphology of the air-blood barrier and surfactant in experimental pneumonia superposed on alcohol poisoning." Bulletin of Experimental Biology and Medicine 111, no. 1 (January 1991): 103–7. http://dx.doi.org/10.1007/bf00841254.
Full textKasper, Jennifer Y., Maria I. Hermanns, Ronald E. Unger, and C. James Kirkpatrick. "A responsive human triple-culture model of the air-blood barrier: incorporation of different macrophage phenotypes." Journal of Tissue Engineering and Regenerative Medicine 11, no. 4 (June 15, 2015): 1285–97. http://dx.doi.org/10.1002/term.2032.
Full textZheng, Lu P., Rui Sheng Du, and Barbara E. Goodman. "Effects of acute hyperoxic exposure on solute fluxes across the blood-gas barrier in rat lungs." Journal of Applied Physiology 82, no. 1 (January 1, 1997): 240–47. http://dx.doi.org/10.1152/jappl.1997.82.1.240.
Full text